当前位置: 首页 > news >正文

P6周:VGG-16算法-Pytorch实现人脸识别

  •  🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊
我的环境

语言环境:Python 3.8.12

编译器:jupyter notebook

深度学习环境:torch 1.12.0+cu113

一、前期准备
1.设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
2.导入数据
import os,PIL,random,pathlibdata_dir = 'F:/jupyter lab/DL-100-days/datasets/Hollywood_stars_photos/'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[5] for path in data_paths]
classeNames
['Angelina Jolie','Brad Pitt','Denzel Washington','Hugh Jackman','Jennifer Lawrence','Johnny Depp','Kate Winslet','Leonardo DiCaprio','Megan Fox','Natalie Portman','Nicole Kidman','Robert Downey Jr','Sandra Bullock','Scarlett Johansson','Tom Cruise','Tom Hanks','Will Smith']
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("F:/jupyter lab/DL-100-days/datasets/Hollywood_stars_photos/",transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 1800Root location: F:/jupyter lab/DL-100-days/datasets/Hollywood_stars_photos/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
total_data.class_to_idx
{'Angelina Jolie': 0,'Brad Pitt': 1,'Denzel Washington': 2,'Hugh Jackman': 3,'Jennifer Lawrence': 4,'Johnny Depp': 5,'Kate Winslet': 6,'Leonardo DiCaprio': 7,'Megan Fox': 8,'Natalie Portman': 9,'Nicole Kidman': 10,'Robert Downey Jr': 11,'Sandra Bullock': 12,'Scarlett Johansson': 13,'Tom Cruise': 14,'Tom Hanks': 15,'Will Smith': 16}
3.划分数据集 
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x187391e5a60>,<torch.utils.data.dataset.Subset at 0x187391e5b20>)
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、调用官方的VGG16模型

from torchvision.models import vgg16device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型for param in model.parameters():param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model
Using cuda device
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=17, bias=True))
)

三、训练循环 

1.编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss
2.编写测试函数 
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss
3.设置动态学习率 
# 调用官方动态学习率接口时使用
learn_rate = 1e-3 # 初始学习率
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法
 4.正式训练
import copyloss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):# 更新学习率(使用自定义学习率时使用)# adjust_learning_rate(optimizer, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model123.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)print('Done')
Epoch: 1, Train_acc:11.9%, Train_loss:2.810, Test_acc:14.4%, Test_loss:2.639, Lr:1.00E-03
Epoch: 2, Train_acc:17.4%, Train_loss:2.590, Test_acc:15.3%, Test_loss:2.512, Lr:1.00E-03
Epoch: 3, Train_acc:17.8%, Train_loss:2.483, Test_acc:17.5%, Test_loss:2.400, Lr:1.00E-03
Epoch: 4, Train_acc:21.0%, Train_loss:2.409, Test_acc:20.8%, Test_loss:2.344, Lr:9.20E-04
Epoch: 5, Train_acc:22.1%, Train_loss:2.331, Test_acc:23.9%, Test_loss:2.289, Lr:9.20E-04
...........
Epoch:36, Train_acc:42.2%, Train_loss:1.763, Test_acc:38.9%, Test_loss:1.858, Lr:4.72E-04
Epoch:37, Train_acc:43.8%, Train_loss:1.744, Test_acc:39.2%, Test_loss:1.872, Lr:4.72E-04
Epoch:38, Train_acc:44.0%, Train_loss:1.747, Test_acc:39.4%, Test_loss:1.872, Lr:4.72E-04
Epoch:39, Train_acc:43.9%, Train_loss:1.744, Test_acc:39.7%, Test_loss:1.859, Lr:4.72E-04
Epoch:40, Train_acc:44.4%, Train_loss:1.731, Test_acc:39.7%, Test_loss:1.885, Lr:4.34E-04
Done

四、结果可视化

1.Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

2.对指定图片进行预测 
from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='F:/jupyter lab/DL-100-days/datasets/Hollywood_stars_photos/Angelina Jolie/001_fe3347c0.jpg', model=model, transform=train_transforms, classes=classes)
预测结果是:Angelina Jolie

 3.模型评估
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
(0.3972222222222222, 1.8640953699747722)
# 查看是否与我们记录的最高准确率一致
epoch_test_acc
0.3972222222222222

