当前位置: 首页 > news >正文

OpenAI Whisper:语音识别技术的革新者—深入架构与参数

当下语音识别技术正以前所未有的速度发展,极大地推动了人机交互的便利性和效率。OpenAI的Whisper系统无疑是这一领域的佼佼者,它凭借其卓越的性能、广泛的适用性和创新的技术架构,正在重新定义语音转文本技术的规则。今天我们一起了解一下Whisper的架构、核心能力以及其丰富的参数设置,帮助读者更好地理解这一前沿技术。

Whisper的基石:强大的架构与训练

Whisper的核心是一个基于Transformer的序列到序列模型,这一模型经过680,000小时的标记音频数据训练,堪称有史以来创建的最大的监督语音识别数据集之一。如此庞大的数据集为Whisper提供了无与伦比的优势,使其能够识别各种口音、处理背景噪音,并适应不同的音频质量。

Whisper的架构设计使其能够同时处理多项任务,包括多语种语音识别、语音翻译、口语识别和语音活动检测。这种统一的处理方式不仅提高了效率,还确保了任务之间的无缝衔接。通过采用智能的令牌(token)系统,Whisper能够在转录和翻译过程中管理各种任务。从<|startoftranscript|>令牌开始,它预测语言(支持99种语言),对于非语音部分使用<|nospeech|>令牌,通过<|transcribe|>或<|translate|>指定任务类型,并使用<|notimestamps|>令牌控制时间戳,每个预测都以<|endoftranscript|>令牌结束,从而确保了音频任务的清晰处理。

Whisper的关键参数:精细调整以实现最佳效果

对于使用Whisper的实践者来说,理解如何调整其参数以实现可靠的转录至关重要。以下是关键参数的详细解释:

核心参数与模型选择
  • 输入与模型选择

    Whisper接受一个或多个音频文件路径进行转录,这是必需的参数,并且支持使用“+”操作符进行多文件处理。模型参数指定要使用的Whisper模型变体,默认是“turbo”。不同的模型在准确性和速度之间提供了不同的权衡,选项包括“tiny”、“base”、“small”、“medium”和“large”。

  • 设备

    此参数确定PyTorch推理的处理设备。如果可用,它会自动选择CUDA,否则默认为CPU。选项为“cuda”(用于GPU处理)和“cpu”(用于CPU处理)。

任务与语言设置
  • 任务

    定义要在音频输入上执行的主要操作。使用“transcribe”进行X->X语音识别(即将音频中的口语转录为相同语言)。或者,选择“translate”进行X->英语翻译(即将源语言的音频直接转换为英文文本)。默认设置是“transcribe”,适用于同语言转录任务。

  • 语言

    指定音频中的口语语言,可以使用标准语言代码(例如,“en”表示英语)或完整的语言名称(例如,“English”)。将此设置为None将启用模型的自动语言检测。准确指定语言可以提高转录和翻译质量,因为这会使模型的处理与音频的语言上下文保持一致。默认值为None。

解码参数:温度与采样
  • 温度

    通过调整采样温度来控制模型输出的随机性。默认值为0,使输出具有确定性,产生一致的结果。较高的值(从0到1)引入更多的变化和创造性,这有助于解释不清晰的语音或为模糊音频输入生成多个假设。

  • best_of

    当以非零温度采样时,此参数指定Whisper模型生成的候选序列数量。默认值为5,意味着模型将生成五个潜在输出,然后选择最佳的一个。增加此值允许模型考虑更多的可能性,从而提高准确性,尤其是在不清晰或有噪音的音频中。然而,更多的候选序列需要更多的处理时间和资源,因为模型需要评估更大的可能输出集。

Beam Search配置
  • beam_size

    指定Whisper模型内使用的beam search算法中的beam数量。默认值为5,意味着模型在解码过程的每个步骤中考虑五个潜在假设。Beam search是一种解码策略,它同时探索多个候选序列,并选择累积概率最高的一个。较大的beam值通过允许模型探索更多可能的序列来提高输出的准确性,降低了次优结果的可能性。然而,这以处理速度为代价,因为模型在每个步骤中评估更多的候选者。此参数仅在温度设置为零时相关,因为beam search通常用于确定性解码。

