当前位置: 首页 > news >正文

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦 💕

共同探索软件研发!敬请关注【宝码香车】
关注描述

csdngif标识

目录

  • 0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应用
    • 一、前言
    • 二、蓝耘元生代智算云与 DeepSeek R1 模型概述
      • 2.1 蓝耘元生代智算云简介
      • 2.2 DeepSeek R1 模型特性
    • 三、本地部署环境准备
      • 3.1 硬件要求
      • 3.2 软件要求
      • 3.3 蓝耘元生代智算云账号注册
    • 四、应用市场直接部署
      • 4.1 应用市场部署
      • 4.2 使用
    • 五、总结操作流程
    • 六、展望


📚📗📕📘📖🕮💡📝🗂️✍️🛠️💻🚀🎉🏗️🌐🖼️🔗📊👉🔖⚠️🌟🔐⬇️·正文开始⬇️·🎥😊🎓📩😺🌈🤝🤖📜📋🔍✅🧰❓📄📢📈 🙋0️⃣1️⃣2️⃣3️⃣4️⃣5️⃣6️⃣7️⃣8️⃣9️⃣🔟🆗*️⃣#️⃣

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应用

最近DeepSeek-R1 系列推理能力比肩 OpenAI o1;想弄个玩玩。一弄发现这个对硬件有要求,好吧。那就租个硬件玩玩。

一、前言

deepseek

在当今数字化时代,人工智能技术发展迅猛,大语言模型(LLMs)作为人工智能领域的关键技术,已成为推动众多领域创新的核心驱动力。从自然语言处理到智能客服,从内容创作到智能辅助决策,大语言模型的身影无处不在,为我们的生活和工作带来了前所未有的便利和效率提升。

DeepSeek R1 模型作为大语言模型领域的佼佼者,凭借其强大的自然语言处理能力,在众多应用场景中展现出卓越的性能。它能够理解人类语言的微妙之处,准确把握用户意图,并生成高质量、富有逻辑的回复。无论是处理复杂的文本生成任务,还是解答专业领域的问题,DeepSeek R1 模型都能游刃有余,为用户提供高效、智能的语言交互服务。

然而,要充分发挥 DeepSeek R1 模型的优势,实现其在实际业务中的应用,往往需要将模型部署到本地环境中。这不仅能够满足企业对数据安全和隐私的严格要求,还能提高模型的响应速度和稳定性,为用户带来更好的使用体验。而蓝耘元生代智算云作为一款专为人工智能计算需求打造的高性能云计算平台,为本地部署 DeepSeek R1 模型提供了有力的支持。

蓝耘元生代智算云配备了顶尖的计算硬件,如英伟达的高端 GPU 集群,拥有强大的并行计算能力,能够显著加速深度学习模型的训练与推理过程。同时,该平台还提供了丰富的软件工具与框架支持,涵盖 TensorFlow、PyTorch 等主流深度学习框架,方便开发者快速搭建和部署各类 AI 应用。此外,蓝耘元生代智算云具备弹性的资源调配机制,用户可根据自身业务需求灵活调整计算资源,有效降低成本。
蓝耘元生代智算云配备了顶尖的计算硬件

本文将深入且详细地阐述如何借助蓝耘元生代智算云在本地完成 DeepSeek R1 模型的部署。我们将从部署环境准备、模型下载与准备、基于蓝耘元生代智算云的本地部署步骤等方面进行全面的讲解,并融入实战经验与技巧,帮助读者顺利完成部署工作,充分发挥模型的优势。无论你是人工智能领域的初学者,还是经验丰富的开发者,相信本文都能为你提供有价值的参考和指导。