五、学习心得

1.本次使用pytorch深度学习环境对官方的VGG-16模型进行调用,并且保存最佳模型权重。VGG-16模型的最大特点是深度。除此之外,其卷积层都采用3x3的卷积核和步长为1的卷积操作,同时卷积层后都有ReLU激活函数,从而降低过拟合风险。

2.训练过程中发现训练和测试的acc都过低(约为20%),通过调整动态学习率予以调整,初始学习率增大一个数量级之后,此问题得到一定的解决。

3.下一步将自行搭建VGG-16模型。

相关文章:

P6周:VGG-16算法-Pytorch实现人脸识别

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 我的环境 语言环境&#xff1a;Python 3.8.12 编译器&#xff1a;jupyter notebook 深度学习环境&#xff1a;torch 1.12.0cu113 一、前期准备 1.设置GPU im…...

GPT-5 传言:一场正在幕后发生的 AI 变革

新的一年&#xff0c;让我们从一个引人入胜的话题开始&#xff1a;如果我告诉你&#xff0c;GPT-5 并非虚构&#xff0c;而是真实存在呢&#xff1f;它不仅真实存在&#xff0c;而且正在你看不见的地方悄然塑造着世界。我的基本假设是&#xff1a;OpenAI 已经秘密开发出 GPT-5&…...

mac配置 iTerm2 使用lrzsz与服务器传输文件

mac配置 1. 安装支持rz和sz命令的lrzsz brew install lrzsz2. 下载iterm2-send-zmodem.sh和iterm2-recv-zmodem.sh两个脚本 # 克隆仓库 git clone https://github.com/aikuyun/iterm2-zmodem ~/iterm2-zmodem# 进入到仓库目录 cd ~/iterm2-zmodem# 设置脚本文件可执行权限 c…...

一、1-2 5G-A通感融合基站产品及开通

1、通感融合定义和场景&#xff08;阅读&#xff09; 1.1通感融合定义 1.2通感融合应用场景 2、通感融合架构和原理&#xff08;较难&#xff0c;理解即可&#xff09; 2.1 感知方式 2.2 通感融合架构 SF&#xff08;Sensing Function&#xff09;&#xff1a;核心网感知控制…...

深度学习加速性能分析与Roofline Model

深度学习加速性能分析 动因:由于深度学习加速器普遍采用时分复用(当然随着Graphcore等dataflow类型的芯片除外,他们是空间划分)。此时,硬件资源在不同时刻执行的计算发生变化,很难以单一时刻的计算类型进行硬件设计。所以寻找平均资源利用率就变得更重要方法:针对不同任…...

React 第三方状态管理库相关 -- Redux MobX 篇

一、redux 首先安装依赖&#xff1a; npm install redux react-redux reduxjs/toolkit 示例代码&#xff1a; // src/store/index.js import { configureStore } from reduxjs/toolkit import couterSlice from ./couterSliceconst store configureStore({reducer:{coute…...

“扣子”开发之四:与千帆AppBuilder比较

上一个专题——“扣子”开发——未能落地&#xff0c;开始抱着极大的热情进入&#xff0c;但迅速被稚嫩的架构模型折磨打击&#xff0c;硬着头皮坚持了两周&#xff0c;终究还是感觉不实用不趁手放弃了。今天询问了下豆包&#xff0c;看看还有哪些比较好的AI开发平台&#xff0…...

C++实现红黑树

红黑树 红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制&#xff0c;红黑树确保没有一条路径会比其他路径长出俩倍&…...

Vue3:当v-if和v-for同时使用时产生的问题和解决办法

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 http://218.75.87.38:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码: https://gitee.com/nbacheng/nbci…...

python爬虫入门(理论)

python爬虫 学习网站 一、准备 环境搭建 requests beautifulsoup4 selenium 爬虫架构 URL管理器&#xff1a;管理URL&#xff0c;存储已爬取或待爬取的URL 网页下载器&#xff1a;破解网页&#xff0c;进行下载 网页解析器&#xff1a;对网页的HTML样式、连接的URL等进…...

有效提取激光雷达点云平面点

有效地面点云的提取和平面点的识别是通过一系列步骤实现的。以下是主要步骤&#xff1a; 高度过滤&#xff1a; 首先&#xff0c;根据激光雷达传感器的安装高度&#xff0c;对当前帧扫描得到的点云进行高度过滤&#xff0c;以初步分割出地面点云。假设第 k k k 帧的点云为 { …...

