当前位置: 首页 > news >正文

【大语言模型】最新ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用

 

ChatGPT、DeepSeek等大语言模型助力科研应用

随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。

ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面,这些模型能够迅速处理和分析大量数据,帮助提取有价值的规律,提升实验效率。

对于机器学习与深度学习建模,ChatGPT与DeepSeek不仅能为科研人员提供基础的建模框架,还能帮助其优化算法参数,甚至根据数据特点自动推荐合适的算法。特别是在深度学习模型的调参过程中,ChatGPT可以通过与科研人员的互动,提供多种优化方案并帮助其选择最佳方案,避免了传统方法中可能存在的局限性和低效性。这不仅提升了科研成果的准确性,还能显著缩短实验周期,加快科研进度。

   ChatGPT和DeepSeek作为先进的人工智能工具,正通过其强大的自然语言处理能力和深度学习优化能力,广泛应用于科研工作中,成为科研人员不可或缺的得力助手。

第一章、2024大语言模型最新进展与ChatGPT、DeepSeek等大语言模型

1、2024 AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、最新前沿技术和发展趋势简介)

2、(实操演练)国内外大语言模型(ChatGPT 4O、Gemini、Claude、Llama3、Perplexity AI、文心一言、星火、通义千问、Kimi、智谱清言、秘塔AI、DeepSeek等)对比分析

3、最新加入:(实操演练)OpenAI 12天12场直播新功能解读与演示(ChatGPT O1模型、Canvas交互式编辑画布、联网Search功能、实时语音交互、Project新建文件夹、对话记录搜索等功能)

4、最新加入:OpenAI首个智能体(Agent)Operator简介

5、最新加入:OpenAI Deep Research简介

6、(实操演练)Llama3、DeepSeek等开源大语言模型的本地部署与对话

7、(实操演练)ChatGPT-4o对话初体验(注册与充值、购买方法)

8、(实操演练)ChatGPT-4o科研必备GPT汇总介绍(寻找好用的GPTs模型、提示词优化、生成思维导图、生成PPT、生成视频、制定个性化的学习计划、检索论文、总结论文内容、总结视频内容、撰写论文、论文翻译、论文润色与修改、参考文献格式管理、论文评审、数据分析、生成代码、代码调试等)

9、(实操演练)GPT Store简介与使用

10、(实操演练)定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

11、(实操演练)ChatGPT-4o对话记录保存与管理

12、最新加入:(实操演练)Claude大语言模型对话初体验(对话界面主要功能介绍、上传数据文件分析并可视化、文献智能解读、自动生成代码等功能演示)

13、最新加入:(实操演练)DeepSeek使用初体验(注册与登录、App下载与安装、界面主要功能介绍与演示等)

第二章、 大语言模型提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)

1、(实操演练)ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、最新加入:DeepSeek与传统大语言模型在提示词撰写上的变与不变

3、(实操演练)常用的ChatGPT提示词模板

4、最新加入:(实操演练)基于思维链(Chain of Thought, CoT)的ChatGPT提示词优化(让OpenAI o1推理能力变强的诀窍之一)

5、(实操演练)ChatGPT-4o提示词优化(Promptest、Prompt Perfect、PromptPal提示宝等)

6、(实操演练)ChatGPT-4o突破Token限制实现接收或输出万字长文(Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

7、(实操演练)控制ChatGPT-4o的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

8、(实操演练)保存喜欢的ChatGPT-4o提示词并一键调用

9、最新加入:(实操演练)ChatGPT-4o提示词逆向工程(破解提示词的常用方法、对别人创建的GPTs提示词进行破解)

10、最新加入(实操演练)ChatGPT-4o提示词保护策略以及构建坚不可摧的GPTs

第三章、ChatGPT-4o和DeepSeek-R1等大语言模型助力日常生活、学习与工作

1、(实操演练)ChatGPT-4o和DeepSeek-R1助力中小学生功课辅导(写作文、作文批改、求解数学题、练习英语听说读写、物理计算、化学计算等)

2、(实操演练)ChatGPT-4o和DeepSeek-R1助力文案撰写与润色修改

3、(实操演练)ChatGPT-4o和DeepSeek-R1助力家庭健康管理(化验单结果解读、就诊咨询与初步诊断、常见慢病管理、日常营养膳食建议等)

