vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列
最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscode+cuda11.6+vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和cl编译器离的远远的。
安装WSL+vscode工作链
首先是已经安装好了wsl2,wsl是windows下的Linux子系统,特别好用相当于集齐了linux的开源架构特点和win中的图形化界面(我安装wsl2后,下载的是ubuntu 22.04LTS版本)。直接可以在命令行启动,或者也可以在vscode中安装一个插件。
wsl安装命令如下(来自deepseek,不保证完全可行)
wsl --install
wsl --list --online
wsl --install -d Ubuntu
正是该传奇插件,安装好后,就可以通过remote SSH直连WSL2,相当于借鸡生蛋,只是借用了个windows中的vscode的图形化界面,操作的还是Linux中的东西。
这里可以看到打开的终端对应的是linux中的bash shell。
安装cuda11.7
然后就是安装cuda11.7(之所以选择cuda11.7是因为cuda11.7比较完善,而且GPU Invida3060以上就能支持),大概的安装命令就是问deepseek就行了,deepseek给出的安装办法如下:
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda-repo-wsl-ubuntu-11-7-local_11.7.0-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-11-7-local_11.7.0-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-11-7-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda
安装好后还需要配置环境变量,要配置bin和lib64的,这里我的配置方法如下:
首先:
vim ~/.bashrc
其次:
export PATH=/usr/local/cuda-11/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
保存并退出后:
source ~/.bashrc
随后检验一下用如下命令:
nvcc --version
搭建cuda c编程环境并检验
要建设cuda c编程环境还要再安装个gcc编译器包(不确定,不安可能也行),安装好后,在工作目录新建一个test.cu。
#include <stdio.h>
#include <cuda_runtime.h>// CUDA 核函数,用于向量加法
__global__ void vectorAdd(const float *A, const float *B, float *C, int numElements) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < numElements) {C[i] = A[i] + B[i];}
}int main() {// 定义向量大小int numElements = 50000;size_t size = numElements * sizeof(float);// 分配主机内存float *h_A = (float *)malloc(size);float *h_B = (float *)malloc(size);float *h_C = (float *)malloc(size);// 初始化主机数据for (int i = 0; i < numElements; ++i) {h_A[i] = rand() / (float)RAND_MAX;h_B[i] = rand() / (float)RAND_MAX;}// 分配设备内存float *d_A, *d_B, *d_C;cudaMalloc((void **)&d_A, size);cudaMalloc((void **)&d_B, size);cudaMalloc((void **)&d_C, size);// 将数据从主机复制到设备cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);// 定义线程块和网格大小int threadsPerBlock = 256;int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;// 启动 CUDA 核函数vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);// 将结果从设备复制回主机cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);// 验证结果for (int i = 0; i < numElements; ++i) {if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) {fprintf(stderr, "Result verification failed at element %d!\n", i);exit(EXIT_FAILURE);}}printf("Test PASSED\n");// 释放设备内存cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);// 释放主机内存free(h_A);free(h_B);free(h_C);return 0;
}
然后在终端中输入如下命令
nvcc -o test test.cu
./test
结果如下,上面的命令是先编译.cu文件然后再运行编译后的生成。
搭建pytorch深度学习开发环境
这里就稍微麻烦一些了,首先要确保安装了anaconda,conda是专门的为Python虚拟环境的搭建而服务的,安装命令如下:
wget https://repo.anaconda.com/miniconda/Miniconda3-py38_4.9.2-Linux-x86_64.sh
bash Miniconda3-py38_4.9.2-Linux-x86_64.sh
conda init
随后新建python3.8的虚拟环境并启动
conda create --name myenv python=3.8
conda activate myenv
确保是在虚拟环境中去安装pytorch,这里安装的是pytorch2.0.1,具体安装的时候我犯了好几次错误,实际上问ai让ai来换源是不可行的,ai换的源总是有问题,但是不换源又下的太慢,这里的解决办法是用梯子魔法+pip来安装(实测发现pip安装比conda安装要快一些),具体安装命令如下:
Previous PyTorch Versions | PyTorch是在这个安装历史版本中找的命令。
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
安装完成后的验证代码如下:
import torchprint(torch.__version__)
print(torch.cuda.is_available())
安装cudnn
cudnn是英伟达专门开发的cuda neural network库,安装命令如下:
wget https://developer.download.nvidia.com/compute/cudnn/9.7.0/local_installers/cudnn-local-repo-ubuntu2204-9.7.0_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2204-9.7.0_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2204-9.7.0/cudnn-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cudnn
cuDNN 9.7.0 Downloads | NVIDIA Developer
但是有个问题我是不太清楚,我安装的是cudnn的9.7.0但是跑下面的验证代码的时候却告诉我cudnn是8.5.00
import torch# 检查 PyTorch 版本
print(torch.__version__)# 检查 CUDA 是否可用
print(torch.cuda.is_available())# 检查 cuDNN 版本
print(torch.backends.cudnn.version())# 检查当前 GPU 设备
print(torch.cuda.current_device())# 检查 GPU 名称
print(torch.cuda.get_device_name(0))
总结
环境配置是电信技术中的集大成者,我本人也不是很懂,经常失败是很正常的。但是千万记得,不要直接去下载国外网站大文件,否则下载失败再重来会是很痛苦的。
相关文章:
vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列
最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscodecuda11.6vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和…...