长度惩罚
  • length_penalty

    令牌长度惩罚系数(alpha)调整序列长度对模型评分的影响。没有它,模型倾向于偏爱较短的序列,因为它们有较少的令牌并导致更高的平均概率。添加长度惩罚确保了较长的序列不会被不公平地惩罚,从而在不同序列长度之间促进了更平衡和连贯的输出。Alpha=1按比例对beam评分进行惩罚,以考虑序列长度,而alpha=0则不应用惩罚,对所有序列长度一视同仁。值<1鼓励更长的序列,而值>1则偏爱较短的序列。

高级处理选项:令牌和提示符管理
  • suppress_tokens

    在采样期间抑制的令牌ID的逗号分隔列表。默认“-1”抑制大多数特殊字符,除了常见标点符号。这对于清理输出很有用。

  • initial_prompt

    为第一个窗口提供的文本提示。有助于引导模型的初始输出。特别适用于领域特定的术语。

  • carry_initial_prompt

    控制跨窗口的提示符行为。默认值为False。当为True时,它将initial_prompt附加到每个decode()调用中。在每个解码步骤中包含相同的起始提示符可能会阻止模型根据对话中的先前输入进行调整。这会降低其基于先前输入在对话中演变和适应的能力。

处理与性能
  • condition_on_previous_text

    通过确保模型为每个新输入使用相同的上下文来维持跨处理窗口的一致性。默认值为True,这有助于保持文本的连贯流动。禁用它(设置为False)会降低模型陷入重复循环的风险,但可能会使文本在不同窗口之间的一致性降低。此设置可以影响跨窗口交互的整体连贯性,取决于模型如何处理上下文。

  • fp16

    启用半精度浮点推理,这减少了内存使用并可能潜在地提高处理速度。默认设置为True,优化了性能而不会显著影响模型的运行。虽然它可以帮助更有效地运行更大的模型,但与全精度推理相比,使用半精度可能会略微降低准确性。对于需要更快或更内存高效的处理的应用程序来说,这种权衡通常是值得的。

错误处理与质量控制
  • temperature_increment_on_fallback

    解码失败时的温度增加步长。默认值为0.2。此参数有助于模型从解码失败中恢复,通过逐渐增加温度来引入更多的输出随机性。这可以使模型生成更多样化的响应,并避免陷入重复的失败循环中。

  • compression_ratio_threshold

    解码失败的Gzip压缩比阈值,默认值为2.4,有助于识别输出中的潜在问题。如果压缩比超过此值,则解码被视为失败,表明结果不完整或不准确。较高的比率表明输出中存在重复的序列,这可能在模型陷入困境并重复生成相同短语时发生。此阈值可防止模型输出此类陷入困境的预测,从而确保更好地处理输出质量。

  • logprob_threshold

    解码的平均对数概率阈值,默认值为-1.0,设置模型转录的置信度水平。较低的值表示不太自信的转录,因为它们对应于较弱的预测。此阈值有助于过滤掉不确定的输出,确保仅接受更可靠的转录。

  • no_speech_threshold

    检测静音的阈值,默认值为0.6,确定模型何时识别音频中的静音期。它与logprob_threshold一起工作以改进检测准确性。较高的值使静音检测更加积极,允许模型更容易地标记和处理音频中的静音部分。此参数有助于改进音频的分割和整体处理。

Whisper的广泛应用与未来展望

Whisper的广泛应用场景涵盖了从日常会议记录到跨国交流的各个领域。其强大的多语言支持和在嘈杂环境中的稳定性,使得它成为许多企业和个人的首选工具。此外,Whisper的开源特性也促进了其在学术界和开源社区中的进一步研究和开发。

