当前位置: 首页 > news >正文

Yolo11 + OCR 营业执照识别+信息抽取(预期后续改用其他ocr更简单,推理预计使用onnxruntim加速,分c++和python两种方式部署)

目录

一 数据集制作

1 labelimg的安装与使用

2 标注方式

3 数据集制作

二 模型训练 

三 使用Yolo11 + OCR 实现“营业执照”信息解析完整方案

1 cutLinesforcode.py

2 getBusinessLicenseContentPart.py

3 getPartWords.py

4 pdfTojpg.py

5 main.py


本项目可用于毕业设计参考实验营业执照分为横版竖版整体检测+识别效果如下所示:

说明:图片来源于网络,如有侵权,请联系作者删除。

系统:Ubuntu 20.04

需要的依赖:

  • pdf2image
pip install pdf2image -i https://pypi.tuna.tsinghua.edu.cn/simple
  • yolo11
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
  • pytesseract
pip install pytesseract -i https://pypi.tuna.tsinghua.edu.cn/simple

sudo apt updatesudo apt install tesseract-ocr# 在线安装中文字库sudo apt-get install tesseract-ocr-chi-sim

一 数据集制作


使用labelimg工具进行数据标注任务。


1 labelimg的安装与使用


安装方法: pip install labelimg
使用方法如下:
cd到labellmg所在路径

python labellmg.py


标注后生成的标记文件是xml文件。


2 标注方式


本项目的目标是解析出营业执照统一社会信用代码、名称、类型、法定代表人、经营范围、注册资本、成立日期、营业期限住所等信息
标注方式如下:

 

你可以根据自己的需求去对应进行数据集的制作,类比即可。


3 数据集制作


原始数据集格式如下图所示:

  • Annotations 里面存放标签xml文件
  • JPEGImage 里面存放原始图片
  • labels 里面存放的是标签txt文件。这个文件夹里的文件是通过脚本xmI_txt.py生成的。

xmI_txt.py代码如下

import xml.etree.ElementTree as ET
import os
import random# TODO 这里按照类别去修改
classes = ['code', 'specialcode', 'name', 'type', 'representative', 'range', 'registered', 'date', 'limit', 'address']
# TODO 这里按照实际XML文件夹路径去修改
xml_filepath = 'data/Annotations/'
# TODO 这里按照实际想要保存结果txt文件夹的路径去修改
labels_savepath = 'data/labels/'
abs_path = os.getcwd()def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open(xml_filepath + '%s.xml' % (image_id), encoding='UTF-8')out_file = open(labels_savepath + '%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')def run():total_xml = os.listdir(xml_filepath)num = len(total_xml)names = []for xml in total_xml:names.append(xml[:-4])for name in names:convert_annotation(name)passif __name__ == '__main__':run()pass

然后,根据JPEGlmage 文件夹和labels文件夹通过脚本deal_dataset.py将数据集划分为如下结构。

deal_dataset.py 代码如下:

import os
import random
import shutil# 原数据集目录
root_dir = 'data/'
# 划分比例
train_ratio = 0.8
valid_ratio = 0.1
test_ratio = 0.1# 设置随机种子
random.seed(42)# TODo 这里按照实际数据集路径去修改
split_dir = 'data_new/'
os.makedirs(os.path.join(split_dir, 'train/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'train/labels'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'valid/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'valid/labels'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'test/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'test/labels'), exist_ok=True)# TODo 这里按照实际数据集路径去修改
imgpath = "JPEGImage"
labelpath = "labels"
image_files = os.listdir(os.path.join(root_dir, imgpath))
image_files.sort(key=lambda x: int(x.split('.')[0]))
print(image_files)
label_files = os.listdir(os.path.join(root_dir, labelpath))
label_files.sort(key=lambda x: int(x.split('.')[0]))
print(label_files)
# 随机打乱文件列表
combined_files = list(zip(image_files, label_files))
random.shuffle(combined_files)
image_files_shuffled, label_files_shuffled = zip(*combined_files)
print(image_files_shuffled)
print(label_files_shuffled)
# 根据比例计算划分的边界索引
train_bound = int(train_ratio * len(image_files_shuffle

相关文章:

Yolo11 + OCR 营业执照识别+信息抽取(预期后续改用其他ocr更简单,推理预计使用onnxruntim加速,分c++和python两种方式部署)

目录 一 数据集制作 1 labelimg的安装与使用 2 标注方式 3 数据集制作 二 模型训练 三 使用Yolo11 + OCR 实现“营业执照”信息解析完整方案 1 cutLinesforcode.py 2 getBusinessLicenseContentPart.py 3 getPartWords.py 4 pdfTojpg.py 5 main.py 本项目可用于毕业…...

