当前位置: 首页 > news >正文

【深度学习入门_机器学习理论】K近邻法(KNN)

本部分主要为机器学习理论入门_K近邻法(KNN),书籍参考 “ 统计学习方法(第二版)”。

学习目标: 了解k近邻算法的基本概念、原理、应用;熟悉k近邻算法重要影响要素;熟悉kd树原理与优化应用。

开始本算法之前我们首先直观的感受一下本算法的具体场景。
首先回顾一下感知机算法:感知机是二类分类的线性分类模型,是对应于特征空间中将实例划分为正负两类的分离超平面。有对比就有差距了,超过两类的数据如何处理呢,那么就有了K近邻算法:kNN是一种基本的分类与回归方法,可以适用与多类分组,当然了KNN不仅局限于分类问题。

在这里插入图片描述

一、K近邻算法原理

1.1 基本概念

邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。Cover和Hart在1968年提出了最初的邻近算法。KNN是一种分类(classification)算法,它输入基于实例的学习(instance-based learning),属于懒惰学习(lazy learning)即KNN没有显式的学习过程,也就是说没有训练阶段,数据集事先已有了分类和特征值,待收到新样本后直接进行处理。

k近邻算法是一种基本分类和回归方法,通过测量不同特征值之间的距离进行分类。

K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
在这里插入图片描述
如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面我们根据k近邻的思想来给绿色圆点进行分类。

  • 如果K=3,绿色圆点的最邻近的3个点是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。
  • 如果K=5,绿色圆点的最邻近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。

上边便是k近邻算法的核心思想了,简单实用。

下边来看一下书上的标准定义:
在这里插入图片描述

K近邻并没有显式的学习过程,也就是不需要对训练集进行学习。预测过程中直接遍历预测点与所有点的距离,并找到最近的K个点即可。找到K个最近点后,使用多数表决(即投票)的方式确定预测点的类别。式3.1I(yi=ci)中的I为指示函数,当括号内条件为真时I(true)=1,I(false)=0。argmax表示令后式数值最大时的参数,例如argmax(-X^2 + 1)的结果为0,因为x=0时-X^2 + 1结果为1,为最大值。

式3.1表示对于每一个类Cj,进行I(yi=cj)进行求和,就是计算这K个点中有多少个标记为Cj的点,例如K=25,一共有四个类分别为C1、C2、C3、C4,25个点中他们的个数分别有10、5、1、9个,那么最多数目的类别C1就是样本点的预测类别。

1.2 算法流程

根据上述算法思想给出起对应的实现步骤:

  1. 计算测试数据与各个训练数据之间的距离;
  2. 按照距离的递增关系进行排序;
  3. 选取距离最小的K个点;
  4. 确定前K个点所在类别的出现频率;
  5. 返回前K个点中出现频率最高的类别作为测试数据的预测分类

1.3 应用场景

  • 推荐系统: 基于用户之前的喜好推荐相似电影;推荐用户可能喜欢的曲目或歌手

  • 文本分类: 区分垃圾邮件和正常邮件。

  • 图像识别: 识别包括上的手写邮政编码,分类投递邮件包裹

  • 医疗诊断: 预测患者可能的疾病风险。

  • 信用评分: 预测客户的信用风险。

  • 欺诈检测: 识别信用卡中的异常交易。

  • 位置基服务: 基于位置提供餐厅或服务推荐。

二、KNN算法重点要素

上述算法实现步骤是不是很简单?但是其中各参数如何选取也是调参中的重要技术活呀,所以就有了k近邻算法的三要素:距离度量,K值的选择。

2.1 距离度量

在上文中说到,k近邻算法是在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,我们就说预测点属于哪个类。

定义中所说的最邻近是如何度量呢?我们怎么知道谁跟测试点最邻近。这里就会引出我们几种度量俩个点之间距离的标准。

书中给出了以下几种度量方式:
在这里插入图片描述
其中当p=2的时候,就是我们最常见的欧式距离,我们也一般都用欧式距离来衡量我们高维空间中俩点的距离。在实际应用中,距离函数的选择应该根据数据的特性和分析的需要而定,一般选取p=2欧式距离表示。

2.2 K值选择

K:临近数,即在预测目标点时取几个临近的点来预测。

K值得选取非常重要,因为:

  • 如果当K的取值过小时,一旦有噪声得成分存在们将会对预测产生比较大影响,例如取K值为1时,一旦最近的一个点是噪声,那么就会出现偏差,K值的减小就意味着整体模型变得复杂,容易发生过拟合;
  • 如果K的值取的过大时,就相当于用较大邻域中的训练实例进行预测,学习的近似误差会增大。这时与输入目标点较远实例也会对预测起作用,使预测发生错误。K值的增大就意味着整体的模型变得简单;
  • 如果K==N的时候,那么就是取全部的实例,即为取实例中某分类下最多的点,就对预测没有什么实际的意义了;

K的取值尽量要取奇数,以保证在计算结果最后会产生一个较多的类别,如果取偶数可能会产生相等的情况,不利于预测。

K的取法:

常用的方法是从k=1开始,使用检验集估计分类器的误差率。重复该过程,每次K增值1,允许增加一个近邻。选取产生最小误差率的K。

一般k的取值不超过20,上限是n的开方,随着数据集的增大,K的值也要增大。

通用的K值确定方法如下:

  • 交叉验证: 这是确定 k 值的最常用方法。对于每一个可能的 k 值,使用交叉验证计算模型的预测错误率,选择错误率最低的 k 值。
  • 启发式方法: 有时,可以选择 sqrt(n)作为起始点,其中 n 是训练样本的数量。这只是一个粗略的估计,通常需要进一步验证。
  • 误差曲线: 画出不同 k 值对应的误差率曲线,选择误差变化开始平稳的点。
  • 领域知识: 在某些应用中,基于领域知识和经验选择 k 值可能更为合适。

三、KD树效率优化

上述原始算法复杂度为0(n)比较大,所以引出了下文的kd树结构优化KNN是算法。

现实生活中有许多问题需要在多维数据的快速分析和快速搜索,对于这个问题最常用的方法是所谓的kd树。在k-d树中进行数据的查找也是特征匹配的重要环节,其目的是检索在k-d树中与查询点距离最近的数据点。

说到KD树优化就不赘述了,老本行3D渲染中常用的三维空间加速结构,重点就是根据KD树结构快速定位节点,突发奇想是不是BVH、R-Tree等能够更加优化KNN算法,有时间的话实践一下试试。

四、小结

具体py实现建议采用sklearn库应用,详细代码可见其他代码实现的文章

相关文章:

【深度学习入门_机器学习理论】K近邻法(KNN)

本部分主要为机器学习理论入门_K近邻法(KNN),书籍参考 “ 统计学习方法(第二版)”。 学习目标: 了解k近邻算法的基本概念、原理、应用;熟悉k近邻算法重要影响要素;熟悉kd树原理与优化应用。 开始本算法之…...

基于Django的Boss直聘IT岗位可视化分析系统的设计与实现

【Django】基于Django的Boss直聘IT岗位可视化分析系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用Python作为主要开发语言,利用Django这一高效、安全的W…...

编程语言中的常见Bug及解决方案

在编程过程中,不同语言有其独特的特性和挑战,这也导致了各种常见Bug的出现。本文将总结几种主流编程语言中的常见Bug,包括JavaScript、Python、C/C、Java和Go,并提供相应的解决方案和案例。 一、JavaScript中小数相加精度不准确的…...

DeepSeek API 的获取与对话示例

代码文件下载:Code 在线链接:Kaggle | Colab 文章目录 注册并获取API环境依赖设置 API单轮对话多轮对话流式输出更换模型 注册并获取API 访问 https://platform.deepseek.com/sign_in 进行注册并登录: 新用户注册后将赠送 10 块钱余额&#…...

数据库SQLite和SCADA DIAView应用教程

课程简介 此系列课程大纲主要包含七个课时。主要使用到的开发工具有:SQLite studio 和 SCADA DIAView。详细的可成内容大概如下: 1、SQLite 可视化管理工具SQLite Studio :打开数据库和查询数据;查看视频 2、创建6个变量&#x…...

Elasticsearch+kibana安装(简单易上手)

下载ES( Download Elasticsearch | Elastic ) 将ES安装包解压缩 解压后目录如下: 修改ES服务端口(可以不修改) 启动ES 记住这些内容 验证ES是否启动成功 下载kibana( Download Kibana Free | Get Started Now | Elastic ) 解压后的kibana目…...