随着技术的不断进步,我们可以预见Whisper将在更多领域发挥重要作用。例如,在远程医疗中,医生可以利用Whisper进行准确的语音记录,从而提高诊断效率和准确性。在教育领域,教师可以利用这一技术来记录课堂内容,为学生提供更丰富的学习资源。此外,Whisper在智能家居、自动驾驶等领域的应用也将逐渐展开,为我们的生活带来更多便利。

OpenAI的Whisper不仅代表了语音识别技术的一次重大飞跃,更是对未来无限可能的窥探。其强大的架构和巧妙的参数调整策略,为我们提供了一个全新的视角来审视和理解语音识别技术。

code:https://github.com/openai/whisper

相关文章:

OpenAI Whisper:语音识别技术的革新者—深入架构与参数

当下语音识别技术正以前所未有的速度发展&#xff0c;极大地推动了人机交互的便利性和效率。OpenAI的Whisper系统无疑是这一领域的佼佼者&#xff0c;它凭借其卓越的性能、广泛的适用性和创新的技术架构&#xff0c;正在重新定义语音转文本技术的规则。今天我们一起了解一下Whi…...

Python 3.9及以上版本支持的新的字符串函数 str.removeprefix()

在 Python 3.9 中&#xff0c;新增了 str.removeprefix() 方法&#xff0c;用于从字符串的开头移除指定的前缀&#xff08;如果存在&#xff09;。如果字符串不以指定前缀开头&#xff0c;原字符串保持不变。 用法&#xff1a; str.removeprefix(prefix)prefix: 要移除的前缀…...

Python爬虫入门

豆瓣榜单250爬取&#xff1a; 直接上代码&#xff1a; import requests import redef top250_crawer(url, sum):headers {User-agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36}try:response re…...

hive连接mysql报错:Unknown version specified for initialization: 3.1.0

分享下一些报错的可能原因吧 1.要开启hadoop 命令&#xff1a;start-all.sh 2.检查 hive-site.xml 和 hive-env.sh。 hive-site.xml中应设置自己mysql的用户名和密码 我的hive-site.xml如下&#xff1a; <configuration><property><name>javax.jdo.opt…...

wandb使用遇到的一些问题

整合了一下使用wandb遇到的问题 1.请问下如果电脑挂了代理&#xff0c;应该怎么办呢&#xff1f;提示&#xff1a;Network error (ProxyError), entering retry loop. 在本地&#xff08;而非服务器&#xff09;运行代码时&#xff0c;常常因为开启代理而无法使用wandb&#…...

18. C语言 结构体内存布局分析与优化

本章目录: 结构体的内存布局1. 对齐规则2. 填充与对齐 示例分析代码示例输出结果分析1. debug_size1_t 结构体2. debug_size2_t 结构体 如何优化结构体内存布局1. 成员排序优化2. 使用 #pragma pack 指令注意事项 总结 在C语言中&#xff0c;结构体&#xff08;struct&#xff…...

MyBatisPlus学习笔记

To be continue… 文章目录 介绍快速入门入门案例常用注解常用配置 核心功能条件构造器自定义SQLService接口 介绍 MyBatisPlus只做增强不做改变&#xff0c;引入它不会对现有工程产生影响。只需简单配置&#xff0c;即可快速进行单表CRUD操作&#xff0c;从而节省大量时间。…...

Jetpack工具箱:不只是插件,它是开发灵魂

引言 想象一下&#xff0c;一个 Android 开发者面对堆积如山的需求文档、无穷无尽的 BUG 修复时&#xff0c;突然发现了一款神器——Jetpack&#xff01;这是一套专为 Android 开发者设计的库和工具集&#xff0c;它就像你的“编程助手”&#xff0c;从架构优化到 UI 管理&…...

2024年博客之星年度评选—创作影响力评审入围名单公布

2024年博客之星活动地址https://www.csdn.net/blogstar2024 TOP 300 榜单排名 用户昵称博客主页 身份 认证 评分 原创 博文 评分 平均 质量分评分 互动数据评分 总分排名三掌柜666三掌柜666-CSDN博客1001002001005001wkd_007wkd_007-CSDN博客1001002001005002栗筝ihttps:/…...