机器学习day3

自定义数据集使用框架的线性回归方法对其进行拟合 import matplotlib.pyplot as plt import torch import numpy as np # 1.散点输入 # 1、散点输入 # 定义输入数据 data [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1]…...

C基础寒假练习(3)

一、求数组中的第二大值 #include <stdio.h> int main() {int arr[] {12, 35, 1, 10, 34, 1};int size sizeof(arr) / sizeof(arr[0]);if (size < 2) {printf("数组元素不足两个\n");return 0;}int first -2147483648, second -2147483648; // 使用IN…...

星际战争模拟系统:新月的编程之道

星际战争模拟系统&#xff1a;新月的编程之道 作为一名在 25 世纪星际时代成长起来的科学家和军事战略家&#xff0c;我对编程和人工智能的热爱始于童年。我的父亲是一位著名的物理学家&#xff0c;母亲是一位杰出的生物工程师。在他们的影响下&#xff0c;我从小就对科学和技术…...

【Redis】 String 类型的介绍和常用命令

1. 介绍 Redis 中的 key 都是字符串类型Redis 中存储字符串是完全按照二进制流的形式保存的&#xff0c;所以 Redis 是不处理字符集编码的问题&#xff0c;客户端传入的命令中使用的是什么编码就采用什么编码&#xff0c;使得 Redis 能够处理各种类型的数据&#xff0c;包括文…...

U盘打开提示格式化:深度解析与数据恢复全攻略

在数字化时代&#xff0c;U盘作为便捷的数据存储和传输工具&#xff0c;广泛应用于各个领域。然而&#xff0c;当我们满怀期待地插入U盘&#xff0c;却遭遇“U盘打开提示格式化”的尴尬局面时&#xff0c;那份焦虑与无助感油然而生。本文将全面剖析U盘打开提示格式化的原因、应…...

vue2在线生成二维码

亲情提示&#xff1a;如果可以让后端生成就让后端生成 实在不行再前端解决&#xff08;分享方法只是为了让你快点下班 不是为了让你能者多劳&#xff09; 创建 npm install qrcodejs2 pnpm install qrcodejs2 <div ref"qrcode" id"myQrCode" class&…...

Linux中的几个基本指令(二)

文章目录 1、cp指令例一&#xff1a;例二&#xff1a;例三&#xff1a;例四&#xff1a;例五&#xff1a; 2、mv 指令例一&#xff1a;例二&#xff1a; 3、cat指令例一&#xff1a; 4、tac指令5、which指令6、date指令时间戳&#xff1a;7、zip指令 今天我们继续学习Linux下的…...

基于Springboot的健身房管理系统【附源码】

基于Springboot的健身房管理系统 效果如下&#xff1a; 系统登陆页面 管理员主页面 器材类型管理页面 健身房管理页面 教练管理页面 用户管理页面 个人信息页面 课程管理页面 研究背景 随着健康意识的不断增强和人们生活水平的提高&#xff0c;健身房已经成为了现代城市中不…...

【HarmonyOS之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(一)

目录 1 -> 概述 1.1 -> 整体架构 2 -> 文件组织 2.1 -> 目录结构 2.2 -> 文件访问规则 2.3 -> 媒体文件格式 3 -> js标签配置 3.1 -> pages 3.2 -> window 3.3 -> 示例 4 -> app.js 4.1 -> 应用生命周期 4.2 -> 应用对象6…...