4、(实操演练)ChatGPT-4o和DeepSeek-R1助力大学生求职与就业(撰写简历、模拟面试、职业规划等)

5、(实操演练)ChatGPT-4o和DeepSeek-R1助力商业工作(行业竞品检索与分析、产品创意设计与建议、推广营销策略与方案制定、撰写合同)

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1创建精美的思维导图

7、(实操演练)利用ChatGPT-4o和DeepSeek-R1生成流程图、甘特图

8、(实操演练)利用ChatGPT-4o和DeepSeek-R1制作PPT

9、(实操演练)利用ChatGPT-4o和DeepSeek-R1自动创建视频

10、(实操演练)ChatGPT-4o和DeepSeek-R1辅助教师高效备课(苏格拉底式教学、为不同专业学生生成不同的教学内容等)

11、(实操演练)ChatGPT-4o和DeepSeek-R1辅助学生高效学习(利用GPTs生成专属学习计划)

12、最新加入(实操演练)将ChatGPT-4o和DeepSeek-R1对话记录中的数学公式完美复制到Word文档

第四章、ChatGPT-4o和DeepSeek-R1等大语言模型助力课题申报、论文选题及实验方案设计

1、课题申请书撰写技巧及要点剖析(项目名称、关键词、摘要、立项依据、参考文献、研究目标、研究内容、研究方案、关键科学问题、可行性分析、创新点与特色之处、预期研究成果、工作基础等)

2、(实操演练)利用ChatGPT-4o和DeepSeek-R1分析指定领域的热门研究方向

3、(实操演练)利用ChatGPT-4o和DeepSeek-R1辅助撰写、润色课题申报书的各部分内容

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1总结指定论文的局限性与不足,并给出潜在的改进思路与建议

5、(实操演练)利用ChatGPT-4o和DeepSeek-R1评估指定改进思路新颖性与已发表的类似工作

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1进一步细化改进思路,凝练论文的选题与创新点

7、(实操演练)利用ChatGPT-4o和DeepSeek-R1给出具体的算法步骤,并自动生成算法的Python示例代码框架

8、(实操演练)利用ChatGPT-4o和DeepSeek-R1设计完整的实验方案与数据分析流程

9、(实操演练)利用ChatGPT-4o和DeepSeek-R1给出论文Discussion部分的切入点和思路

10、案例演示与实操练习

第五章、ChatGPT-4o和DeepSeek-R1等大语言模型助力信息检索、文献泛读与精读、论文写作与投稿、专利idea构思与交底书的撰写

1、(实操演练)传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现联网检索文献

3、(实操演练)利用ChatGPT-4o和DeepSeek-R1阅读与总结分析学术论文内容(论文主要工作、创新点、局限性与不足、多文档对比分析等)

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1解读论文中的系统框图工作原理

5、(实操演练)利用ChatGPT-4o和DeepSeek-R1解读论文中的数学公式含义

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1解读论文中图表中数据的意义及结论

7、(实操演练)ChatGPT-4o总结Youtube视频内容

8、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成学术论文的选题设计与优化

9、(实操演练)利用ChatGPT-4o和DeepSeek-R1自动生成论文的总体框架、论文摘要、前言介绍、文献综述、完整长篇论文等

10、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成论文翻译(指定翻译角色和翻译领域、提供背景提示)

11、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现论文语法校正

12、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成段落结构及句子逻辑润色

13、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成论文降重

14、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成论文参考文献格式的自动转换

15、(实操演练)ChatGPT-4o和DeepSeek-R1辅助审稿人完成论文评审意见的撰写

16、(实操演练)ChatGPT-4o和DeepSeek-R1辅助投稿人完成论文评审意见的回复

17、(实操演练)ChatGPT-4o文献检索、论文写作必备GPTs总结

18、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成发明专利idea的挖掘与构思

19、(实操演练)利用ChatGPT-4o和DeepSeek-R1完成发明专利交底书的撰写

20、最新加入:(实操演练)利用ChatGPT-4o with canvas完成人机交互协同修改论文(智能修改建议、篇幅调整、阅读水平等级调整、润色修改等)