LoadBalancer负载均衡服务调用

LoadBalancer LoadBalancer&#xff08;负载均衡器&#xff09;是Spring Cloud中的一个关键组件&#xff0c;用于在微服务架构中实现服务请求的负载均衡。它的主要作用是将客户端的请求分发到多个服务实例上&#xff0c;以提高系统的可用性、性能和容错能力。通过LoadBalancer&…...

《CPython Internals》阅读笔记:p221-p231

《CPython Internals》学习第 12天&#xff0c;p221-p231 总结&#xff0c;总计 11 页。 一、技术总结 无。 二、英语总结(生词&#xff1a;2) 1.at a time idiom. separately(单独地) in the specified groups(一次)。示例&#xff1a; (1) I can only do one thing at …...

【机器学习实战入门】基于深度学习的乳腺癌分类

什么是深度学习&#xff1f; 作为对机器学习的一种深入方法&#xff0c;深度学习受到了人类大脑和其生物神经网络的启发。它包括深层神经网络、递归神经网络、卷积神经网络和深度信念网络等架构&#xff0c;这些架构由多层组成&#xff0c;数据必须通过这些层才能最终产生输出。…...

Golang Gin系列-1:Gin 框架总体概述

本文介绍了Gin框架&#xff0c;探索了它的关键特性&#xff0c;并建立了简单入门的应用程序。在这系列教程里&#xff0c;我们会探索Gin的主要特性&#xff0c;如路由、中间件、数据库集成等&#xff0c;最终能使用Gin框架构建健壮的web应用程序。 总体概述 Gin是Go编程语言的…...

【Python】第二弹---深入理解编程基础:从常量、变量到注释的全面解析

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【MySQL】【Python】 目录 1、常量和表达式 2、变量和类型 2.1、变量是什么 2.2、变量的语法 2.3、变量的类型 2.4、动态类型特…...

RPA编程实践:Electron简介

文章目录 前言使用Electron构建桌面应用程序什么是Electron&#xff1f;为什么选择Electron&#xff1f;如何使用Electron实现上述想法&#xff1f;1. 创建基本的Electron应用2. 配置BrowserWindow3. 定制化你的应用4. 打包与分发 前言 Electron&#xff0c;用官网的话说&…...

svn tag

一般发布版本前&#xff0c;需要在svn上打个tag。步骤如下&#xff1a; 1、空白处右击&#xff0c;选择TortoiseSVN->Branch/tag; 2、填写To path&#xff0c;即tag的路基以及tag命名&#xff08;一般用版本号来命名&#xff09;&#xff1b;填写tag信息&#xff1b;勾选cr…...

SpringBoot错误码国际化

先看测试效果&#xff1a; 1. 设置中文 2.设置英文 文件结构 1.中文和英文的错误消息配置 package com.ldj.mybatisflex.common;import lombok.Getter;/*** User: ldj* Date: 2025/1/12* Time: 17:50* Description: 异常消息枚举*/ Getter public enum ExceptionEnum {//…...

AAPM:基于大型语言模型代理的资产定价模型,夏普比率提高9.6%

“AAPM: Large Language Model Agent-based Asset Pricing Models” 论文地址&#xff1a;https://arxiv.org/pdf/2409.17266v1 Github地址&#xff1a;https://github.com/chengjunyan1/AAPM 摘要 这篇文章介绍了一种利用LLM代理的资产定价模型&#xff08;AAPM&#xff09;…...

LabVIEW桥接传感器配置与数据采集

该LabVIEW程序主要用于配置桥接传感器并进行数据采集&#xff0c;涉及电压激励、桥接电阻、采样设置及错误处理。第一个VI&#xff08;"Auto Cleanup"&#xff09;用于自动清理资源&#xff0c;建议保留以确保系统稳定运行。 以下是对图像中各个组件的详细解释&#…...