(CICD)自动化构建打包、部署(Jenkins + maven+ gitlab+tomcat)

一、平滑发布与灰度发布 **什么叫平滑:**在发布的过程中不影响用户的使用,系统不会因发布而暂停对外服务,不会造成用户短暂性无法访问; **什么叫灰度:**发布后让部分用户使用新版本,其它用户使用旧版本&am…...

Android源码阅读笔记(二)—— 启动模式

Android源码阅读笔记(二)—— 启动模式初章 1、为什么学习启动模式 Activity的启动模式其实是一个在面试中经常会被关注的问题,那么它的重要性体现在哪里? A:在多数的开发场景中,我们似乎也没有怎么关注过…...

AndroidCompose Navigation导航精通2-过渡动画与路由切换

目录 前言路由切换NavControllerBackStackEntry过渡动画过渡原理缩放动画渐隐动画滑动动画动画过渡实战前言 在当今的移动应用开发中,导航是用户与应用交互的核心环节。随着 Android Compose 的兴起,它为开发者提供了一种全新的、声明式的方式来构建用户界面,同时也带来了更…...

PCL ——LevenbergMarquardt非线性最小二乘法拟合圆柱(C++详细过程版)

目录 一、算法概述1、圆柱方程2、LM算法流程二、代码实现三、结果展示一、算法概述 目前求解非线性最小二乘问题常用算法有高斯-牛顿方法(Gauss-Newton algorithm,GN 算法)、列文伯格-马夸尔特方法(Levenberg-Marquardt algorithm,LM 算法)。本文采用 LM 算法进行圆柱拟合。 …...

GD32的GD库开发

所有的Cortex-M处理器都有相同的SysTick定时器,因为CMSIS-Core头文件中定义了一个名为SysTick的结构体。 这个定时器可以用作延时函数,不管是STM32的芯片还是GD32,AT32的芯片,delay函数都可以这么写,只要它是cortex-M…...

DeepSeek R1:推理模型新纪元与价格战

标题:DeepSeek R1:推理模型新纪元与价格战 文章信息摘要: DeepSeek R1的发布标志着推理模型研究的重要转折点,其采用四阶段强化学习训练方法,结合监督微调和拒绝采样,显著提升了模型的推理能力。这一进展不…...

一文简单回顾Java中的String、StringBuilder、StringBuffer

简单说下String、StringBuilder、StringBuffer的区别 String、StringBuffer、StringBuilder在Java中都是用于处理字符串的,它们之间的区别是String是不可变的,平常开发用的最多,当遇到大量字符串连接的时候,就用StringBuilder&am…...

机器学习:支持向量机

支持向量机(Support Vector Machine)是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的广义线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。 假设两类数据可以被 H x : w T x…...

简单的停车场管理系统的C语言实现示例

以下是一个简单的停车场管理系统的C语言实现示例。该示例使用结构体来管理停车场的车位信息&#xff0c;并提供基本车辆进入、离开以及显示停车场状态功能。 #include <stdio.h> #include <stdlib.h> #include <string.h>#define MAX_SLOTS 10 // 最大车位数…...

网络工程师 (3)指令系统基础

一、寻址方式 &#xff08;一&#xff09;指令寻址 顺序寻址&#xff1a;通过程序计数器&#xff08;PC&#xff09;加1&#xff0c;自动形成下一条指令的地址。这是计算机中最基本、最常用的寻址方式。 跳跃寻址&#xff1a;通过转移类指令直接或间接给出下一条指令的地址。跳…...

基于Python的智慧物业管理系统

【Python】基于Python的智慧物业管理系统&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目背景二、研究目的三、项目意义四、项目功能五、项目创新点六、开发技术介绍七、项目界面展示&#xff08;部分展示&#xff0c;详细看视频&#xff09;八、项…...

使用 Vue 3 的 watchEffect 和 watch 进行响应式监视

Vue 3 的 Composition API 引入了 <script setup> 语法&#xff0c;这是一种更简洁、更直观的方式来编写组件逻辑。结合 watchEffect 和 watch&#xff0c;我们可以轻松地监视响应式数据的变化。本文将介绍如何使用 <script setup> 语法结合 watchEffect 和 watch&…...