pytorch实现长短期记忆网络 (LSTM)
人工智能例子汇总:AI常见的算法和例子-CSDN博客 LSTM 通过 记忆单元(cell) 和 三个门控机制(遗忘门、输入门、输出门)来控制信息流: 记忆单元(Cell State) 负责存储长期信息&…...
洛谷P2651 添加括号III
题目链接:P2651 添加括号III - 洛谷 | 计算机科学教育新生态 题目难度:普及一 题目分析: a1肯定是分子,a2肯定是分母,那么尽可能多的是a3以后的变为分子,怎么办呢? a1/(a2/a3/a4/...)a1a3a4.../a2&#…...
Mysql进阶学习
目录 一.Mysql服务器内部架构(了解) 二.Mysql引擎 2.1 innodb引擎 2.2 myisam引擎 三.索引 3.1索引分类 3.2mysql索引数据结构 3.3聚簇索引和非聚簇索引 3.4回表查询 3.5索引下推 四.事务 数据库事务特征 事务隔离性,隔离级别 事务实现原理 五.锁 ①…...
白话DeepSeek-R1论文(二)| DeepSeek-R1:AI “升级打怪”,从“自学成才”到“全面发展”!
最近有不少朋友来询问Deepseek的核心技术,今天开始陆续针对DeepSeek-R1论文中的核心内容进行解读,并且用大家都能听懂的方式来解读。这是第二篇趣味解读。 DeepSeek-R1:AI “升级打怪”,从“自学成才”到“全面发展”!…...
WordPress eventon-lite插件存在未授权信息泄露漏洞(CVE-2024-0235)
免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…...
python 语音识别
目录 一、语音识别 二、代码实践 2.1 使用vosk三方库 2.2 使用SpeechRecognition 2.3 使用Whisper 一、语音识别 今天识别了别人做的这个app,觉得虽然是个日记app 但是用来学英语也挺好的,能进行语音识别,然后矫正语法,自己说的时候 ,实在不知道怎么说可以先乱说,然…...
2501,编写dll
DLL的优点 简单的说,dll有以下几个优点: 1)节省内存.同一个软件模块,若是源码重用,则会在不同可执行程序中编译,同时运行这些exe时,会在内存中重复加载这些模块的二进制码. 如果使用dll,则只在内存中加载一次,所有使用该dll的进程会共享此块内存(当然,每个进程会复制一份的d…...
Linux命令汇总
1、帮忙类 --help 直接在当前窗口显示帮助 command --help man 创建新窗口显示帮助 man command 2、目录操作类 2.1、查看目录 ls:以列表方式,查看目录中内容 tree:以树状方式,查看目录中内容 2.2、创建、删除文件及目录 touch:创建…...
漏洞扫描工具之xray
下载地址:https://github.com/chaitin/xray/releases 1.9.11 使用文档:https://docs.xray.cool/tools/xray/Scanning 与burpsuite联动: https://xz.aliyun.com/news/7563 参考:https://blog.csdn.net/lza20001103/article/details…...