《汽车维修技师》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答&#xff1a; 问&#xff1a;《汽车维修技师》是不是核心期刊&#xff1f; 答&#xff1a;不是&#xff0c;是知网收录的正规学术期刊。 问&#xff1a;《汽车维修技师》级别&#xff1f; 答&#xff1a;省级。主管单位&#xff1a;北方联合出版传媒&#xff08;…...

python(25) : 含有大模型生成的公式的文本渲染成图片并生成word文档(支持flask接口调用)

公式样例 渲染前 \[ \sqrt{1904.615384} \approx 43.64 \] 渲染后 安装依赖 pip install matplotlib -i https://mirrors.aliyun.com/pypi/simple/ requestspip install sympy -i https://mirrors.aliyun.com/pypi/simple/ requestspip install python-docx -i https…...

深度学习项目--基于LSTM的火灾预测研究(pytorch实现)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 前言 LSTM模型一直是一个很经典的模型&#xff0c;这个模型当然也很复杂&#xff0c;一般需要先学习RNN、GRU模型之后再学&#xff0c;GRU、LSTM的模型讲解将…...

云消息队列 Kafka 版 V3 系列荣获信通院“云原生技术创新标杆案例”

2024 年 12 月 24 日&#xff0c;由中国信息通信研究院&#xff08;以下简称“中国信通院”&#xff09;主办的“2025 中国信通院深度观察报告会&#xff1a;算力互联网分论坛”&#xff0c;在北京隆重召开。本次论坛以“算力互联网 新质生产力”为主题&#xff0c;全面展示中国…...

centos 安全配置基线

centos 安全配置基线 一、系统防火墙及SE系统1. 系统自带防火墙iptables&#xff08;Centos6&#xff09;基础命令查看防火墙设置使用命令查看防火墙设置使用命令清除防火墙设置防火墙策略开放指定的端口屏蔽IP 2. 系统自带防火墙firewalled&#xff08;Centos7&#xff09;基础…...

语音技术在播客领域的应用(2)

播客是以语音为主&#xff0c;各种基于AI 的语音技术在播客领域十分重要。 语音转文本 Whisper Whisper 是OpenAI 推出的开源语音辨识工具&#xff0c;可以把音档转成文字&#xff0c;支援超过50 种语言。这款工具是基于68 万小时的训练资料&#xff0c;其中包含11.7 万小时的…...

html的iframe页面给帆软BI发送消息

需求&#xff1a;帆软的网页组件嵌套一个HTML页面&#xff0c;HTML页面要给帆软发消息。 解决方法是&#xff1a;fineReportWindow.duchamp.getWidgetByName("txt1").setValue(666); <!DOCTYPE html> <html lang"en"> <head> <…...

Dart语言的字符串处理

Dart语言的字符串处理 目录 引言字符串的定义与基本特性字符串的创建字符串的操作字符串拼接字符串截取字符串替换字符串分割字符串查询字符串格式化正则表达式在字符串处理中的应用字符串编码与解码示例代码总结 1. 引言 在现代编程中&#xff0c;字符串处理是一个非常重要…...

迅为RK3576开发板Android 多屏显示

迅为iTOP-3576开发板采用瑞芯微RK3576高性能、低功耗的应用处理芯片&#xff0c;集成了4个Cortex-A72和4个Cortex-A53核心&#xff0c;以及独立的NEON协处理器。它适用于ARM PC、边缘计算、个人移动互联网设备及其他多媒体产品。 1.1 Android 多屏同显 iTOP-RK3576 开发板支持…...

基于SpringBoot+Vue旅游管理系统的设计和实现(源码+文档+部署讲解)

个人名片 &#x1f525; 源码获取 | 毕设定制| 商务合作&#xff1a;《个人名片》 ⛺️心若有所向往,何惧道阻且长 文章目录 个人名片环境需要技术栈功能介绍功能说明 环境需要 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库&…...