环境变量

目录 一.概念介绍 1.1命令行参数 二.一个例子&#xff0c;一个环境变量 2.1查看环境变量 2.2如何理解环境变量呢&#xff1f;存储的角度 2.3环境变量最开始从哪里来的呢&#xff1f; 概括&#xff1a; 1. 环境变量的存储 2. 命令查找过程 3. 环境变量表和命令行参数…...

Scale AI 创始人兼 CEO采访

Scale AI 创始人兼 CEO 亚历山大王&#xff08;Alexander Wang&#xff09;首次亮相节目接受采访。他的公司专注于为人工智能工具提供准确标注的数据。早在 2022 年&#xff0c;王成为世界上最年轻的白手起家亿万富翁。 美国在全球人工智能竞赛中的地位&#xff0c;以及它与中…...

MongoDB中常用的几种高可用技术方案及优缺点

MongoDB 的高可用性方案主要依赖于其内置的 副本集 (Replica Set) 和 Sharding 机制。下面是一些常见的高可用性技术方案&#xff1a; 1. 副本集 (Replica Set) 副本集是 MongoDB 提供的主要高可用性解决方案&#xff0c;确保数据在多个节点之间的冗余存储和自动故障恢复。副…...

【Erdas实验教程】001:Erdas2022下载及安装教程

文章目录 一、Erdas2022安装教程1. 安装主程序2. 拷贝补丁3. 安装LicenseServer4. 运行软件 二、Erdas2022下载地址 一、Erdas2022安装教程 Erdas2022全新界面如下&#xff1a; 1. 安装主程序 下载安装包并解压&#xff0c;以管理员身份运行 “setup.exe” 或 “setup.vbs”&…...

Python3 【函数】水平考试:精选试题和答案

Python3 【函数】水平考试&#xff1a;精选试题和答案 Python 函数考试试卷及答案。共计30题&#xff0c;其中选择题15题、填空题10题、编程题5题&#xff0c;试卷满分为100分。 一、选择题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09; 以下哪个关键字用于定义函数…...

stm8s单片机(三)时钟系统与时钟切换

一个单片机系统要正常运行应包括四个部分: 电源&#xff0c;晶振&#xff0c;复位电路&#xff0c;下载电路。 晶振就是时钟。 stm8有四种时钟源 HSE (High Speed External clock signal)HSE user-ext (High Speed External clock signal user external)HSI (High Speed Inter…...

ChatGPT高效处理图片技巧使用详解

ChatGPT&#xff0c;作为OpenAI开发的预训练语言模型&#xff0c;主要用于生成自然语言文本的任务。然而&#xff0c;通过一些技巧和策略&#xff0c;我们可以将ChatGPT与图像处理模型结合&#xff0c;实现一定程度上的图像优化和处理。本文将详细介绍如何使用ChatGPT高效处理图…...

图漾Halcon版本SDK使用教程【V1.1.0新版本】

文章目录 1.下载并安装 Halcon1.1 下载Halcon软件1.2 安装Halcon 2.下载Camport_Halcon_gentl SDK2.1 下载Camport_Halcon_gentl SDK2.2 Camport Halcon SDK介绍2.3 Halcon SDK环境配置与运行2.3.1 SDK环境配置2.3.2 获取相机支持的参数2.3.3 配置相机参数并运行相机 2.4 遍历H…...

C语言二级

//请编写函数fun()&#xff0c;该函数的功能是&#xff1a;计算并输出给定整数n的所有因 //子&#xff08;不包括1和自身&#xff09;之和。规定n的值不大于1000。例如&#xff0c;在主函数 //中从键盘给n输入的值为856&#xff0c;则输出为&#xff1a;sum 763。 //注意&…...

软工_软件工程

2025.01.24&#xff1a;软件工程导论学习笔记 第2节 软件工程 2.1 软件发展 - 四个阶段2.1.1 程序设计2.1.2 程序系统2.1.3 软件工程2.1.4 第四阶段 2.2 软件危机2.2.1 软件危机 - 定义2.2.2 软件危机 - 主要表现 2.1 软件发展 - 四个阶段 2.1.1 程序设计 软件生产个体化&…...