二、蓝耘元生代智算云与 DeepSeek R1 模型概述

2.1 蓝耘元生代智算云简介

蓝耘元生代智算云是一款专为人工智能计算需求打造的高性能云计算平台,它以其卓越的性能和全面的功能,在人工智能领域发挥着重要作用,为用户提供了强大的计算支持。

蓝耘元生代智算云配备了顶尖的计算硬件,例如英伟达的高端 GPU 集群,拥有强大的并行计算能力。以 NVIDIA A100 GPU 为例,它基于先进的安培架构,具备高达 80GB 的 HBM2e 显存,能够高效处理大规模的张量计算,显著加速深度学习模型的训练与推理过程。在训练复杂的深度学习模型时,NVIDIA A100 GPU 可以在短时间内完成大量的计算任务,大大缩短了训练时间,提高了工作效率。

该平台还提供了丰富的软件工具与框架支持,涵盖 TensorFlow、PyTorch 等主流深度学习框架。这些框架为开发者提供了便捷的开发环境和丰富的工具函数,方便开发者快速搭建和部署各类 AI 应用。以 PyTorch 框架为例,它具有动态计算图的特性,使得开发者可以更加灵活地进行模型的调试和开发,大大提高了开发效率。

此外,蓝耘元生代智算云具备弹性的资源调配机制,用户可根据自身业务需求灵活调整计算资源。在业务高峰期,用户可以快速增加计算资源,以满足业务需求;在业务低谷期,用户可以减少计算资源,降低成本。这种弹性的资源调配机制,有效降低了用户的使用成本,提高了资源的利用率。

2.2 DeepSeek R1 模型特性

DeepSeek R1 模型是一款基于 Transformer 架构的大型语言模型,拥有庞大的参数规模,这使得它在自然语言处理的多个任务上表现出色,展现出强大的自然语言处理能力,为众多领域提供了有力支持。
DeepSeek R1 模型特性

它通过在海量文本数据上进行无监督预训练,学习到了丰富的语言知识和语义理解能力。在预训练过程中,模型对大量的文本进行学习,从而掌握了语言的语法、语义和语用等方面的知识,能够理解人类语言的微妙之处,准确把握用户意图。在微调阶段,针对特定任务的数据进行训练,进一步提升了模型在该任务上的性能。通过微调,模型可以更好地适应不同的应用场景,如文本生成、问答系统、文本摘要等。

在文本生成任务中,DeepSeek R1 模型能够生成连贯、逻辑清晰且富有表现力的文本。当要求生成一篇关于科技发展的文章时,它能够迅速组织语言,从不同角度阐述科技发展的现状、趋势和影响,为内容创作提供了有力支持。在智能客服领域,它能够准确理解用户的问题,并给出准确、详细的回答,提高了客户满意度。

在数学、代码和自然语言推理等任务上,DeepSeek R1 模型也表现优异,性能对标 OpenAI o1 正式版。在 Codeforces 平台上,它获得了 2029 的评分,这一成绩超过了 96.3% 的人类程序员,与 OpenAI o1-1217 的 2061 评分仅有小幅差距 。在 MMLU(大规模多任务语言理解)测试中,模型达到了 90.8% 的准确率,虽然略低于 o1 的 91.8%,但显著优于其他开源模型。在需要长上下文理解的任务中,DeepSeek R1 展现出显著优势,其性能显著优于 DeepSeek-V3,证明了其在处理复杂、长文本任务方面的能力。

DeepSeek R1 模型采用了大规模强化学习技术,仅需极少量标注数据,就能显著提升推理能力。在训练过程中,它通过与环境进行交互,不断尝试不同的策略,并根据环境反馈的奖励信号来调整自己的行为,从而逐渐学会如何在各种任务中做出最优决策。这种强化学习驱动的训练方式,使得模型在仅有极少标注数据的情况下,也能实现强大的推理能力,大大减少了对大量标注数据的依赖,降低了训练成本和时间。

该模型还支持长链推理(CoT),思维链长度可达数万字,能逐步分解复杂问题,通过多步骤逻辑推理解决问题。当遇到一个复杂的数学问题时,DeepSeek R1 模型会首先分析问题的条件和要求,然后逐步推导,展示出详细的推理过程,最终得出准确的答案。这种长链推理能力,使得模型能够处理更加复杂和困难的任务,为科研、技术开发等领域提供了有力的支持。