第六章、ChatGPT-4o和DeepSeek-R1等大语言模型助力编程入门、科学计算、数据可视化、数据预处理【与Python融合】

1、(实操演练)Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello World;第三方模块的安装与使用;Python 2.x与Python 3.x对比)

2、(实操演练)Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)

3、(实操演练)Python流程控制(条件判断;for循环;while循环;break和continue)

4、(实操演练)Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)

5、(实操演练)Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套;折线图、柱状图、饼图、地图等各种图形的绘制)

6、(实操演练)Seaborn、Bokeh、Pyecharts等高级绘图库的安装与使用(动态交互图的绘制、开发大数据可视化页面等)

7、(实操演练)科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

8、(实操演练)利用ChatGPT-4o和DeepSeek-R1上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)

9、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现图像处理(图像缩放、旋转、裁剪、去噪与去模糊)

10、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)

11、(实操演练)常用的数据预处理方法(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)

12、(实操演练)融合ChatGPT-4o和DeepSeek-R1与Python的数据预处理代码自动生成与运行

13、(实操演练)利用ChatGPT-4o和DeepSeek-R1自动生成数据统计分析图表

14、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现代码逐行讲解

15、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现代码Bug调试与自动修改

16、案例演示与实操练习

第七章、ChatGPT-4o和DeepSeek-R1等大语言模型助力机器学习建模及高级应用

1、BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、(实操演练)BP神经网络的Python代码实现(划分训练集和测试集、数据归一化)

3、(实操演练)BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4、(实操演练)值得研究的若干问题(欠拟合与过拟合、评价指标选择、样本不平衡等)

5、(实操演练)BP神经网络中的ChatGPT和DeepSeek-R1提示词库讲解

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现BP神经网络模型的代码自动生成与运行

7、SVM的工作原理(核函数的作用是什么?什么是支持向量?如何解决多分类问题?)

8、决策树的工作原理(什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系)

9、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”的本质是什么?怎样可视化、解读随机森林的结果?)

10、Bagging与Boosting的区别与联系

11、AdaBoost vs. Gradient Boosting的工作原理

12、(实操演练)常用的GBDT算法框架(XGBoost、LightGBM)

13、(实操演练)决策树、随机森林、XGBoost、LightGBM中的ChatGPT提示词库讲解

14、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现决策树、随机森林、XGBoost、LightGBM模型的代码自动生成与运行

15、案例演示与实操练习

第八章、ChatGPT-4o和DeepSeek-R1等大语言模型助力助力机器学习模型优化:变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3、(实操演练)常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)

5、(实操演练)PCA、PLS、特征选择、群优化算法的ChatGPT-4o和DeepSeek-R1提示词库讲解

6、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现变量降维与特征选择算法的代码自动生成与运行

第九章、ChatGPT-4o和DeepSeek-R1等大语言模型助力卷积神经网络建模与代码自动生成

1、深度学习简介(深度学习大事记、深度学习与传统机器学习的区别与联系)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)

3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

4、(实操演练)利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5、(实操演练)卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6、(实操演练)卷积神经网络中的ChatGPT-4o和DeepSeek-R1提示词库讲解

7、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现卷积神经网络模型的代码自动生成与运行

(1)CNN预训练模型实现物体识别;

(2)利用卷积神经网络抽取抽象特征;

(3)自定义卷积神经网络拓扑结构

8、案例演示与实操练习

第十章、ChatGPT-4o和DeepSeek-R1等大语言模型助力迁移学习建模与代码自动生成

1、迁移学习算法的基本原理

2、(实操演练)基于深度神经网络模型的迁移学习算法

3、(实操演练)迁移学习中的ChatGPT-4oT和DeepSeek-R1提示词库讲解

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现迁移学习模型的代码自动生成与运行

5、实操练习

第十一章、ChatGPT-4o和DeepSeek-R1等大语言模型助力RNN、LSTM建模与代码自动生成

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3、(实操演练)RNN与LSTM中的ChatGPT-4o和DeepSeek-R1提示词库讲解

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现RNN、LSTM模型的代码自动生成与运行

5、案例演示与实操练习

第十二章、ChatGPT-4o和DeepSeek-R1等大语言模型助力YOLO目标检测建模与代码自动生成

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3、(实操演练)YOLO模型中的ChatGPT-4o和DeepSeek-R1提示词库讲解