Banana Pi BPI-RV2 RISC-V路由开发板采用矽昌通信SF2H8898芯片

Banana Pi BPI-RV2 开源网关是⼀款基于矽昌SF2H8898 SoC的设备&#xff0c;1 2.5 G WAN⽹络接⼝、5 个千兆LAN ⽹络接⼝、板载 512MB DDR3 内存 、128 MiB NAND、16 MiB NOR、M.2接⼝&#xff0c;MINI PCIE和USB 2.0接⼝等。 Banana Pi BPI-RV2 开源网关是矽昌和⾹蕉派开源社…...

【0x3D】HCI_Remote_Host_Supported_Features_Notification事件详解

目录 一、事件概述 二、事件格式及参数说明 2.1. HCI_Remote_Host_Supported_Features_Notification事件格式 2.2. BD_ADDR 2.3. Remote_Host_Supported_Features 三、事件作用 3.1. 设备特性沟通与理解 3.2. 功能协商与性能优化 3.3. 设备管理与配置更新 四、应用场…...

【腾讯云】AI驱动TDSQL-C Serveress 数据库技术实战营-如何是从0到1体验电商可视化分析小助手得统计功能,一句话就能输出目标统计图

欢迎来到《小5讲堂》 这是《腾讯云》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解。 温馨提示&#xff1a;博主能力有限&#xff0c;理解水平有限&#xff0c;若有不对之处望指正&#xff01; 目录 背景效果图流程图创建数据库 基本信息数据库配置设置密码控制台开…...

Unity-Mirror网络框架-从入门到精通之RigidbodyBenchmark示例

文章目录 前言示例代码逻辑测试结论性能影响因素最后前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Unity的开源网络框架,专为多人游戏开发设计,它…...

学习记录1

[SUCTF 2019]EasyWeb 直接给了源代码&#xff0c;分析一下 <?php function get_the_flag(){// webadmin will remove your upload file every 20 min!!!! $userdir "upload/tmp_".md5($_SERVER[REMOTE_ADDR]);if(!file_exists($userdir)){mkdir($userdir);}if…...

EWM 供应商退货

目录 1 简介 2 参考内向交货单退货场景 2.1 后台配置 ERP 配置 EWM 配置 2.2 主数据 2.3 业务操作 3 创建 return PO 退货场景 3.1 后台配置 ERP 配置 EWM 配置 3.2 主数据 3.3 业务操作 1 简介 EWM 供应商退货支持 2种方式退货: 1)参考内向交货单退货 2)创建…...

深度学习基础--GRU学习笔记(李沐《动手学习深度学习》)

前言 GRU是RNN模型的升级版&#xff0c;也是LSTM的弱化版&#xff0c;学习GRU也是为了学习LSTM做准备&#xff0c;这一篇文章是学习笔记&#xff1b;RNN&#xff1a;RNN讲解参考&#xff1a;李沐动手学习深度学习&#xff1b;欢迎收藏加关注&#xff0c;本人将会持续更新。 文…...

Linux-C/C++--初探linux应用编程概念

对于大多数首次接触 Linux 应用编程的读者来说&#xff0c;可能对应用编程&#xff08;也可称为系统编程&#xff09;这个概念并不 太了解&#xff0c;所以在正式学习 Linux 应用编程之前&#xff0c;笔者有必要向大家介绍这些简单基本的概念&#xff0c;从整体上认识 到应用编…...

计算机基础专业课

后面进一步完善内容&#xff01; 第一部分&#xff1a;计算机基础知识5% 第一章&#xff1a;计算机概述 第二章&#xff1a;信息表示与编码 第二部分&#xff1a;计算机软硬件基础25% 第三章&#xff1a;计算机系统组成&#xff08;计算机组成原理&#xff09; 第四章&am…...

6. 快速掌握抽象类及接口

目录 1. 抽象类1.1 抽象类语法1.2 抽象类特性1.3 抽象类的作用 2. 接口2.1 接口语法2.2 接口的特性 3. 接口案例4. 常用接口4.1 Comparable接口---compareTo()方法4.2 clonable接口---clone方法4.2 深拷贝和浅拷贝 5. Object类5.1 equals()方法5.2 toString()方法5.3 hashCode(…...