DeepSeek R1 模型遵循 MIT License 开源,用户可自由使用、修改和商用,促进了技术共享和创新。这使得开发者可以根据自己的需求对模型进行定制和优化,推动了人工智能技术的发展和应用。

三、本地部署环境准备

3.1 硬件要求

在本地部署 DeepSeek R1 模型,硬件的选择至关重要,它直接影响着模型的运行效率和性能表现。

由于 DeepSeek R1 模型的计算量巨大,对 GPU 的性能要求极高。推荐使用英伟达的高端 GPU,如 NVIDIA A100 或 H100。以 NVIDIA A100 为例,它采用了先进的安培架构,拥有高达 80GB 的 HBM2e 显存,具备强大的计算核心和高速的内存带宽,能够高效处理大规模的张量计算,显著加速模型的推理过程。在处理复杂的自然语言处理任务时,A100 GPU 能够快速完成计算,大大提高了模型的响应速度。而 H100 基于 Hopper 架构,采用了第四代张量核心(Tensor Core)和 Transformer 引擎,与之前的 A100 GPU 相比,人工智能训练速度提高了 9 倍,推理速度提高了 30 倍,能为 DeepSeek R1 模型提供更强大的计算支持。

CPU 方面,建议选择多核高性能的产品,如英特尔酷睿 i9 系列或 AMD 锐龙 9 系列。在模型部署中,CPU 主要负责协调 GPU 与其他硬件组件的工作,以及处理一些非计算密集型的任务,如数据加载和预处理。以英特尔酷睿 i9 - 12900K 为例,它拥有高达 5.2GHz 的极高睿频速度,具备强大的多线程处理能力,能够在处理多任务和复杂指令时表现出色,为 DeepSeek R1 模型的稳定运行提供坚实保障。AMD 锐龙 9 5950X 同样具备优秀的性能,其 TDP 为 105W,在保持高性能的同时,具有较好的节能表现,能够满足模型部署对 CPU 的性能需求。

内存方面,建议配置 64GB 及以上的内存,以确保在模型运行过程中能够存储和处理大量的数据。在实际部署中,如果内存不足,可能会导致模型加载缓慢甚至无法正常运行。当模型处理大规模文本数据时,充足的内存可以减少数据读取的时间,提高运行效率。若内存不足,系统可能会频繁进行数据交换,导致运行速度大幅下降,严重影响使用体验。

3.2 软件要求

操作系统方面,DeepSeek R1 模型支持 Windows 10/11 或 Linux 系统,如 Ubuntu 20.04 及以上版本。不同操作系统在软件兼容性和性能表现上可能存在差异,用户可根据自身熟悉程度和软件需求进行选择。Linux 系统在深度学习领域应用广泛,具有开源、灵活和高效的特点,适合专业的开发者。以 Ubuntu 系统为例,它拥有丰富的软件源,能够方便地安装和管理各种深度学习相关的软件和库。同时,Linux 系统对硬件资源的利用效率较高,能够充分发挥硬件的性能。而 Windows 系统则更易于上手,对于普通用户更为友好,其图形化界面操作简单,方便用户进行各种设置和操作。

深度学习框架选择安装 PyTorch,版本需根据 GPU 驱动和 CUDA 版本进行适配。PyTorch 是一个基于 Python 的科学计算包,主要用于深度学习,提供了强大的张量计算和自动求导功能,方便开发者构建和训练深度学习模型。在使用 PyTorch 训练 DeepSeek R1 模型时,其动态计算图的特性使得开发者可以更加灵活地进行模型的调试和开发,能够快速验证模型的想法和算法。同时,PyTorch 拥有丰富的社区资源和工具,开发者可以方便地获取到各种模型代码和教程,加快开发进度。