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现YOLO目标检测模型的代码自动生成与运行

(1)利用预训练好的YOLO模型实现图像、视频、摄像头实时检测;

(2)数据标注演示(LabelImage使用方法介绍);

(3)训练自己的目标检测数据集

5、案例演示与实操练习

第十三章、ChatGPT-4o和DeepSeek-R1等大语言模型助力机器学习与深度学习建模的案例实践应用

1、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现近红外光谱分析模型的建立、代码自动生成与运行

2、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现生物医学信号(时间序列、图像、视频数据)分类识别与回归拟合模型的建立、代码自动生成与运行

3、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现遥感图像目标检测、地物分类及语义分割模型的建立、代码自动生成与运行

4、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现大气污染物预测模型的建立、代码自动生成与运行

5、(实操演练)利用ChatGPT-4o和DeepSeek-R1实现自然语言处理模型的建立、代码自动生成与运行

6、案例演示与实操练习

第十四章、ChatGPT-4o高级绘图技术

1、(实操演练)利用ChatGPT-4o DALL.E 3生成图像(下载图像、修改图像)

2、(实操演练)ChatGPT-4o DALL.E 3常用的提示词库(广告海报、Logo、3D模型、插画、产品包装、烹饪演示、产品外观设计、UI设计、吉祥物设计等)

3、(实操演练)ChatGPT-4o DALL.E 3中的多种视图(正视图、后视图、侧视图、四分之三视图、鸟瞰视图、全景视图、第一人称视角、分割视图、截面视图等)

4、(实操演练)ChatGPT-4o DALL.E 3中的多种光效(电致发光、化学发光、生物荧光、极光闪耀、全息光等)

5、(实操演练)ChatGPT-4o DALL.E 3格子布局与角色一致性的实现

6、(实操演练)ChatGPT-4o DALL.E 3生成动图GIF

7、(实操演练)Midjourney工具使用讲解

8、(实操演练)Stable Diffusion工具使用讲解

9、(实操演练)Runway图片生成动画工具使用讲解

10、案例演示与实操练习

第十五章、基于ChatGPT-4o 和DeepSeek-R1等大语言API接口调用与完整项目开发

1、(实操演练)GPT模型API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)

2、最新加入:DeepSeek API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)

3、(实操演练)利用GPT和DeepSeek等API实现完整项目开发

(1)聊天机器人的开发

(2)利用GPT API和Text Embedding生成文本的特征向量

(3)构建基于多模态(语音、文本、图像)的阿尔茨海默病早期筛查程序

3、案例演示与实操练习

第十六章、 总结与讨论

1、总结

2、讨论

原文

相关文章:

【大语言模型】最新ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用

ChatGPT、DeepSeek等大语言模型助力科研应用 随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数…...

泰勒公式推导以及常用展开式与近似计算

泰勒公式的基本思想是通过函数在某点的导数来逐渐构建一个多项式,该多项式能够近似函数在该点附近的值。我们通过一次次引入导数来改进近似,从而得到一个无限级数的展开。 准备工作:函数的定义和导数 假设我们有一个函数 f ( x ) f(x) f(x)…...

深入解析A2DP v1.4协议:蓝牙高质量音频传输的技术与实现

1. A2DP概述 A2DP(Advanced Audio Distribution Profile)是一种高质量音频流媒体协议,旨在实现高质量音频内容的分发,通常用于通过蓝牙设备传输音频数据,例如将音乐从便携式播放器传输到耳机或扬声器。与传统的蓝牙语…...

STM32引脚VBAT和RTC的关系

一、RTC简介 1、RTC (Real Time Clock):实时时钟。RTC是个独立的定时器。RTC模块拥有一个连续计数的计数器,在相应的软件配置下,可以提供时钟日历的功能。修改计数器的值可以重新设置当前时间和日期。RTC还包含用于管理低功耗模式的自动唤醒单…...

untiy 3d 混合动画

1.创建动画控制器 挂在到人物模型上 效果 20250213_170924...

django配置跨域

1、第一种 from django.views.decorators.csrf import csrf_exemptcsrf_exempt第二种 安装 pip install django-cors-headers在配置文件settings.py进入 INSTALLED_APPS [..."corsheaders", # 添加 ]MIDDLEWARE [corsheaders.middleware.CorsMiddleware, # 添加…...