P6周:VGG-16算法-Pytorch实现人脸识别

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 我的环境 语言环境&#xff1a;Python 3.8.12 编译器&#xff1a;jupyter notebook 深度学习环境&#xff1a;torch 1.12.0cu113 一、前期准备 1.设置GPU im…...

GPT-5 传言:一场正在幕后发生的 AI 变革

新的一年&#xff0c;让我们从一个引人入胜的话题开始&#xff1a;如果我告诉你&#xff0c;GPT-5 并非虚构&#xff0c;而是真实存在呢&#xff1f;它不仅真实存在&#xff0c;而且正在你看不见的地方悄然塑造着世界。我的基本假设是&#xff1a;OpenAI 已经秘密开发出 GPT-5&…...

mac配置 iTerm2 使用lrzsz与服务器传输文件

mac配置 1. 安装支持rz和sz命令的lrzsz brew install lrzsz2. 下载iterm2-send-zmodem.sh和iterm2-recv-zmodem.sh两个脚本 # 克隆仓库 git clone https://github.com/aikuyun/iterm2-zmodem ~/iterm2-zmodem# 进入到仓库目录 cd ~/iterm2-zmodem# 设置脚本文件可执行权限 c…...

一、1-2 5G-A通感融合基站产品及开通

1、通感融合定义和场景&#xff08;阅读&#xff09; 1.1通感融合定义 1.2通感融合应用场景 2、通感融合架构和原理&#xff08;较难&#xff0c;理解即可&#xff09; 2.1 感知方式 2.2 通感融合架构 SF&#xff08;Sensing Function&#xff09;&#xff1a;核心网感知控制…...

深度学习加速性能分析与Roofline Model

深度学习加速性能分析 动因:由于深度学习加速器普遍采用时分复用(当然随着Graphcore等dataflow类型的芯片除外,他们是空间划分)。此时,硬件资源在不同时刻执行的计算发生变化,很难以单一时刻的计算类型进行硬件设计。所以寻找平均资源利用率就变得更重要方法:针对不同任…...

React 第三方状态管理库相关 -- Redux MobX 篇

一、redux 首先安装依赖&#xff1a; npm install redux react-redux reduxjs/toolkit 示例代码&#xff1a; // src/store/index.js import { configureStore } from reduxjs/toolkit import couterSlice from ./couterSliceconst store configureStore({reducer:{coute…...

“扣子”开发之四:与千帆AppBuilder比较

上一个专题——“扣子”开发——未能落地&#xff0c;开始抱着极大的热情进入&#xff0c;但迅速被稚嫩的架构模型折磨打击&#xff0c;硬着头皮坚持了两周&#xff0c;终究还是感觉不实用不趁手放弃了。今天询问了下豆包&#xff0c;看看还有哪些比较好的AI开发平台&#xff0…...

C++实现红黑树

红黑树 红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制&#xff0c;红黑树确保没有一条路径会比其他路径长出俩倍&…...

Vue3:当v-if和v-for同时使用时产生的问题和解决办法

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 http://218.75.87.38:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码: https://gitee.com/nbacheng/nbci…...

python爬虫入门(理论)

python爬虫 学习网站 一、准备 环境搭建 requests beautifulsoup4 selenium 爬虫架构 URL管理器&#xff1a;管理URL&#xff0c;存储已爬取或待爬取的URL 网页下载器&#xff1a;破解网页&#xff0c;进行下载 网页解析器&#xff1a;对网页的HTML样式、连接的URL等进…...

有效提取激光雷达点云平面点

有效地面点云的提取和平面点的识别是通过一系列步骤实现的。以下是主要步骤&#xff1a; 高度过滤&#xff1a; 首先&#xff0c;根据激光雷达传感器的安装高度&#xff0c;对当前帧扫描得到的点云进行高度过滤&#xff0c;以初步分割出地面点云。假设第 k k k 帧的点云为 { …...