3.3 蓝耘元生代智算云账号注册

注册地址:https://cloud.lanyun.net/#/registerPage?promoterCode=07100c37a0

注册

主要写个手机号和邮箱就行。其余随便写。

四、应用市场直接部署

4.1 应用市场部署

直接从蓝耘应用市场进行安装。点击部署
DeepSeek R1 模型特性

4.2 使用

输入:将富国论核心思想提炼为七个记忆锚点,采用首字母联想法,使记忆更加高效。

deepseek使用
应用制作完成。

五、总结操作流程

注册 -> 应用 ->使用

  1. 注册
  2. 应用市场部署
  3. 使用

六、展望

DeepSeek R1 模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发挥重要作用,推动各行业的智能化发展。

在智能教育领域,DeepSeek R1 模型可以为学生提供个性化的学习辅导。根据学生的学习进度、知识掌握情况和学习习惯,模型能够生成针对性的学习计划和练习题,帮助学生巩固知识、提高学习效率。在解答数学问题时,模型可以详细展示解题思路和步骤,引导学生理解和掌握解题方法;在语言学习方面,模型可以与学生进行对话练习,纠正发音和语法错误,提供语言表达的建议,提升学生的语言应用能力。模型还可以辅助教师进行教学工作,如自动批改作业、分析学生学习数据,为教师提供教学决策支持,帮助教师更好地了解学生的学习状况,调整教学策略。

医疗辅助诊断领域,DeepSeek R1 模型也能发挥重要作用。它可以快速分析大量的医学文献和病例数据,为医生提供诊断建议和治疗方案参考。在面对复杂的疾病诊断时,模型可以综合考虑患者的症状、病史、检查结果等信息,从海量的医学知识中筛选出相关的诊断依据,帮助医生更准确地判断病情,制定合理的治疗方案。模型还可以用于疾病预测,通过对人群的健康数据进行分析,预测疾病的发生风险,提前采取预防措施,降低疾病的发生率。

金融风险预测是 DeepSeek R1 模型的又一重要应用方向。金融市场复杂多变,风险因素众多,DeepSeek R1 模型可以通过对市场数据、交易数据、宏观经济数据等多维度信息的分析,预测金融市场的波动和风险,为金融机构和投资者提供决策支持。模型可以分析股票市场的走势,预测股票价格的涨跌,帮助投资者制定合理的投资策略;在风险管理方面,模型可以评估企业的信用风险,识别潜在的违约风险,为金融机构的信贷决策提供参考,降低金融风险。

随着技术的不断发展,DeepSeek R1 模型的性能和应用场景有望进一步拓展。在模型性能方面,随着计算能力的提升和算法的优化,模型可能具备更高的语言理解能力和生成能力,能够处理更加复杂和多样化的任务。在应用场景方面,模型可能会在更多领域得到应用,如智能交通、智能家居、环境保护等,为这些领域的智能化发展提供强大的技术支持。

到此这篇文章就介绍到这了,更多精彩内容请关注本人以前的文章或继续浏览下面的文章,创作不易,如果能帮助到大家,希望大家多多支持宝码香车~💕,若转载本文,一定注明本文链接。


整理不易,点赞关注宝码香车

更多专栏订阅推荐:
👍 html+css+js 绚丽效果
💕 vue
✈️ Electron
⭐️ js
📝 字符串
✍️ 时间对象(Date())操作

相关文章:

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 0基础…...

Flink-DataStream API

一、什么样的数据可以用于流式传输 Flink的DataStream API 允许流式传输他们可以序列化的任何内容。Flink自己的序列化程序用于 基本类型:即字符串、长、整数、布尔值、数组复合类型:元组、POJO和Scala样例类 基本类型我们已经很熟悉了,下…...

chromium-mojo

https://chromium.googlesource.com/chromium/src//refs/heads/main/mojo/README.md 相关类:https://zhuanlan.zhihu.com/p/426069459 Core:https://source.chromium.org/chromium/chromium/src//main:mojo/core/README.md;bpv1;bpt0 embedder:https://source.chr…...

Sourcetree 安装教程(附下载链接)

一、介绍 Sourcetree是一款免费的Git桌面工具,可以简化我们与Git之间敲代码的过程,使得我们可以更快的管理代码版本。 虽然现在各大IDE都内置Git功能,但在一些没有内置Git的IDE情况下,使用Sourcetree进行Git下的代码管理是一件非…...