【设计模式】【行为型模式】迭代器模式(Iterator)

👋hi,我不是一名外包公司的员工,也不会偷吃茶水间的零食,我的梦想是能写高端CRUD 🔥 2025本人正在沉淀中… 博客更新速度 👍 欢迎点赞、收藏、关注,跟上我的更新节奏 🎵 当你的天空突…...

前端面试题目---页面抖动的原因、如何避免、如何解决

前端页面抖动是一个常见且影响用户体验的问题,下面将从抖动发生的场景、解决办法以及预防措施三个方面进行详细阐述。 页面抖动发生的场景 1. 元素尺寸动态变化 图片加载:当页面中图片的宽高没有预先设定,在图片加载完成后,其实…...

DeepSeek 突然来袭,AI 大模型变革的危机与转机藏在哪?

随着人工智能技术的飞速发展,大模型领域不断涌现出具有创新性的成果。DeepSeek 的横空出世,为 AI 大模型领域带来了新的变革浪潮。本文将深入探讨 DeepSeek 出现后 AI 大模型面临的危机与转机。 冲冲冲!!! 目录 一、…...

将Sqlite3数据库挂在内存上处理

创作灵感:最近把小学生的口算题从2位数改到3位数,100以内四则运算练习(千纬数学)再次更新,选取难题-CSDN博客要不断刷题目,以前100以内的加减乘除也是这样刷出来的,代码如下: impor…...

#用于跟踪和反映数据源对象的变化--useMagical

import { cloneDeep } from lodash-es import { reactive, ref, watchEffect } from vue /*** 神奇函数* param source 数据源,* param initKey 固定需要返回的属性* description 收集数据源中修改的属性,并返回* version 1.0 仅支持对象* author sufei* return { source, resu…...

基于微信小程序的场地预约设计与实现

第3章 系统设计 3.1系统设计目标 本系统的实现可以帮助体育馆场地信息的管理。帮助管理员对注册用户管理以及用户预约管理。同时可以帮助用户进行场地预约。本系统可以实现用户足不出户预约到需要的场地,为用户提供场地信息了解的平台。 3.2系统功能结构图 本系统的…...

1446. 连续字符 简单

1446. 连续字符https://leetcode.cn/problems/consecutive-characters/ 给你一个字符串 s ,字符串的「能量」定义为:只包含一种字符的最长非空子字符串的长度。 请你返回字符串 s 的 能量。 示例 1: 输入:s "leetcode"…...

多张图片合成PDF

昨天接了一个家教,在网上搜集了一些图片格式的素材,但想要发给学生家长打印,都是图片格式可能不太方便,就想着合成pdf文件之后再发给家长。 试用了“samll*”一次,就需要充值vip了,所以就用python自己写了…...

【办公】钉钉修改默认存储位置,释放C盘空间

Step1: 右击钉钉图标选择设置 Step2: 通用里面找到文件保存位置,修改文件目录: 最新版本钉钉界面: 设置完成后按提示重启即可!...

VLLM历次会议(2024.7)

支持LLama3.1: 量化: vllm git下的子项目:llm-compressor CPU offloading 允许跑更大的模型;会变慢些;在CPU-GPU之间有NVLink的机器上,变慢的幅度小。 新增对Medusa(用1个Head并行推出好几个…...

进程等待与进程替换

目录 一、进程等待 1.1 为什么要等待子进程? 1.2 等待的两种方式 1.2.1 wait函数 1.2.2 waitpid函数 1.3 获取子进程的退出状态 1.4 示例代码 阻塞式等待(同步) 非阻塞等待(异步) 二、进程替换 2.1 什么是进…...

C# CultureInfo 地区影响字符串

问题 线上遇到有玩家资源加载异常,发现资源路径出现异常字符: 发现是土耳其语下字符串转小写不符合预期: "I".ToLower() -> ı 解决方案 String.ToLower 改成 String.ToLowerInvariant 全局修改禁用文化差异:ht…...

