OpenCV:特征检测总结
目录
一、什么是特征检测?
二、OpenCV 中的常见特征检测方法
1. Harris 角点检测
2. Shi-Tomasi 角点检测
3. Canny 边缘检测
4. SIFT(尺度不变特征变换)
5. ORB
三、特征检测的应用场景
1. 图像匹配
2. 运动检测
3. 自动驾驶
4. 生物特征识别
四、总结
一、什么是特征检测?
特征检测是计算机视觉中的重要技术,用于识别图像中的关键点(如角点、边缘、纹理等),帮助计算机理解和分析图像内容。特征检测的核心目标是找到能够 稳定、独特、可区分 的图像区域,以便在后续的目标识别、图像匹配、运动估计等任务中使用。
特征检测的基本类型:
- 角点检测:检测图像中的拐角点,例如 Harris 角点、Shi-Tomasi 角点。
- 边缘检测:检测图像中强度变化明显的边界,例如 Canny 边缘检测。
- 局部特征点检测:提取关键点及其描述符,例如 SIFT、SURF、ORB、FAST。
二、OpenCV 中的常见特征检测方法
OpenCV 提供了多种特征检测算法,可以根据应用场景选择适合的方法。
1. Harris 角点检测
Harris 角点检测是一种用于检测角点的方法。角点是指图像中灰度变化较大的点,它们通常对应于结构的交点,如建筑物的拐角。
核心思想:
- 计算图像窗口在不同方向上的灰度变化。
- 若在所有方向上灰度变化较大,则认为该点是角点。
示例代码:
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]# 显示结果
cv2.imshow('Harris Corners', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
▶️运行结果:
应用场景:
- 目标跟踪
- 运动检测
- 物体识别
2. Shi-Tomasi 角点检测
Shi-Tomasi 角点检测是 Harris 角点的改进版本,能够更好地选择稳定的角点。
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
#harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
#image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]corners = cv2.goodFeaturesToTrack(gray, maxCorners=100, qualityLevel=0.01, minDistance=10)
for corner in np.int0(corners):x, y = corner.ravel()cv2.circle(image, (x, y), 5, (0, 255, 0), -1)# 显示结果
cv2.imshow('Shi-Tomasi', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
▶️运行结果:
应用场景:
- 运动跟踪(如光流跟踪)
- 结构分析
3. Canny 边缘检测
Canny 边缘检测 主要用于提取图像中的 边缘特征,是计算机视觉中的重要工具。
核心步骤:
- 高斯模糊去噪。
- 计算梯度,检测边缘。
- 通过非极大值抑制减少边缘宽度。
- 通过双阈值去除弱边缘。
示例代码:
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)edges = cv2.Canny(gray, 100, 200)
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
▶️运行结果:
应用场景:
- 车道检测
- 物体轮廓提取
- OCR(光学字符识别)
4. SIFT(尺度不变特征变换)
SIFT (Scale-Invariant Feature Transform) 是一种经典的特征检测方法,具有 尺度不变性 和 旋转不变性,能够检测图像中的局部特征点,并为每个特征点生成独特的描述符。
示例代码:
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)sift = cv2.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)
image_sift = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('SIFT Features', image_sift)
cv2.waitKey(0)
cv2.destroyAllWindows()
▶️运行结果:
应用场景:
- 图像匹配(如拼接全景图)
- 物体识别
- 机器人导航
5. ORB
ORB (Oriented FAST and Rotated BRIEF)是 SIFT 和 SURF 的高效替代方案,适用于实时应用,如移动设备上的特征检测。
示例代码:
import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)orb = cv2.ORB_create()
keypoints = orb.detect(gray, None)
image_orb = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('ORB Features', image_orb)
cv2.waitKey(0)
cv2.destroyAllWindows()
▶️运行结果:
应用场景:
- 低计算资源环境(如嵌入式设备)
- 物体跟踪
- 视觉 SLAM(同时定位与地图构建)
三、特征检测的应用场景
1. 图像匹配
- 通过特征点匹配来识别物体,如 SIFT、ORB 可用于 拼接全景图 或 目标识别。
2. 运动检测
- 角点检测(如 Shi-Tomasi)可用于跟踪视频中的运动物体,如 光流跟踪。
3. 自动驾驶
- Canny 边缘检测 可用于 车道检测,ORB 可用于 视觉 SLAM。
4. 生物特征识别
- SIFT、ORB 可用于 指纹识别、人脸识别。
四、总结
方法 | 主要用途 | 特点 |
---|---|---|
Harris 角点 | 角点检测 | 计算简单,适用于运动检测 |
Shi-Tomasi 角点 | 改进的角点检测 | 适用于光流跟踪等任务 |
Canny 边缘 | 边缘检测 | 精确提取物体轮廓 |
SIFT | 关键点检测、图像匹配 | 尺度、旋转不变,精度高 |
ORB | 关键点检测、实时匹配 | 适合移动端,速度快 |
如何选择特征检测方法?