NIO 和 AIO 的区别?

目录 设计理念 工作模式 适用场景 性能特点 NIO(Non - blocking I/O,非阻塞 I/O)和 AIO(Asynchronous I/O,异步 I/O)都是 Java 中用于实现高效 I/O 操作的机制,它们在设计理念、工作模式、适用场景等方面存在明显区别,以下为你详细介绍: 设计理念 NIO:NIO 基于事…...

Python中10个常用的接口自动化装饰器

更多Python学习内容:ipengtao.com 装饰器(Decorators)是Python中一种强大的编程工具,它们用于修改或增强函数或方法的行为。在接口自动化测试中,装饰器可以起到简化代码、提高代码可维护性和可重用性的作用。本文将介…...

Odoo17 0.1常见的QWeb 模板语言指令的详细总结

Odoo QWeb 模板语言提供了许多指令 (directives) 来增强 HTML 模板的功能,使其能够动态地展示数据、进行条件判断、循环遍历、以及实现更复杂的逻辑。 这些指令都以 t- 开头作为属性添加到 HTML 标签上。 以下是一些常见的 Odoo QWeb 模板语言指令的详细总结&#…...

螺旋矩阵 II

螺旋矩阵 II 一、题目描述 给定一个正整数 n,请你生成一个包含 1 到 n^2 所有元素的 n x n 正方形矩阵,元素顺序按顺时针的方式进行螺旋排列。 示例 1:输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2:…...

Object:所有类的超类

定义:所有类的超(父)类。 Object有下面几个常用的方法: equals():比较内存地址是否指向相同getclass():获取类的信息--反射领域hashcode 散列码--根据地址生成wait -- 线程进入等待状态,让出CPU和锁notify -- 唤醒等待…...

LabVIEW 开发航天项目软件

在航天项目软件开发中,LabVIEW 凭借其图形化编程优势被广泛应用。然而,航天项目的高可靠性、高精度及复杂环境适应性要求,使得在使用 LabVIEW 开发时,有诸多关键要点需要特别关注。本文将详细分析在开发航天项目软件时需要重点注意…...

docker部署superset并连接华为MRS hive数据库

下载构建源码 这个项目实现了汉化和开箱即用,感谢大佬 GitHub - lutinglt/superset-zh: Superset 汉化, Superset 中文版 替换国内apt源 查看debian版本,不同版本替换apt源的内容不同 cat /etc/debian_version我这里是11.9版本 apt源文件sources.li…...

在 Flutter 实现下拉刷新、上拉加载更多和一键点击回到顶部的功能

在 Flutter 中,实现下拉刷新、上拉加载更多和一键点击回到顶部的功能,通常会结合使用 RefreshIndicator、ListView 和 ScrollController 来实现这些交互效果。下面分别介绍如何实现这些功能。 1. 下拉刷新 Flutter 提供了 RefreshIndicator 组件来实现…...

Linux常见命令——系统定时任务

文章目录 crontab 服务管理crontab -e :编辑crontab 定时任务crontab -l 查看crontab 任务crontab -r 删除当前用户所有的crontab 任务 crontab 服务管理 systemctl status crond该系统进程是开机自启动,并且被打开了,可以使用。 crontab -e :编辑cr…...

国产编辑器EverEdit - 书签功能介绍

1 书签 1.1 应用场景 当用户在文档中多处进行编辑时,为了方便在多个编辑位置跳转,使用书签功能可以方便记录各个位置。 1.2 使用方法 1.2.1 切换书签 设置或取消光标所在行的书签 方法1:选择主菜单查找 -> 书签 -> 切换书签 方法2&…...

【Hadoop】大数据权限管理工具Ranger2.1.0编译

目录 ​编辑一、下载 ranger源码并编译 二、报错信息 报错1 报错2 报错3 报错4 一、下载 ranger源码并编译 ranger官网 https://ranger.apache.org/download.html 由于Ranger不提供二进制安装包,故需要maven编译。安装其它依赖: yum install gcc …...