Spring Boot多环境配置实践指南

在开发Spring Boot应用时&#xff0c;我们常常需要根据不同的运行环境&#xff08;如开发环境、测试环境和生产环境&#xff09;来配置不同的参数。Spring Boot提供了非常灵活的多环境配置机制&#xff0c;通过使用profile-specific properties文件&#xff0c;我们可以轻松地管…...

知识图谱质量评估:构建高质量语义网络的关键

目录 前言1. 知识图谱质量评估的必要性2. 知识图谱质量评估的核心维度2.1 数据层面2.2 结构层面2.3 语义层面2.4 性能层面 3. 知识图谱质量评估的方法3.1 定量评估方法3.2 定性评估方法 4. 知识图谱质量优化建议结语 前言 随着大数据和人工智能技术的飞速发展&#xff0c;知识…...

< OS 有关 > Android 手机 SSH 客户端 app: connectBot

connectBot 开源且功能齐全的SSH客户端,界面简洁,支持证书密钥。 下载量超 500万 方便在 Android 手机上&#xff0c;连接 SSH 服务器&#xff0c;去运行命令。 Fail2ban 12小时内抓获的 IP ~ ~ ~ ~ rootjpn:~# sudo fail2ban-client status sshd Status for the jail: sshd …...

Unity游戏(Assault空对地打击)开发(1) 创建项目和选择插件

目录 前言 创建项目 插件导入 地形插件 前言 这是游戏开发第一篇&#xff0c;进行开发准备。 创作不易&#xff0c;欢迎支持。 我的编辑器布局是【Tall】&#xff0c;建议调整为该布局&#xff0c;如下。 创建项目 首先创建一个项目&#xff0c;过程略&#xff0c;名字请勿…...

SpringBoot 日志

目录 一. 日志概述 二. 日志的使用 1. 打印日志 (1) 获取日志对象 (2) 输出要打印的内容 2. 日志框架简介 (1) 门面模式简介 (2) SLF4J 框架简介 3. 日志的格式 4. 日志的级别 5. 日志配置 (1) 配置日志级别 (2) 日志持久化存储 ① 配置日志文件名 ② 配置日志的…...

每日 Java 面试题分享【第 16 天】

欢迎来到每日 Java 面试题分享栏目&#xff01; 订阅专栏&#xff0c;不错过每一天的练习 今日分享 3 道面试题目&#xff01; 评论区复述一遍印象更深刻噢~ 目录 问题一&#xff1a;Java 运行时异常和编译时异常之间的区别是什么&#xff1f;问题二&#xff1a;什么是 Jav…...

《多线程基础之互斥锁》

【互斥锁导读】互斥锁是大家使用最多的线程同步手段&#xff0c;但仅仅知道怎么用还是不够的&#xff1f;比如&#xff1a;面试官问你"互斥锁是属于内核层还是应用层的同步保护机制&#xff1f;性能怎样&#xff1f;"&#xff0c;"频繁加解锁&#xff0c;会有什…...

渲染流程概述

渲染流程包括 CPU应用程序端渲染逻辑 和 GPU渲染管线 一、CPU应用程序端渲染逻辑 剔除操作对物体进行渲染排序打包数据调用Shader SetPassCall 和 Drawcall 1.剔除操作 视椎体剔除 &#xff08;给物体一个包围盒&#xff0c;利用包围盒和摄像机的视椎体进行碰撞检测&#xf…...

Android车机DIY开发之学习篇(七)NDK交叉工具构建

Android车机DIY开发之学习篇(七)NDK交叉工具构建 1.ubuntu安装GCC sudo apt-get update sudo apt-get install gcc g sudo gcc --version sudo g --version 2.测试GCC VSCODE中新建Hello.c编译 #include <stdio.h> int main(void) { printf(“Hello, this is a progr…...

c++ map/multimap容器 学习笔记

1 map的基本概念 简介&#xff1a; map中所有的元素都是pair pair中第一个元素是key&#xff08;键&#xff09;&#xff0c;第二个元素是value&#xff08;值&#xff09; 所有元素都会根据元素的键值自动排序。本质&#xff1a; map/multimap 属于关联式容器&#xff0c;底…...