Java手写简单Merkle树
Java手写Merkle树代码 package com.blockchain.qgy.component;import com.blockchain.qgy.model.MerkleTreeNode; import com.blockchain.qgy.util.SHAUtil;import java.util.*;public class MerkleTree<T> {//merkle树private List<MerkleTreeNode<T>> lis…...
vue之pinia组件的使用
1、搭建pinia环境 cnpm i pinia #安装pinia的组件 cnpm i nanoid #唯一id,相当于uuid cnpm install axios #网络请求组件 2、存储读取数据 存储数据 >> Count.ts文件import {defineStore} from piniaexport const useCountStore defineStore(count,{// a…...
升级到Mac15.1后pod install报错
升级Mac后,Flutter项目里的ios项目运行 pod install报错, 遇到这种问题,不要着急去百度,大概看一下报错信息,每个人遇到的问题都不一样。 别人的解决方法并不一定适合你; 下面是报错信息: #…...
力扣【1049. 最后一块石头的重量 II】Java题解(背包问题)
让石头分成重量相同的两堆(尽可能相同),相撞之后剩下的石头就是最小的。进一步转化成容量为重量总喝一半的背包最多可以装多少质量的石头。这样就转化成了背包问题。 最后求结果时,我们所最多能装的时dp[target],那另一…...
CSS 图像、媒体和表单元素的样式化指南
CSS 图像、媒体和表单元素的样式化指南 1. 替换元素:图像和视频1.1 调整图像大小示例代码:调整图像大小 1.2 使用 object-fit 控制图像显示示例代码:使用 object-fit 2. 布局中的替换元素示例代码:Grid 布局中的图像 3. 表单元素的…...
寒武纪MLU370部署deepseek r1
文章目录 前言一、平台环境准备二、模型下载三、环境安装四、代码修改五、运行效果 前言 DeepSeek-R1拥有卓越的性能,在数学、代码和推理任务上可与OpenAI o1媲美。其采用的大规模强化学习技术,仅需少量标注数据即可显著提升模型性能,为大模…...
Spring的AOP的JoinPoint和ProceedingJoinPoint
Spring的AOP的JoinPoint 在Spring AOP中,JoinPoint 是一个核心接口,用于表示程序执行过程中的一个连接点(如方法调用或异常抛出)。它提供了访问当前被拦截方法的关键信息的能力。以下是关于 JoinPoint 的详细说明: 一…...
每日一道算法题
题目:单词接龙 II 给定两个单词(beginWord 和 endWord)和一个字典 wordList,找出所有从 beginWord 到 endWord 的最短转换序列。转换需遵循如下规则: 每次转换只能改变一个字母。转换过程中的中间单词必须是字典中的…...
Node.js——body-parser、防盗链、路由模块化、express-generator应用生成器
个人简介 👀个人主页: 前端杂货铺 🙋♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...
Java小白入门教程:两大类型的修饰符以及示例
目录 一、访问控制修饰符 1、default 就是啥都不写的那种 2、private 私有 3、public 公开 4、protected 受保护的 二、非访问控制修饰符 1、static 静态 2、final 最终 3、abstract 抽象 4、synchronized 锁 5、transient 瞬态 6、volatile 易变 一、访问控制修饰符…...
正则表达式入门
入门 1、提取文章中所有的英文单词 //1.先创建一个Pattern对象,模式对象,可以理解成就是一个正则表达式对象 Pattern pattern Pattern.compile("[a-zA-Z]"); //2.创建一个匹配器对象 //理解:就是 matcher匹配器按照p…...
云原生(五十二) | DataGrip软件使用
文章目录 DataGrip软件使用 一、DataGrip基本使用 二、软件界面介绍 三、附件文件夹到项目中 四、DataGrip设置 五、SQL执行快捷键 DataGrip软件使用 一、DataGrip基本使用 1. 软件界面介绍 2. 附加文件夹到项目中【重要】 3. DataGrip配置 快捷键使用:C…...
如何成为一名 Python 全栈工程师攻略
## 从零基础到全栈工程师:Python 学习路线(细化版) **目标:** 掌握 Python 编程,并能独立开发全栈应用。 **学习路线:** ### 第一阶段:Python 基础 (4-6 周) **目标:** 掌握 Pyt…...
无需云端服务器: 三步实现DeepSeek大模型本地化部署deepseek、Ollama和Chatbox
🎉无需云端!三步实现DeepSeek大模型本地化部署😎 还在为云端AI服务的高昂费用而苦恼?是否总担心数据隐私会在云端泄露?别愁啦!DeepSeek R1——这款与OpenAI o1性能相媲美的开源大模型,结合Olla…...
mysql教程
MySQL 教程 一、简介 MySQL 是一个开源的关系型数据库管理系统,广泛应用于各种规模的项目中。以下是一些基础知识和常用操作。 二、安装与启动 安装:根据操作系统选择合适的安装包进行安装。启动:通过命令行或服务管理工具启动 MySQL 服务…...