- 如果需要快速检测角点:Shi-Tomasi、Harris。
- 如果需要检测物体轮廓:Canny。
- 如果需要进行图像匹配:SIFT、ORB。
- 如果需要在低计算资源环境下运行:ORB 是更好的选择。
😀通过OpenCV提供的特征检测工具,我们可以在图像处理、目标识别、运动检测等多个领域实现高效的视觉分析。希望本篇博文能有所帮助!
相关文章:
OpenCV:特征检测总结
目录 一、什么是特征检测? 二、OpenCV 中的常见特征检测方法 1. Harris 角点检测 2. Shi-Tomasi 角点检测 3. Canny 边缘检测 4. SIFT(尺度不变特征变换) 5. ORB 三、特征检测的应用场景 1. 图像匹配 2. 运动检测 3. 自动驾驶 4.…...
Java高频面试之SE-17
hello啊,各位观众姥爷们!!!本牛马baby今天又来了!哈哈哈哈哈嗝🐶 Java缓冲区溢出,如何解决? 在 Java 中,缓冲区溢出 (Buffer Overflow) 虽然不是像 C/C 中那样直接可见…...
移动机器人规划控制入门与实践:基于navigation2 学习笔记(一)
课程实践: (1)手写A*代码并且调试,总结优缺点 (2)基于Gazebo仿真,完成给定机器人在给定地图中的导航调试 (3)使用Groot设计自己的导航行为树 掌握一门技术 规划控制概述 常见移动机器人...
每日一题洛谷P5721 【深基4.例6】数字直角三角形c++
#include<iostream> using namespace std; int main() {int n;cin >> n;int t 1;for (int i 0; i < n; i) {for (int j 0; j < n - i; j) {printf("%02d",t);t;}cout << endl;}return 0; }...
RTMP 和 WebRTC
WebRTC(Web Real-Time Communication)和 RTMP(Real-Time Messaging Protocol)是两种完全不同的流媒体协议,设计目标、协议栈、交互流程和应用场景均有显著差异。以下是两者的详细对比,涵盖协议字段、交互流程及核心设计思想。 一、协议栈与设计目标对比 特性RTMPWebRTC传…...
数据库技术基础
1 数据库系统概述 1.1 数据库的4个概念 (1)数据(信息) 数据:指已记录或可获取的事实,是数据库存储的最小单元。除文本、数字外,还有图形、图像、声音等。 数据由于能为用户利用才被记录和保…...
如何获取sql数据中时间的月份、年份(类型为date)
可用自带的函数month来实现 如: 创建表及插入数据: create table test (id int,begindate datetime) insert into test values (1,2015-01-01) insert into test values (2,2015-02-01) 执行sql语句,获取月份: select MONTH(begindate)…...
每日Attention学习18——Grouped Attention Gate
模块出处 [ICLR 25 Submission] [link] UltraLightUNet: Rethinking U-shaped Network with Multi-kernel Lightweight Convolutions for Medical Image Segmentation 模块名称 Grouped Attention Gate (GAG) 模块作用 轻量特征融合 模块结构 模块特点 特征融合前使用Group…...
分析用户请求K8S里ingress-nginx提供的ingress流量路径
前言 本文是个人的小小见解,欢迎大佬指出我文章的问题,一起讨论进步~ 我个人的疑问点 进入的流量是如何自动判断进入iptables的四表?k8s nodeport模式的原理? 一 本机环境介绍 节点名节点IPK8S版本CNI插件Master192.168.44.1…...
TensorFlow是个啥玩意?