计算机网络之计算机网络体系结构

一、定义与概述 计算机网络体系结构是计算机网络及其部件所应该完成功能的精确定义&#xff0c;这些功能由何种硬件或软件完成是遵循这种体系结构的。体系结构是抽象的&#xff0c;实现是具体的&#xff0c;是运行在计算机软件和硬件之上的。 二、主流模型 目前&#xff0c;…...

研发的立足之本到底是啥?

0 你的问题&#xff0c;我知道&#xff01; 本文深入T型图“竖线”的立足之本&#xff1a;专业技术 技术赋能业务能力。研发在学习投入精力最多&#xff0c;也误区最多。 某粉丝感发展遇到瓶颈&#xff0c;项目都会做&#xff0c;但觉无提升&#xff0c;想跳槽。于是&#x…...

最优化问题 - 内点法

以下是一种循序推理的方式&#xff0c;来帮助你从基础概念出发&#xff0c;理解 内点法&#xff08;Interior-Point Method, IPM&#xff09; 是什么、为什么要用它&#xff0c;以及它是如何工作的。 1. 问题起点&#xff1a;带不等式约束的优化 假设你有一个带不等式约束的优…...

Vue5---

目录 一、学习目标 1.自定义指令 2.插槽 3.综合案例&#xff1a;商品列表 4.路由入门 二、自定义指令 1.指令介绍 2.自定义指令 3.自定义指令的语法 三、自定义指令-指令的值 1.需求 2.语法 3.代码示例 五、插槽-默认插槽 1.作用 2.需求 4.使用插槽的基本语法…...

Helm Chart 实战指南

Helm 是 Kubernetes 的包管理工具,而 Helm Chart 是 Helm 的核心概念,用于定义、安装和升级 Kubernetes 应用。本文将带你从零开始,通过实战演练,掌握 Helm Chart 的创建、配置和部署,帮助你高效管理 Kubernetes 应用。 1. 环境准备 在开始之前,确保你已经具备以下环境:…...

如何写一篇高质量的提示词?

不管是产品经理还是使用AI工具的用户&#xff0c;很多时候的烦恼是如何写提示词&#xff0c;我觉得写提示词就是在梳理思路&#xff0c;下边是一个提示词的结果&#xff0c;OpenAI 的总裁 Greg Brockman 曾转发过这个结构。 这种结构可以创建一个清晰、简洁、可执行的提示&…...

系统架构设计师教材:信息系统及信息安全

信息系统 信息系统的5个基本功能&#xff1a;输入、存储、处理、输出和控制。信息系统的生命周期分为4个阶段&#xff0c;即产生阶段、开发阶段、运行阶段和消亡阶段。 信息系统建设原则 1. 高层管理人员介入原则&#xff1a;只有高层管理人员才能知道企业究竟需要什么样的信…...

在Windows系统中本地部署属于自己的大语言模型(Ollama + open-webui + deepseek-r1)

文章目录 1 在Windows系统中安装Ollama&#xff0c;并成功启动&#xff1b;2 非docker方式安装open-webui3下载并部署模型deepseek-r1 Ollama Ollama 是一个命令行工具&#xff0c;用于管理和运行机器学习模型。它简化了模型的下载与部署&#xff0c;支持跨平台使用&#xff0c…...

使用Redis生成全局唯一ID示例

全局ID生成器,一种在分布式系统下用来生成全局唯一ID的工具,一般满足一下要求特性 1.唯一性 2.高性能 3.安全性 4.递增性 5.高可用 Component public class RedisIdWorker {/*** 定义一个开始的时间戳(秒级)* param args*/private static final long BEGIN_TIMESTAMP 16…...

【llm对话系统】 LLM 大模型推理python实现:vLLM 框架

在 LLM 的应用中&#xff0c;推理 (Inference) 阶段至关重要。它指的是利用训练好的 LLM 模型&#xff0c;根据输入 (Prompt) 生成文本的过程。然而&#xff0c;LLM 的推理速度往往较慢&#xff0c;尤其是在处理长序列或高并发请求时&#xff0c;效率瓶颈尤为突出。 为了解决这…...