【自学笔记】JavaWeb的重点知识点-持续更新
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 JavaWeb知识点一、基础概念二、项目结构三、Tomcat服务器四、数据库连接(JDBC)五、前端技术六、高级技术 总结 以下是JavaWeb知识点的MD格式…...
项目升级Sass版本或升级Element Plus版本遇到的问题
项目升级Sass版本或升级Element Plus版本遇到的问题 如果项目有需求需要用到高版本的Element Plus组件,则需要升级相对应的sass版本,Element 文档中有提示,2.8.5及以后得版本,sass最低支持的版本为1.79.0,所升级sass、…...
[EAI-028] Diffusion-VLA,能够进行多模态推理和机器人动作预测的VLA模型
Paper Card 论文标题:Diffusion-VLA: Scaling Robot Foundation Models via Unified Diffusion and Autoregression 论文作者:Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Chengmeng Li, Xiaoyu Liu, Yaxin Peng, Chao…...
char和varchar的区别、varchar(?)中问号部分的含义、索引的作用
char和varchar的区别 char是固定长度类型,当输入字符不满设定的固定长度时依旧占用固定长度的空间,补充空字节。 最大长度为255个字符 优点:效率高,在涉及索引和排序时缺点:占用空间使用场景:存储密码的…...
.NET9增强OpenAPI规范,不再内置swagger
ASP.NETCore in .NET 9.0 OpenAPI官方文档ASP.NET Core API 应用中的 OpenAPI 支持概述 | Microsoft Learnhttps://learn.microsoft.com/zh-cn/aspnet/core/fundamentals/openapi/overview?viewaspnetcore-9.0https://learn.microsoft.com/zh-cn/aspnet/core/fundamentals/ope…...
qsort应用
每天都会收到ai个礼物,到第n天的时候,然然发现他的宿舍被礼物搞得一团糟,所以然然打算到超市买一个柜子装礼物。但是超市有m个柜子,每个柜子都有不同的容量bi,然然想知道每个柜子最多可以装多少天的礼物(可…...
仿真设计|基于51单片机的贪吃蛇游戏
目录 具体实现功能 设计介绍 51单片机简介 资料内容 仿真实现(protues8.7) 程序(Keil5) 全部内容 资料获取 具体实现功能 利用单片机8*8点阵实现贪吃蛇游戏的控制。 仿真演示视频: 51-基于51单片机的贪吃蛇游…...
Linux内核中的页面错误处理机制与按需分页技术
在现代操作系统中,内存管理是核心功能之一,而页面错误(Page Fault)处理机制是内存管理的重要组成部分。当程序访问一个尚未映射到物理内存的虚拟地址时,CPU会触发页面错误异常,内核需要捕获并处理这种异常,以决定如何响应,例如加载缺失的页面、处理权限错误等。Linux内…...
Baklib推动企业知识管理创新与效率提升的全面探讨
内容概要 在当今数字化转型的背景下,有效的知识管理显得尤为重要。知识是企业的核心资产,而传统的管理方式往往无法充分发挥这些知识的价值。因此,企业亟需一种高效、灵活的解决方案来应对这一挑战。Baklib作为一款先进的企业级知识管理平台…...
NLP自然语言处理通识
目录 ELMO 一、ELMo的核心设计理念 1. 静态词向量的局限性 2. 动态上下文嵌入的核心思想 3. 层次化特征提取 二、ELMo的模型结构与技术逻辑 1. 双向语言模型(BiLM) 2. 多层LSTM的层次化表示 三、ELMo的运行过程 1. 预训练阶段 2. 下游任务微调 四、ELMo的…...