【creo】CREO配置快捷键方式和默认单位

了解CREO工作目录设置 设置快捷方式启动目录&#xff0c;就能自动加载其中的配置。 一、通过键盘快捷方式 保存配置 creo_parametric_customization.ui 文件&#xff1a; 二、通过映射键录制 通过这种方式可以监听鼠标的点击事件。使用键盘快捷方式无法找到需要的动作时候可…...

go理论知识——Go Channel 笔记 [特殊字符]

go理论知识——Go Channel 笔记 &#x1f4dd; 1. 基本概念 &#x1f9e0; 1.1 Channel 是什么&#xff1f; Channel 是 Go 语言中用于在不同 Goroutine 之间进行通信的机制。Channel 是类型安全的&#xff0c;意味着你只能发送和接收特定类型的数据。 1.2 Channel 的创建 …...

微信小程序压缩图片

由于wx.compressImage(Object object) iOS 仅支持压缩 JPG 格式图片。所以我们需要做一下特殊的处理&#xff1a; 1.获取文件&#xff0c;判断文件是否大于设定的大小 2.如果大于则使用canvas进行绘制&#xff0c;并生成新的图片路径 3.上传图片 async chooseImage() {let …...

第05章 11 动量剖面可视化代码一则

在计算流体力学&#xff08;CFD&#xff09;中&#xff0c;动量剖面&#xff08;Momentum Profiles&#xff09;通常用于描述流体在流动方向上的动量分布。在 VTK 中&#xff0c;可以通过读取速度场数据&#xff0c;并计算和展示动量剖面来可视化呈现速度场信息。 示例代码 以…...

Android Studio 新版本24.2.2 运行后自动切到 LogCat

最近更新了 Android studio 版本&#xff0c;发现有个问题&#xff1a; 每次 Run app 之后。都会自动切换到 run 标签。这让我非常不习惯。我个人习惯在app 运行后查看Logcat 最后靠 deepSeek 找到一种解决方案&#xff1a; Android Studio 中截图如下&#xff1a;...

使用EVE-NG-锐捷实现OSPF

一、OSPF基础知识 Open shortest Path First(OSPF)开放式最短路径优先协议 1.OSPF的关系状态 (1)邻居关系(TWO-WAY) 只发送hello包不发送LSA包(链路状态通告包) (2)邻接关系(FULL) OSPF设备与设备之间相互建立OSPF关系&#xff0c;初始为邻居关系(TWO-WAY)状态&#xff0…...

解决使用Selenium时ChromeDriver版本不匹配问题

在学习Python爬虫过程中如果使用Selenium的时候遇到报错如下session not created: This version of ChromeDriver only supports Chrome version 99… 这说明当前你的chrome驱动版本和浏览器版本不匹配。 例如 SessionNotCreatedException: Message: session not created: This…...

景联文科技加入AIIA联盟数据标注分委会

2025年1月16日&#xff0c;中国人工智能产业发展联盟&#xff08;简称AIIA&#xff09;数据委员会数据标注分委会&#xff08;以下简称“分委会”&#xff09;正式成立。景联文科技成为第一批AIIA联盟数据标注分委会委员单位。 数据标注分委会的成立旨在搭建数据标注领域产学研…...

IoTDB结合Mybatis使用示例(增删查改自定义sql等)

IoTDB时序库是当前越来越流行以及基于其优势各大厂商越来越易接受的国产开源时序数据库&#xff0c;针对IoTDB的内容不做过多介绍&#xff0c;在使用该时序库时&#xff0c;往往有一定入门门槛&#xff0c;不同于关系型数据库或文档型数据库那般方便维护和接入开发&#xff0c;…...

穷举vs暴搜vs深搜vs回溯vs剪枝系列一>解数独

题目&#xff1a; 解析&#xff1a; 部分决策树&#xff1a; 代码设计&剪枝&回溯&#xff1a; 代码&#xff1a; class Solution {private boolean[][] row, col;private boolean[][][] gird; public void solveSudoku(char[][] board) {//下标->数字&#xff…...