16.Word:石油化工设备技术❗【28】

目录 题目 NO1.2 NO3 NO4 题目 NO1.2 F12&#xff1a;另存为将“Word素材.docx”文件另存为“Word. docx”&#xff08;“docx”为文件扩展名&#xff09; 光标来到表格上方→插入→形状→新建画布→单击选中→格式→高度/宽度&#xff08;格式→大小对话框→取消勾选✔锁定…...

《多阶段渐进式图像修复》学习笔记

paper&#xff1a;2102.02808 GitHub&#xff1a;swz30/MPRNet: [CVPR 2021] Multi-Stage Progressive Image Restoration. SOTA results for Image deblurring, deraining, and denoising. 目录 摘要 1、介绍 2、相关工作 2.1 单阶段方法 2.2 多阶段方法 2.3 注意力机…...

Oracle、PostgreSQL该学哪一个?

从事数据库运维一线工作的老鸟&#xff0c;经常会有人来问我&#xff1a;“Oracle 和 PostgreSQL&#xff0c;我该学哪个&#xff1f;哪个更有职业发展前景&#xff1f;” 今天就来和大家好好唠唠。 先说说 Oracle。它堪称数据库领域的 “老牌贵族”&#xff0c;功能极其强大。…...

SpringCloud系列教程:微服务的未来(十七)监听Nacos配置变更、更新路由、实现动态路由

前言 在微服务架构中&#xff0c;API 网关是各个服务之间的入口点&#xff0c;承担着路由、负载均衡、安全认证等重要功能。为了实现动态的路由配置管理&#xff0c;通常需要通过中心化的配置管理系统来实现灵活的路由更新&#xff0c;而无需重启网关服务。Nacos 作为一个开源…...

第十六届蓝桥杯大赛软件赛(编程类)知识点大纲

目录 大学 C 组 大学 B 组 研究生及大学 A 组 说明&#xff1a; 大学 C 组 1. 枚举&#xff1a;难度&#xff1a;[1-3] 2. 排序 冒泡排序&#xff1a;难度 2选择排序&#xff1a;难度 3插入排序&#xff1a;难度 3 3. 搜索 广度优先搜索&#xff08;BFS&#xff09;&a…...

商品信息管理自动化测试

目录 前言 一、思维导图 二、代码编写 1.在pom.xml文件中添加相关依赖 2.自动化代码编写 三、代码测试 小结 前言 1. 针对商品信息管理项目进行测试&#xff0c;商品信息管理项目主要有商品列表页、部门列表页、员工列表页&#xff0c;主要功能&#xff1a;对商品信息的…...

批量卸载fnm中已经安装的所有版本

直接上代码 fnm list | awk -F NR>1 {print line} {line$2} | xargs -n 1 -I {} fnm uninstall {}原理 fnm list 列出 fnm 中所有已经安装的 node 版本 awk -F NR>1 {print line} {line$2} 以空格分隔-F {line$2}&#xff0c;取从左到右第 2 段&#xff08;v22.11…...

有一对兔子,从出生后第三个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?

# 分析&#xff1a;兔子从第三个月起增加一对&#xff0c;前两个月1对&#xff0c;三月份2对&#xff0c;4月份3对&#xff0c;5月份5对&#xff0c;6月份8对&#xff0c;7月份13个&#xff0c;以此类推每个月的兔子总数是前两月的兔子数的和。 def fibonacci(n): # 定义了斐波…...

ReactNative react-devtools 夜神模拟器连调

目录 一、安装react-devtools 二、在package.json中配置启动项 三、联动 一、安装react-devtools yarn add react-devtools5.3.1 -D 这里选择5.3.1版本&#xff0c;因为高版本可能与夜神模拟器无法联动&#xff0c;导致部分功能无法正常使用。 二、在package.json中配置启…...

【Unity教程】零基础带你从小白到超神part3

粒子系统 在创建粒子系统之前&#xff0c;需要先添加一些粒子样式&#xff0c;这可以在资源商店中通过导入官方提供的StandardAssets资源包得到。完成资源的导入后&#xff0c;该资源包中的StandardAssets>ParticleSystems>Prefabs文件夹下包含多种成品粒子效果&#xf…...