走进 Tcl 语言:历史、特性与应用

亲爱的小伙伴们😘,在求知的漫漫旅途中,若你对深度学习的奥秘、Java 与 Python 的奇妙世界,亦或是读研论文的撰写攻略有所探寻🧐,那不妨给我一个小小的关注吧🥰。我会精心筹备,在未来…...

CNN-LSSVM卷积神经网络最小二乘支持向量机多变量多步预测,光伏功率预测

代码地址:CNN-LSSVM卷积神经网络最小二乘支持向量机多变量多步预测,光伏功率预测 CNN-LSSVM卷积神经网络最小二乘支持向量机多变量多步预测,光伏功率预测 一、引言 1、研究背景和意义 光伏发电作为可再生能源的重要组成部分,近…...

使用MaxKB及deepseek搭建本地AI知识库

序 本文主要研究一下如何MaxKB及deepseek搭建本地AI知识库 步骤 拉取MaxKB镜像 docker pull cr2.fit2cloud.com/1panel/maxkb如果拉取不下来就用docker.1ms.run/1panel/maxkb 启动MaxKB docker run -d --namemaxkb --restartalways -p 8080:8080 \ -v ~/.maxkb:/var/lib/p…...

一文通俗理解为什么需要泛型以及泛型的使用

为什么需要泛型? public static void main(String[] args) {ArrayList list new ArrayList();// 由于集合没有做任何限定,任何类型都可以给其中存放list.add("abc");list.add("def");list.add(5);Iterator it list.iterator();wh…...

凸包算法—— cad c#二次开发

效果如下&#xff1a; 代码如下&#xff1a; using IfoxDemo; //[assembly: CommandClass(typeof(IFoxDemo.凸包class))]//只允许此类快捷键命令 namespace IFoxDemo {public class 凸包class{public static class 凸包助手{/// <summary>/// 计算点集的凸包并返回多段线…...

Eclipse JSP/Servlet 深入解析

Eclipse JSP/Servlet 深入解析 引言 随着互联网的快速发展,Java Web开发技术逐渐成为企业级应用开发的主流。在Java Web开发中,JSP(JavaServer Pages)和Servlet是两个核心组件,它们共同构成了Java Web应用程序的基础。本文将深入解析Eclipse平台下的JSP/Servlet技术,帮…...

grep如何排除多个目录?

在使用 grep 进行文本搜索时&#xff0c;有时候需要排除多个目录&#xff0c;避免在这些目录下进行搜索。下面介绍几种不同的实现方式。 目录 1.使用 -r 和 --exclude-dir 选项&#xff08;GNU grep&#xff09; 2.使用扩展正则表达式和 -P 选项&#xff08;GNU grep&#x…...

linux ollama deepseek等大语言模型的model文件的存储目录

linux ollama deepseek等大语言模型的model文件的存储目录 一、用ollama serve启动的&#xff0c;模型数据存放在&#xff1a; /usr/share/ollama/.ollama/models二、如果在自启动文件中指定了工作目录&#xff0c;则在工作目录下的.ollama/models 1.自启动服务 /etc/system…...

React进阶之React核心源码解析(二)

React核心源码解析 diff单一节点比较diff多节点比较diff两轮遍历比较第一轮比较第二轮比较 Update 状态更新Concurrent Mode diff 一共两个阶段 render&#xff1a;内存中的更新&#xff0c;主要是通过递归的过程&#xff0c;来将react变化的部分&#xff0c;在内存中找到哪些…...

八、OSG学习笔记-

前一章节&#xff1a; 七、OSG学习笔记-碰撞检测-CSDN博客https://blog.csdn.net/weixin_36323170/article/details/145558132?spm1001.2014.3001.5501 一、了解OSG图元加载显示流程 本章节代码&#xff1a; OsgStudy/wids CuiQingCheng/OsgStudy - 码云 - 开源中国https:…...

Python实现随机森林(Random Forest)算法

随机森林&#xff08;Random Forest&#xff09;是一种集成学习方法&#xff0c;通过构建多个决策树并结合它们的预测结果来提高模型的准确性和稳定性。下面是一个使用Python实现随机森林算法的示例。我们将使用scikit-learn库&#xff0c;它提供了方便的接口来实现随机森林。 …...