C#@符号在string.Format方法中作用

本文详解@符号在string.Format方法中作用。...

mysql 学习2 MYSQL数据模型,mysql内部可以创建多个数据库,一个数据库中有多个表;表是真正放数据的地方,关系型数据库 。

在第一章中安装 &#xff0c;启动mysql80 服务后&#xff0c;连接上了mysql&#xff0c;那么就要 使用 SQL语句来 操作mysql数据库了。那么在学习 SQL语言操作 mysql 数据库 之前&#xff0c;要对于 mysql数据模型有一个了解。 MYSQL数据模型 在下图中 客户端 将 SQL语言&…...

JVM栈溢出线上环境排查

#查看当前Linux系统进程ID、线程ID、CPU占用率&#xff08;-eo后面跟想要展示的列&#xff09; ps H -eo pid,tid,%cpups H -eo pid,tid,%cpu |grep tid #使用java jstack 查看进程id下所有线程id的情况 jstack pid 案例2 通过jstack 排查死锁问题 #启动java代码 jstack 进…...

【vue3组件】【大文件上传】【断点续传】支持文件分块上传,能够在上传过程中暂停、继续上传的组件

一、概述 本示例实现了一个基于 Vue3 和 TypeScript 的断点上传功能。该功能支持文件分块上传&#xff0c;能够在上传过程中暂停、继续上传&#xff0c;并且支持检测已经上传的分块&#xff0c;避免重复上传&#xff0c;提升上传效率。以下是关键的技术点与实现流程&#xff1…...

Kafka运维宝典 (三)- Kafka 最大连接数超出限制问题、连接超时问题、消费者消费时间超过限制问题详细介绍

Kafka运维宝典 &#xff08;三&#xff09; 文章目录 Kafka运维宝典 &#xff08;三&#xff09;一、Kafka Broker 配置中的最大连接数超出限制问题1. 错误原因2. 相关 Kafka 配置参数2.1 connections.max2.2 max.connections.per.ip2.3 num.network.threads2.4 connections.ma…...

【135. 分发糖果 困难】

题目&#xff1a; n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。 你需要按照以下要求&#xff0c;给这些孩子分发糖果&#xff1a; 每个孩子至少分配到 1 个糖果。 相邻两个孩子评分更高的孩子会获得更多的糖果。 请你给每个孩子分发糖果&#xff0c;计…...

AAAI2024论文解读|HGPROMPT Bridging Homogeneous and Heterogeneous Graphs

论文标题 HGPROMPT: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning 跨同构异构图的小样本提示学习 论文链接 HGPROMPT: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning论文下载 论文作者 Xingtong Yu, Yuan…...

算法题(49):反转链表II

审题&#xff1a; 需要我们对指定范围的链表进行反转&#xff0c;并返回反转后链表的头结点 思路&#xff1a; 方法一&#xff1a;vector法 我们先遍历一次链表&#xff0c;并把数据对应的存在数组中&#xff0c;然后利用数组的reverse方法进行反转数据&#xff0c;最后再遍历一…...

代码随想录day20

235. 利用二叉搜索树的特性即可 /** lc appleetcode.cn id235 langcpp** [235] 二叉搜索树的最近公共祖先*/// lc codestart /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) :…...

文档智能扫描,提升无纸化办公效率

随着无纸化办公的推广和移动设备的普及&#xff0c;用户迫切需要将纸质文档快速、准确地转换成电子格式&#xff0c;以提高工作效率和信息管理的便捷性。同时&#xff0c;用户将文档扫描成电子版后&#xff0c;可以自行通过加密和访问控制提高电子文档的安全性&#xff0c;以满…...

差分等长的原理

差分等长是指在设计差分信号传输线路时&#xff0c;保证两条差分线的长度尽量一致&#xff0c;长度之差在一个合理的范围内。这是为了确保两个差分信号时刻保持相反极性&#xff0c;减少共模分量&#xff0c;从而提高信号传输的质量。 在差分信号传输中&#xff0c;两条差分线…...

“““【运用 R 语言里的“predict”函数针对 Cox 模型展开新数据的预测以及推理。】“““

主题与背景 本文主要介绍了如何在R语言中使用predict函数对已拟合的Cox比例风险模型进行新数据的预测和推理。Cox模型是一种常用的生存分析方法&#xff0c;用于评估多个因素对事件发生时间的影响。文章通过具体的代码示例展示了如何使用predict函数的不同参数来获取生存概率和…...