推荐算法实践:movielens数据集

MovieLens 数据集介绍 MovieLens 数据集是由明尼苏达大学的GroupLens研究小组维护的一个广泛使用的电影评分数据集,主要用于推荐系统的研究。该数据集包含用户对电影的评分、标签以及其他相关信息,是电影推荐系统开发与研究的常用数据源。 数据集版本 …...

基于 PyTorch 的树叶分类任务:从数据准备到模型训练与测试

基于 PyTorch 的树叶分类任务:从数据准备到模型训练与测试 1. 引言 在计算机视觉领域,图像分类是一个经典的任务。本文将详细介绍如何使用 PyTorch 实现一个树叶分类任务。我们将从数据准备开始,逐步构建模型、训练模型,并在测试…...

生成式语言模型技术全解析

一、引言 在人工智能领域,生成式语言模型(Generative Language Models,GLMs)无疑是近年来最为耀眼的明星。从早期的简单语言模型到如今如DeepSeek、Qwen 2.5 Max等具有强大能力的先进模型,它们在自然语言处理的各个方…...

香港中文大学 Adobe 推出 MotionCanvas:开启用户掌控的电影级图像视频创意之旅。

简介: 亮点直击 将电影镜头设计引入图像到视频的合成过程中。 推出了MotionCanvas,这是一种简化的视频合成系统,用于电影镜头设计,提供整体运动控制,以场景感知的方式联合操控相机和对象的运动。 设计了专门的运动条…...

bazel 小白理解

Bazel命令是用于构建和测试软件项目的一个强大工具,尤其适用于大规模和多语言的软件项目。对于小白来说,可以这样理解Bazel及其命令: Bazel的基本概念 构建系统:Bazel是一个构建系统,它的主要任务是自动化地编译和链…...

基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

一、介绍 蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【“香菇(Agaricus)”, “毒鹅膏菌(Amanita)”, “牛肝菌&…...

基于 STM32 平台的音频特征提取与歌曲风格智能识别系统

标题:基于 STM32 平台的音频特征提取与歌曲风格智能识别系统 内容:1.摘要 摘要:本文介绍了一种基于 STM32 平台的音频特征提取与歌曲风格智能识别系统。该系统通过对音频信号进行特征提取和分析,实现了对歌曲风格的自动识别。在特征提取方面&#xff0c…...

AUTOGPT:基于GPT模型开发的实验性开源应用程序; 目标设定与分解 ;;自主思考与决策 ;;信息交互与执行

目录 AUTOGPT是一款基于GPT模型开发的实验性开源应用程序目标设定与分解自主思考与决策信息交互与执行AUTOGPT是一款基于GPT模型开发的实验性开源应用程序 目标设定与分解 自主思考与决策 信息交互与执行 AUTOGPT是一款基于GPT模型开发的实验性开源应用程序,它能让大语言模…...

DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构

目录 1. 知识图谱与语料库的联邦学习架构 2. 技术要素 3. 技术难点与挑战 4. 技术路径 5. 应用场景 6. 最新研究与技术进展 7. 未来趋势 8. 实际案例 猫哥说 1. 知识图谱与语料库的联邦学习架构 (1) 定义 “知识图谱与语料库的联邦学习架构”是一种结合知识图谱&…...

MVVM设计模式

‌MVVM(Model-View-ViewModel)是一种软件设计模式,MVVM模式由三个主要部分组成: ‌Model(模型)‌:负责管理应用程序的业务逻辑和数据。它不关心UI如何展示数据,主要负责与服务器通信和数据处处…...

5.实时推荐系统的设计与实现

接下来我们将学习实时推荐系统的设计与实现。实时推荐系统需要处理大规模数据,并在用户交互时提供即时的推荐结果。这一课我们将介绍以下内容: 实时推荐系统的基本概念实时推荐系统的架构设计实时推荐系统的关键技术实践示例 1. 实时推荐系统的基本概念…...

分层解耦-ioc引入

内聚: 软件中各个功能模块内部的功能联系。 耦合: 衡量软件中各个层/模块之间的依赖、关联的程度。 软件设计原则: 高内聚低耦合。...