[Java]快速入门

java是什么 Java是美国的sun 公司(Stanford University Network)在1995年推出的一门计算机高级编程语言 sun公司于2009年被Oracle(甲骨文)公司收购。 普遍认同lava的联合创始人之一: 詹姆斯高斯林(James Gosling)为Java之父。 Java是世界上最流行的编程语言之一&#xff0c;…...

慕课:若鱼1919的视频课程:Java秒杀系统方案优化 高性能高并发实战,启动文档

代码&#xff1a; Javahhhh/miaosha191: 运行成功了慕课若鱼1919的视频课程&#xff1a;Java秒杀系统方案优化 高性能高并发实战https://github.com/Javahhhh/miaosha191 https://github.com/Javahhhh/miaosha191 miaosha项目启动文档 需安装的配置环境&#xff1a; VMwar…...

stack 和 queue容器的介绍和使用

1.stack的介绍 1.1stack容器的介绍 stack容器的基本特征和功能我们在数据结构篇就已经详细介绍了&#xff0c;还不了解的uu&#xff0c; 可以移步去看这篇博客哟&#xff1a; 数据结构-栈数据结构-队列 简单回顾一下&#xff0c;重要的概念其实就是后进先出&#xff0c;栈在…...

Kafka的内部通信协议

引言 kafka内部用到的常见协议和优缺点可以看看原文 Kafka用到的协议 本文奖详细探究kafka核心通信协议和高性能的关键 网络层通信的实现 基于 Java NIO&#xff1a;Kafka 的网络通信层主要基于 Java NIO 来实现&#xff0c;这使得它能够高效地处理大量的连接和数据传输。…...

【论文投稿-第八届智能制造与自动化学术会议(IMA 2025)】HTML, CSS, JavaScript:三者的联系与区别

大会官网&#xff1a;www.icamima.org 目录 前言 一、HTML&#xff08;超文本标记语言&#xff09;&#xff1a;网页的骨架 HTML 的作用&#xff1a; 例子&#xff1a; 总结&#xff1a; 二、CSS&#xff08;层叠样式表&#xff09;&#xff1a;网页的外观设计 CSS 的…...

解锁豆瓣高清海报:深度爬虫与requests进阶之路

前瞻 PosterBandit 这个脚本能够根据用户指定的日期&#xff0c;爬取你看过的影视最高清的海报&#xff0c;并自动拼接成指定大小的长图。 你是否发现直接从豆瓣爬取下来的海报清晰度很低&#xff1f; 使用 .pic .nbg img CSS 选择器&#xff0c;在 我看过的影视 界面找到图片…...

大数据治理实战:架构、方法与最佳实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 1. 引言 大数据治理是确保数据质量、合规性和安全性的重要手段&#xff0c;尤其在数据驱动决策和人工智能应用日益普及的背景下&…...

03链表+栈+队列(D1_链表(D1_基础学习))

目录 一、什么是链表 二、基本操作 三、为什么要使用链表 四、为什么能够在常数时间访问数组元素 数组优点 数组缺点 五、动态数组诞生 链表优点 链表缺点 六、链表、数组和动态数组的对比 七、 链表种类 1. 单向链表 2. 双向链表 3. 循环链表 八、链表衍生 ...…...

芯片AI深度实战:进阶篇之vim内verilog实时自定义检视

本文基于Editor Integration | ast-grep&#xff0c;以及coc.nvim&#xff0c;并基于以下verilog parser(my-language.so&#xff0c;文末下载链接), 可以在vim中实时显示自定义的verilog 匹配。效果图如下&#xff1a; 需要的配置如下&#xff1a; 系列文章&#xff1a; 芯片…...

【计算机网络】host文件

host文件的主要功能&#xff1a; 域名解析 本地映射&#xff1a;host文件的主要功能是将**域名映射到相应的 IP 地址**。当计算机需要访问一个网站或服务时&#xff0c;它会首先在 host文件中查找该域名对应的 IP 地址。如果在 host文件中找到了匹配的域名和 IP 地址映射&…...