计算机毕业设计Python+CNN卷积神经网络考研院校推荐系统 考研分数线预测 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
【编译原理实验二】——自动机实验:NFA转DFA并最小化
本篇适用于ZZU的编译原理课程实验二——自动机实验:NFA转DFA并最小化,包含了实验代码和实验报告的内容,读者可根据需要参考完成自己的程序设计。 如果是ZZU的学弟学妹看到这篇,那么恭喜你,你来对地方啦! 如…...
Hive:复杂数据类型之Map函数
Map函数 是Hive里面的一种复杂数据类型, 用于存储键值对集合。Map中的键和值可以是基础类型或复合类型,这使得Map在处理需要关联存储信息的数据时非常有用。 定义map时,需声明2个属性: key 和 value , map中是 key value 组成一个元素 key-value, key必须为原始类…...
C++ 中的引用(Reference)
在 C 中,引用(Reference)是一种特殊的变量类型,它提供了一个已存在变量的别名。引用在很多场景下都非常有用,比如函数参数传递、返回值等。下面将详细介绍 C 引用的相关知识。 1. 引用的基本概念和语法 引用是已存在…...
密码学的数学基础1-整数 素数 和 RSA加密
数学公式推导是密码学的基础, 故开一个新的课题 – 密码学的数学基础系列 素数 / 质数 质数又称素数。 一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数࿰…...
Java锁自定义实现到aqs的理解
专栏系列文章地址:https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标: 理解锁,能自定义实现锁通过自定义锁的实现复习Thread和Object的相关方法开始尝试理解Aqs, 这样后续基于Aqs的的各种实现将能更好的理解 目录 锁的…...
STM32-时钟树
STM32-时钟树 时钟 时钟...
android 圆形弹窗摄像头开发踩坑——源码————未来之窗跨平台操作
一、飘窗刷脸,拍照采用飘窗 刷脸认证安卓接口采用飘窗具有在不干扰用户主要操作的前提下以醒目方式引导用户完成认证,且能灵活定制样式以提升用户体验和认证效率的优点 二、踩坑只有一个扇形 <?xml version"1.0" encoding"utf-8&quo…...
markdown公式特殊字符
个人学习笔记 根号 在 Markdown 中,要表示根号 3,可以使用 LaTeX 语法来实现。常见的有以下两种方式: 行内公式形式:使用一对美元符号 $ 将内容包裹起来,即 $\sqrt{3}$ ,在支持 LaTeX 语法渲染的 Markdow…...
Web-3.0学习路线
方向学习内容✅ 区块链基础区块链、智能合约、共识机制✅ 智能合约Solidity / Rust(Ethereum / Solana)✅ 前端React.js, Next.js, Web3.js, ethers.js✅ 后端Node.js, Python, Golang(链上数据)✅ 存储IPFS, Arweave, Filecoin&a…...
【算法设计与分析】实验5:贪心算法—装载及背包问题
目录 一、实验目的 二、实验环境 三、实验内容 四、核心代码 五、记录与处理 六、思考与总结 七、完整报告和成果文件提取链接 一、实验目的 掌握贪心算法求解问题的思想;针对不同问题,会利用贪心算法进行问题建模、求解以及时间复杂度分析&#x…...
使用 cmake
使用前注意 : CMake是一种跨平台的构建系统,它用于管理软件构建过程,尤其适合多语言、多配置的项目。CMake不直接构建软件,而是生成特定构建工具(如Makefile或Visual Studio项目)所需的配置文件。 如果仅仅使用 qt 编…...
万物皆有联系:驼鸟和布什
布什?一块布十块钱吗?不是,大家都知道,美国有两个总统,叫老布什和小布什,因为两个布什总统(父子俩),大家就这么叫来着,目的是为了好区分。 布什总统的布什&a…...
PHP实现混合加密方式,提高加密的安全性(代码解密)
代码1: <?php // 需要加密的内容 $plaintext 授权服务器拒绝连接;// 1. AES加密部分 $aesKey openssl_random_pseudo_bytes(32); // 生成256位AES密钥 $iv openssl_random_pseudo_bytes(16); // 生成128位IV// AES加密(CBC模式)…...
分层多维度应急管理系统的设计
一、系统总体架构设计 1. 六层体系架构 #mermaid-svg-QOXtM1MnbrwUopPb {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QOXtM1MnbrwUopPb .error-icon{fill:#552222;}#mermaid-svg-QOXtM1MnbrwUopPb .error-text{f…...