TensorFlow是一个开源的机器学习框架,由Google开发。它可以帮助开发者构建和训练各种机器学习模型,包括神经网络和深度学习模型。TensorFlow的设计理念是使用数据流图来表示计算过程,其中节点表示数学运算,边表示数据流动。 Tens…...
初识C语言、C语言的学习方向总述与入门
目录 1. 什么是C语言? 2. 第一个C语言程序 3. 数据类型 4. 变量、常量 4.1 定义变量的方法 4.2 变量的命名 4.3 变量的分类 4.4 变量的作用域和生命周期 4.5 常量 5. 字符串转义字符注释 5.1 字符串 5.2 转义字符 6. 注释 7. 选择语句 8. 循环语句 …...
零基础学习书生.浦语大模型-入门岛
第一关:Linux基础知识 任务一:Cursor连接SSH运行代码 使用Remote - SSH插件即可 运行指令 python hello_world.py端口映射 ssh -p 46561 rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno 注:46561&a…...
【R语言】获取数据
R语言自带2种数据存储格式:*.RData和*.rds。 这两者的区别是:前者既可以存储数据,也可以存储当前工作空间中的所有变量,属于非标准化存储;后者仅用于存储单个R对象,且存储时可以创建标准化档案,…...
MongoDB学习笔记-解析jsonCommand内容
如果需要屏蔽其他项目对MongoDB的直接访问操作,统一由一个入口访问操作MongoDB,可以考虑直接传入jsonCommand语句解析执行。 相关依赖包 <!-- SpringBootDataMongodb依赖包 --> <dependency><groupId>org.springframework.boot</…...
国产编辑器EverEdit - 工具栏说明
1 工具栏 1.1 应用场景 当用户想显示/隐藏界面的标签栏、工具栏、状态栏、主菜单等界面元素时,可以通过EverEdit的菜单选项进行设置。 1.2 使用方法 选择菜单查看 -> 工具栏,在工具栏的子菜单中选择勾选或去掉勾选对应的选项。 标签栏࿱…...
linux 函数 sem_init () 信号量、sem_destroy()
(1) (2) 代码举例: #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <semaphore.h> #include <unistd.h>sem_t semaphore;void* thread_function(void* arg) …...
制造业设备状态监控与生产优化实战:基于SQL的序列分析与状态机建模
目录 1. 背景与挑战 2. 数据建模与采集 2.1 数据表设计 设备状态表(记录设备实时状态变更)...
密码学的数学基础1-素数和RSA加密
数学公式推导是密码学的基础, 故开一个新的课题 – 密码学的数学基础系列 素数 / 质数 质数又称素数。 一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数࿰…...
C++ Primer 算术运算符
欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...
计算图 Compute Graph 和自动求导 Autograd | PyTorch 深度学习实战
前一篇文章,Tensor 基本操作5 device 管理,使用 GPU 设备 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started PyTorch 计算图和 Autograd 微积分之于机器学习Computational Graphs 计算图Autograd…...
Vue 图片引用方式详解:静态资源与动态路径访问
目录 前言1. 引用 public/ 目录2. assets/ 目录3. 远程服务器4. Vue Router 动态访问5. 总结6. 扩展(图片不显示) 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 在 Vue 开发中&#x…...
熟练掌握Http协议
目录 基本概念请求数据Get请求方式和Post请求方式 响应数据响应状态码 基本概念 Http协议全称超文本传输协议(HyperText Transfer Protocol),是网络通信中应用层的协议,规定了浏览器和web服务器数据传输的格式和规则 Http应用层协议具有以下特点&#…...
爬虫学习笔记之Robots协议相关整理
定义 Robots协议也称作爬虫协议、机器人协议,全名为网络爬虫排除标准,用来告诉爬虫和搜索引擎哪些页面可以爬取、哪些不可以。它通常是一个叫做robots.txt的文本文件,一般放在网站的根目录下。 robots.txt文件的样例 对有所爬虫均生效&#…...
血压计OCR文字检测数据集VOC+YOLO格式2147张11类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2147 标注数量(xml文件个数):2147 标注数量(txt文件个数):2147 …...
正则表达式详细介绍
目录 正则表达式详细介绍什么是正则表达式?元字符转义字符字符类限定字符字符分枝字符分组懒惰匹配和贪婪匹配零宽断言 正则表达式详细介绍 什么是正则表达式? 正则表达式是一组由字母和符号组成的特殊文本,它可以用来从文本中找出满足你想…...