Docker安装常用软件说明

1.总体步骤 2.安装tomcat docker run -d -p 8080:8080 --name tomcat1 tomcat:11.0.8 访问tomcat猫首页 出现404 这是正常情况 Docker 默认采用的是 NAT 网络模式,所以会自动创建 IPtable 规则并自动开放端口,所以无需考虑防火墙问题 新版Tomcat已经…...

陶氏环面包络减速机:为工业视觉检测注入“精准动力”!

在工业4.0时代,视觉检测技术已成为智能制造的核心环节。无论是精密电子元件的检测,还是汽车零部件的质量把控,视觉检测系统都需要极高的精度、稳定性和响应速度。而这一切,离不开一颗强大的“心脏”——陶氏环面包络减速机。 一、…...

标准日本语 导学

新版标准日本语-初级 结构 初级 上 初级 下 每章结构 教学方法...

vscode怎么更新github代码

vscode怎么更新github代码 打开终端: 在 VS Code 中,使用快捷键 Ctrl (Mac 上是 Cmd) 打开终端。 导航到项目目录: 确保你当前所在的终端目录是你的项目目录。如果不是,可以使用 cd 命令导航到项目目录,例如&#xf…...

【转载】开源鸿蒙OpenHarmony社区运营报告(2025年1月)

●截至2025年1月31日,开放原子开源鸿蒙(OpenAtom OpenHarmony,简称“开源鸿蒙”或“OpenHarmony”)社区累计超过8200名贡献者,共63家成员单位,产生51.2万多个PR、2.9万多个Star、10.5万多个Fork、68个SIG。…...

Pdf手册阅读(1)--数字签名篇

原文阅读摘要 PDF支持的数字签名, 不仅仅是公私钥签名,还可以是指纹、手写、虹膜等生物识别签名。PDF签名的计算方式,可以基于字节范围进行计算,也可以基于Pdf 对象(pdf object)进行计算。 PDF文件可能包…...

【C#】任务调度的实现原理与组件应用Quartz.Net

Quartz 是一个流行的开源作业调度库,最初由 Terracotta 开发,现在由 Terracotta 的一部分 Oracle 所有。它主要用于在 Java 应用程序中调度作业的执行。Quartz 使用了一种复杂的底层算法来管理任务调度,其中包括任务触发、执行、持久化以及集…...

HTML之JavaScript函数声明

HTML之JavaScript函数声明 1. function 函数名(){}2. var 函数名 function(){}<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1…...

如何在 Qt 中添加和使用系统托盘图标

在 Qt 中实现系统托盘图标是一个常见的需求&#xff0c;尤其是在桌面应用程序中。系统托盘图标可以让应用程序在后台运行时仍然具有可见性&#xff0c;同时避免占用过多的桌面空间。本文将详细介绍如何在 Qt 项目中添加托盘图标&#xff0c;并通过资源系统&#xff08;.qrc 文件…...

day5QT套接字通信

Widget.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);objtimer new QTimer (this);//连接定时器的timeout信号到启动的槽函数//connect(objtimer,&…...

JVM速成=。=

JVM跨平台原理 跨平台&#xff1a;一次编译&#xff0c;到处运行 本质&#xff1a;不同操作系统上运行的JVM不一样&#xff0c;只需要把java程序编译成一份字节码文件&#xff0c;JVM执行不同的字节码文件。 Java是高级语言&#xff0c;提前编译一下&#xff08;变成字节码文件…...

操作系统中的任务调度算法

在多任务操作系统中&#xff0c;任务调度算法&#xff08;Task Scheduling Algorithm&#xff09;是决定CPU资源如何分配给进程或线程的核心机制。优秀的调度算法需要平衡响应时间、吞吐量和公平性&#xff0c;同时适应不同的应用场景。 任务调度的核心目标 CPU利用率最大化&a…...