平方数列与立方数列求和的数学推导

先上结论&#xff1a; 平方数列求和公式为&#xff1a; S 2 ( n ) n ( n 1 ) ( 2 n 1 ) 6 S_2(n) \frac{n(n1)(2n1)}{6} S2​(n)6n(n1)(2n1)​ 立方数列求和公式为&#xff1a; S 3 ( n ) ( n ( n 1 ) 2 ) 2 S_3(n) \left( \frac{n(n1)}{2} \right)^2 S3​(n)(2n(n1)​…...

new和malloc的区别

new malloc流程 new new流程 调用operator new 分配内存&#xff1a;在free store 生成对象 free store 可能在 堆 / 自定义的地方 可以认为虚拟内存到物理内存的映射关系早已完成 若分配内存失败&#xff08;内存空间不够&#xff09;&#xff0c;抛出std::bad_alloc 异常…...

JVM——垃圾回收算法

目录 垃圾回收算法 评价标准&#xff1a; 标记-清除算法&#xff1a; 复制算法&#xff1a; 标记-整理算法&#xff1a; 分代GC&#xff1a; arthas查看分代之后的内存情况&#xff1a; 垃圾回收算法 java是如何实现垃圾回收的呢&#xff1f;简单来说&#xff0c;垃圾回…...

算法日记16:SC68 联通块问题(并查集)

一、题目&#xff1a; 二、题解&#xff1a; 1、看到求联通块问题&#xff0c;我们可以考虑使用DFS/并查集(在这里我们仅介绍并查集) 2、什么是并查集&#xff1f; 2.1&#xff1a;初始化&#xff1a;对于每一个点&#xff0c;我们都对其进行初始化操作pre[i]i pre[i]表示i的…...

Unity-Mirror网络框架-从入门到精通之Pong示例

文章目录 前言示例介绍NetworkManagerPongBallPlayer总结前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Unity的开源网络框架,专为多人游戏开发设计…...

c++ 多线程知识汇总

一、std::thread std::thread 是 C11 引入的标准库中的线程类&#xff0c;用于创建和管理线程 1. 带参数的构造函数 template <class F, class... Args> std::thread::thread(F&& f, Args&&... args);F&& f&#xff1a;线程要执行的函数&…...

探索 Text-to-SQL 技术:从自然语言到数据库查询的桥梁

亲爱的小伙伴们&#x1f618;&#xff0c;在求知的漫漫旅途中&#xff0c;若你对深度学习的奥秘、Java 与 Python 的奇妙世界&#xff0c;亦或是读研论文的撰写攻略有所探寻&#x1f9d0;&#xff0c;那不妨给我一个小小的关注吧&#x1f970;。我会精心筹备&#xff0c;在未来…...

Java NIO ByteBuffer 详解

什么是 ByteBuffer ByteBuffer 是 Buffer 的一个具体实现&#xff0c;专门用于存储和操作字节数据。它提供了高效的、基于内存的 I/O 数据处理方式。 Buffer 类是构建 Java NIO 的基础&#xff0c;其中 ByteBuffer 类是 Buffer 子类中最受欢迎的。这是因为字节类型是最通用的…...

【机器学习】简单线性回归算法及代码实现

线性回归算法 一、摘要二、线性回归算法概述三、损失函数的定义和衡量标准四、简单线性回归的求解和应用五、机器学习算法一般求解思路 一、摘要 本文讲解了线性回归算法的基础知识和应用&#xff0c;强调线性回归主要用于解决回归问题。通过分析房产价格与房屋面积的关系&…...

【前端开发】query参数和params参数的区别

在Web开发中&#xff0c;query参数&#xff08;URL查询参数&#xff09;和params参数&#xff08;路由参数&#xff09;是两种不同的URL传参方式&#xff0c;它们的核心区别如下&#xff1a; 一、 位置不同 query参数params参数位置URL中?之后&#xff0c;用&连接多个参数…...

人工智能数学基础学习PPT

学习视频&#xff1a;人工智能 -数学基础 文章目录 1.简介1.函数2.极限3.无穷小与无穷大4.连续性与导数5.偏导数6.方向导数7.梯度 2.微积分1.微积分基本想法2.微积分的解释3.定积分4.定积分性质5.牛顿-莱布尼茨公式 3.泰勒公式与拉格朗日1.泰勒公式2.一点一世界3.阶数的作用4.…...