初识ArkTS语言
文章目录 ArkTS是HarmonyOS优选的主力应用开发语言。ArkTS围绕应用开发在TypeScript(简称TS)生态基础上做了进一步扩展,保持了TS的基本风格,同时通过规范定义强化开发期静态检查和分析,提升程序执行稳定性和性能。 从…...
Go语言并发之美:构建高性能键值存储系统
摘要 本文介绍了基于Go语言实现的高性能并发键值存储系统。通过深入探讨Go语言在并发编程中的优势,文章详细阐述了系统的锁机制、分片优化、内存管理和持久化设计等关键环节。这些设计展示了如何在系统开发中进行有效的权衡,以确保最优性能。该系统不仅充…...
6. k8s二进制集群之各节点部署
获取kubernetes源码安装主节点(分别执行以下各节点命令)安装工作节点(同步kebelet和kube-proxy到各工作节点)总结 继续上一篇文章《k8s二进制集群之ETCD集群部署》下面介绍一下各节点的部署与配置。 获取kubernetes源码 https:/…...
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架
目录 前言 环境介绍 代码与动机 架构设计,优缺点 博客系列指引 前言 笔者前段时间花费了一周,整理了一下自从TM1637开始打算的,使用OLED来搭建一个通用的显示库的一个工程。笔者的OLED库已经开源到Github上了,地址在…...
spring基础总结
先修知识:依赖注入,反转控制,生命周期 IDEA快捷键 Ctrl Altm:提取方法,设置trycatch 通用快捷键: Ctrl F:在当前文件中查找文本。Ctrl R:在当前文件中替换文本。Ctrl Z:撤销…...
基础相对薄弱怎么考研
复习总体规划 明确目标 选择专业和院校:根据你的兴趣、职业规划和自身实力,选择适合自己的专业和院校。可以参考往年的分数线、报录比、复试难度等。了解考试科目:不同专业考试科目不同,一般包括: 公共课:…...
代码随想录36 动态规划
leetcode 343.整数拆分 给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k > 2 ),并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输入: n 2 输出: 1 解释: 2 1 1, 1 1 1。 示例 2: 输入: n 1…...
p5r预告信生成器API
p5r预告信生成器API 本人将js生成的p5r预告信使用go语言进行了重写和部署,并开放了其api,可以直接通过get方法获取预告信的png。 快速开始 http://api.viogami.tech/p5cc/:text eg: http://api.viogami.tech/p5cc/persona5 感谢p5r风格字体的制作者和…...
React图标库: 使用React Icons实现定制化图标效果
React图标库: 使用React Icons实现定制化图标效果 图标库介绍 是一个专门为React应用设计的图标库,它包含了丰富的图标集合,覆盖了常用的图标类型,如FontAwesome、Material Design等。React Icons可以让开发者在React应用中轻松地添加、定制各…...
说说Redis的内存淘汰策略?
大家好,我是锋哥。今天分享关于【说说Redis的内存淘汰策略?】面试题。希望对大家有帮助; 说说Redis的内存淘汰策略? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Redis 提供了多种内存淘汰策略,用于在内存达到限制时决定如何…...
【C语言】自定义类型讲解
文章目录 一、前言二、结构体2.1 概念2.2 定义2.2.1 通常情况下的定义2.2.2 匿名结构体 2.3 结构体的自引用和嵌套2.4 结构体变量的定义与初始化2.5 结构体的内存对齐2.6 结构体传参2.7 结构体实现位段 三、枚举3.1 概念3.2 定义3.3 枚举的优点3.3.1 提高代码的可读性3.3.2 防止…...
机器学习8-卷积和卷积核1
机器学习8-卷积和卷积核1 卷积与图像去噪卷积的定义与性质定义性质卷积的原理卷积步骤卷积的示例与应用卷积的优缺点优点缺点 总结 高斯卷积核卷积核尺寸的设置依据任务类型考虑数据特性实验与调优 高斯函数标准差的设置依据平滑需求结合卷积核尺寸实际应用场景 总结 图像噪声与…...
3、C#基于.net framework的应用开发实战编程 - 实现(三、三) - 编程手把手系列文章...
三、 实现; 三.三、编写应用程序; 此文主要是实现应用的主要编码工作。 1、 分层; 此例子主要分为UI、Helper、DAL等层。UI负责便签的界面显示;Helper主要是链接UI和数据库操作的中间层;DAL为对数据库的操…...