第七节 文件与流

基本的输入输出&#xff08;iostream&#xff09; C标准库提供了一组丰富的输入/输出功能&#xff0c;C的I/O发生在流中&#xff0c;流是字节序列。如果字节流是从设备&#xff08;键盘、磁盘驱动器、网络连接等&#xff09;流向内存&#xff0c;叫做输入操作。如果字节流是从…...

回首2024,展望2025

2024年&#xff0c;是个充满挑战与惊喜的年份。在这366个日夜里&#xff0c;我站在编程与博客的交汇点&#xff0c;穿越了无数的风景与挑战&#xff0c;也迎来了自我成长的丰收时刻。作为开发者的第十年&#xff0c;我依然步伐坚定&#xff0c;心中始终带着对知识的渴望与对自我…...

Ubuntu指令学习(个人记录、偶尔更新)

Ubuntu指令学习 0、一点常用指令列表一、Ubuntu下复制与移动&#xff0c;cp/mv二、Ubuntu下echo 与 重定向>,>>三、Ubuntu下chmod,用户权限四、Ubuntu下的tar打包&#xff0c;gzip压缩五、Ubuntu(22.04)下系统语言为中文&#xff0c;切换主目录文件名为英文。六、Ubun…...

【牛客】动态规划专题一:斐波那契数列

文章目录 DP1 斐波那契数列法1&#xff1a;递归法2&#xff1a;动态规划法3&#xff1a;优化空间复杂度 2.分割连接字符串3. 给定一个字符串s和一组单词dict&#xff0c;在s中添加空格将s变成一个句子 DP1 斐波那契数列 法1&#xff1a;递归 // 递归 #include <iostream>…...

HCIA-Access V2.5_13_1_1_VLAN类型

VLAN类型&#xff08;1&#xff09;Standard VLAN VLAN类型&#xff08;1&#xff09;-Smart VLAN Smart可以包含多个上行口&#xff0c;和多个业务虚端口(Service Port)&#xff0c;以太网端口在同一下VLAN中是互通的&#xff0c;但是业务虚端口&#xff0c;在同一个VLAN之间是…...

【动态规划】风扫枯杨,满地堆黄叶 - 9. 完全背包问题

本篇博客给大家带来的是完全背包问题之动态规划解法技巧. &#x1f40e;文章专栏: 动态规划 &#x1f680;若有问题 评论区见 ❤ 欢迎大家点赞 评论 收藏 分享 如果你不知道分享给谁,那就分享给薯条. 你们的支持是我不断创作的动力 . 王子,公主请阅&#x1f680; 要开心要快乐顺…...

Android ndk兼容 64bit so报错

1、报错logcat如下 2025-01-13 11:34:41.963 4687-4687 DEBUG pid-4687 A #01 pc 00000000000063b8 /system/lib64/liblog.so (__android_log_default_aborter16) (BuildId: 467c2038cdfa767245f9280e657fdb85) 2025…...

极狐GitLab 17.8 正式发布,多项 DevOps 重点功能解读【一】

GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料&#xff1a; 极狐GitLab 官网极狐…...

java面试题

以下是一些Java面试题: 一、基础概念 Java中的基本数据类型有哪些?它们的默认值是什么? 答案: 基本数据类型有byte(字节型,默认值为0)、short(短整型,默认值为0)、int(整型,默认值为0)、long(长整型,默认值为0L)、float(浮点型,默认值为0.0f)、double(双精…...

C语言蓝桥杯1003: [编程入门]密码破译

要将"China"译成密码&#xff0c;译码规律是&#xff1a;用原来字母后面的第4个字母代替原来的字母&#xff0e; 例如&#xff0c;字母"A"后面第4个字母是"E"&#xff0e;"E"代替"A"。因此&#xff0c;"China"应译…...

react实例与总结(一)

目录 一、简单认识 1.1、特点 1.2、JSX语法规则 1.3、函数组件和类式组件 1.4、类组件三大属性state、props、refs 1.4.1、state 1.4.2、props 1.4.3、refs 1.5、事件处理 1.6、收集表单数据—非受控组件和受控组件 1.7、高阶函数—函数柯里化 1.8、生命周期—新旧…...