企业文件防泄密软件哪个好?

在企业文件防泄密软件领域&#xff0c;天锐绿盾和中科数安都是备受认可的品牌&#xff0c;它们各自具有独特的特点和优势。 以下是对这两款软件的详细比较&#xff1a; 天锐绿盾 功能特点 集成性强&#xff1a;集成了文件加密、数据泄露防护DLP、终端安全管理、行为审计等数据安…...

美丽 百褶裙提示词 + MD

MD 参考教程&#xff1a;Marvelous Designer零基础教学&#xff0c;MD布料制作-百褶裙建模制作&#xff0c;次世代教学_哔哩哔哩_bilibili 【MD新手教程】30分钟教会你制作百褶裙&#xff0c;Marvelous Designer超简单入门案例教程_哔哩哔哩_bilibili 【c4d技术解析】MD百褶裙…...

解释和对比“application/octet-stream“与“application/x-protobuf“

介绍 在现代 Web 和分布式系统的开发中&#xff0c;数据的传输和交换格式扮演着关键角色。为了确保数据在不同系统之间的传输过程中保持一致性&#xff0c;MIME 类型&#xff08;Multipurpose Internet Mail Extensions&#xff09;被广泛应用于描述数据的格式和内容类型。在 …...

基于YALMIP和cplex工具箱的微电网最优调度算法matlab仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 系统建模 4.2 YALMIP工具箱 4.3 CPLEX工具箱 5.完整工程文件 1.课题概述 基于YALMIP和cplex工具箱的微电网最优调度算法matlab仿真。通过YALMIP和cplex这两个工具箱&#xff0c;完成微电网的最优调…...

AI前端开发技能提升与ScriptEcho:拥抱AI时代的前端开发新范式

随着人工智能技术的飞速发展&#xff0c;AI前端开发岗位对技能的要求也水涨船高。越来越多的企业需要具备AI相关知识和高级前端开发能力的工程师&#xff0c;这使得传统的前端开发模式面临着巨大的挑战。如何提升开发效率&#xff0c;降低人力成本&#xff0c;成为了摆在所有前…...

LeetCode题解:2690. 无穷方法对象,Proxy

Problem: 2690. 无穷方法对象 思路 这个问题的核心在于创建一个对象&#xff0c;该对象能够响应对其任何方法的调用&#xff0c;并返回调用的方法名称。为了实现这一点&#xff0c;我们可以利用 JavaScript 中的 Proxy 对象。Proxy 对象允许我们自定义对象的基本操作&#xff…...

Python中的HTTP客户端库:httpx与request | python小知识

Python中的HTTP客户端库&#xff1a;httpx与request | python小知识 在Python中&#xff0c;发送HTTP请求和处理响应是网络编程的基础。requests和httpx是两个常用的HTTP库&#xff0c;它们都提供了简洁易用的API来发送HTTP请求。然而&#xff0c;httpx作为新一代的HTTP客户端…...

RabbitMQ使用guest登录提示:User can only log in via localhost

guest用户默认是无法使用远程访问的&#xff0c;生产环境建议直接在对应服务器登录使用。 1、通过创建新增用户并赋予权限实现远程登录 添加新用户 rabbitmqctl add_user zjp zjp 设置管理员 rabbitmqctl set_user_tags zjp administrator 设置新用户的权限 rabbitmqctl…...

#渗透测试#批量漏洞挖掘#Crocus系统—Download 文件读取

免责声明 本教程仅为合法的教学目的而准备&#xff0c;严禁用于任何形式的违法犯罪活动及其他商业行为&#xff0c;在使用本教程前&#xff0c;您应确保该行为符合当地的法律法规&#xff0c;继续阅读即表示您需自行承担所有操作的后果&#xff0c;如有异议&#xff0c;请立即停…...

基于Matlab实现六自由度机械臂正逆运动仿真(源码)

在机器人技术领域&#xff0c;六自由度机械臂是一种广泛应用的设备&#xff0c;它可以实现空间中的位置和姿态控制。本项目聚焦于六自由度机械臂的正逆运动学仿真&#xff0c;利用MATLAB2016b作为开发工具&#xff0c;旨在深入理解并掌握机械臂的工作原理和运动控制。 正运动学…...