PHP 中 `foreach` 循环结合引用使用时可能出现的问题
问题背景 假设你有如下 PHP 代码: <?php $arr array(1, 2, 3, 4);// 使用引用遍历并修改数组元素 foreach ($arr as &$value) {$value $value * 2; } // 此时 $arr 变为 array(2, 4, 6, 8)// 再使用非引用方式遍历数组 foreach ($arr as $key > $val…...
go gin配置air
一、依赖下载 安装最新,且在你工作区下进行安装,我的是D:/GO是我的工作区,所有项目都在目录下的src, go install github.com/air-verse/airlatest 如果出现类似报错: 将图中第三行 github.com/air-verse/air 替换最…...
在 Spring Boot 项目中,bootstrap.yml 和 application.yml文件区别
在 Spring Boot 项目中,bootstrap.yml 和 application.yml 是两个常用的配置文件,它们的作用和加载顺序有所不同。以下是它们的详细说明: 1. bootstrap.yml 作用: bootstrap.yml 是 Spring Cloud 项目中的配置文件,用于…...
Excel中Address函数的用法
Excel中Address函数的用法 1. 函数详细讲解1.1 函数解释1.2 使用格式1.3 参数定义1.4 要点 2. 实用演示示例2.1 函数需求2.2 公式编写2.3 计算过程 3. 注意事项4. 文档下载5. 其他文章6. 获取全部Excel练习素材快来试试吧🥰 函数练习素材👈点击即可进行下…...
游戏引擎 Unity - Unity 打开项目、Unity Editor 添加简体中文语言包模块、Unity 项目设置为简体中文
Unity Unity 首次发布于 2005 年,属于 Unity Technologies Unity 使用的开发技术有:C# Unity 的适用平台:PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域:开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…...
智能家居监控系统数据收集积压优化
亮点:RocketMQ 消息大量积压问题的解决 假设我们正在开发一个智能家居监控系统。该系统从数百万个智能设备(如温度传感器、安全摄像头、烟雾探测器等)收集数据,并通过 RocketMQ 将这些数据传输到后端进行处理和分析。 在某些情况下…...
Zabbix7.0安装(Ubuntu24.04+LNMP)
1.选择版本 下载Zabbix 2.安装虚拟机 这里选择在Ubuntu24.04上安装Zabbix. 安装链接https://blog.csdn.net/weixin_58189050/article/details/145446065 配置源 vim /etc/apt/sources.list deb https://mirrors.aliyun.com/ubuntu/ noble main restricted universe multive…...
SpringBoot+Dubbo+zookeeper 急速入门案例
项目目录结构: 第一步:创建一个SpringBoot项目,这里选择Maven项目或者Spring Initializer都可以,这里创建了一个Maven项目(SpringBoot-Dubbo),pom.xml文件如下: <?xml versio…...
6种MySQL高可用方案对比分析
大家好,我是 V 哥,关于 MySQL 高可用方案,在面试中频频出现,有同学在字节面试就遇到过,主要考察你在高可用项目中是如何应用的,V 哥整理了6种方案,供你参考。 V 哥推荐:2024 最适合入…...
CLK敏感源和完整GND平面
SPI Flash芯片辐射发射(RE)问题: 某款产品在3米法电波暗室进行辐射(RE)发射测试时,发现多个频点余量不满足6dB管控要求. 通过频谱分析仪近场探头分析定位到干扰频点来自于SPI Flash时钟信号的高次谐波干扰,深入分析发…...
团体程序设计天梯赛-练习集——L1-034 点赞
前言 20分的题目题目不难,理解也不难,做起来有点问题 L1-034 点赞 微博上有个“点赞”功能,你可以为你喜欢的博文点个赞表示支持。每篇博文都有一些刻画其特性的标签,而你点赞的博文的类型,也间接刻画了你的特性。本…...
独立成分分析 (ICA):用于信号分离或降维
人工智能例子汇总:AI常见的算法和例子-CSDN博客 独立成分分析 (Independent Component Analysis, ICA) 是一种用于信号分离和降维的统计方法,常用于盲源分离 (Blind Source Separation, BSS) 问题,例如音频信号分离或脑电信号 (EEG) 处理。…...