Vulnhub DC-8靶机攻击实战(一)

导语   Vulnhub DC-8靶机教程来了,好久没有更新打靶的教程了,这次我们在来更新一期关于Vulnhub DC-8的打靶训练,如下所示。 安装并且启动靶机 安装并且启动靶机,如下所示。 开始信息采集 进入到Kali中,通过如下的命令来查找到靶机的IP地址。 arp-scan -l根据上面的结…...

基于PHP的校园新闻发布管理

摘要 近年来&#xff0c;随着互联网技术的迅速发展&#xff0c;人们获取新闻的渠道也变得越来越多样化&#xff0c;已经不再拘束于传统的报纸、期刊、杂志等纸质化的方式&#xff0c;而是通过网络满足了人们获得第一手新闻的愿望&#xff0c;这样更加有助于实现新闻的规范化管…...

LabVIEW时域近场天线测试

随着通信技术的飞速发展&#xff0c;特别是在5G及未来通信技术中&#xff0c;天线性能的测试需求日益增加。对于短脉冲天线和宽带天线的时域特性测试&#xff0c;传统的频域测试方法已无法满足其需求。时域测试方法在这些应用中具有明显优势&#xff0c;可以提供更快速和精准的…...

组播PIM-原理介绍+报文分析+配置示例

个人认为&#xff0c;理解报文就理解了协议。通过报文中的字段可以理解协议在交互过程中相关传递的信息&#xff0c;更加便于理解协议。 因此本文将在PIMv2协议报文的基础上进行介绍&#xff0c;以详细介绍组播协议PIM。 这里需要说明的是&#xff0c;以下内容都针对的是ASM&a…...

规避路由冲突

路由冲突是指在网络中存在两个或多个路由器在进行路由选择时出现矛盾&#xff0c;导致网络数据包无法正确传输&#xff0c;影响网络的正常运行。为了规避路由冲突&#xff0c;可以采取以下措施&#xff1a; 一、合理规划IP地址 分配唯一IP&#xff1a;确保每个设备在网络中都有…...

Asp .Net Core 实现微服务:集成 Ocelot+Nacos+Swagger+Cors实现网关、服务注册、服务发现

什么是 Ocelot ? Ocelot是一个开源的ASP.NET Core微服务网关&#xff0c;它提供了API网关所需的所有功能&#xff0c;如路由、认证、限流、监控等。 Ocelot是一个简单、灵活且功能强大的API网关&#xff0c;它可以与现有的服务集成&#xff0c;并帮助您保护、监控和扩展您的…...

【C++】非类型模板参数 || 类模板的特化

目录 1. 非类型模板参数 2. 模板特化 3. 类模板特化 3.1.全特化 3.2 部分特化 3.3 参数更进一步限制 3.4 类模板应用 1. 非类型模板参数 模板参数分类类型形参与非类型形参。类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型…...

Python基本概念与实践

Python语言&#xff0c;总给我一种“嗯&#xff1f;还能这么玩儿&#xff1f;”的感觉 Python像一个二三十岁的年轻人&#xff0c;自由、年轻、又灵活 欢迎一起进入Python的世界~ 本人工作中经常使用Python&#xff0c;针对一些常用的语法概念进行持续记录。 一、类与常见数据结…...

SQL Prompt 插件

SQL Prompt 插件 注&#xff1a;SQL Prompt插件提供智能代码补全、SQL格式化、代码自动提示和快捷输入等功能&#xff0c;非常方便&#xff0c;可以自行去尝试体会。 1、问题 SSMS&#xff08;SQL Server Management Studio&#xff09;是SQL Server自带的管理工具&#xff0c…...

1.6 从 GPT-1 到 GPT-3.5:一路的风云变幻

从 GPT-1 到 GPT-3.5:一路的风云变幻 人工智能的进步一直是科技领域的一个重要话题,而在自然语言处理(NLP)领域,GPT(Generative Pre-trained Transformer)系列模型的发布,标志着一个又一个技术突破。从2018年发布的 GPT-1 到2022年推出的 GPT-3.5,OpenAI 的每一次更新…...

centos 7 Mysql服务

将此服务器配置为 MySQL 服务器&#xff0c;创建数据库为 hubeidatabase&#xff0c;将登录的root密码设置为Qwer1234。在库中创建表为 mytable&#xff0c;在表中创建 2 个用户&#xff0c;分别为&#xff08;xiaoming&#xff0c;2010-4-1&#xff0c;女&#xff0c;male&…...

参数校验 Spring Validation框架

后端参数校验 解决&#xff1a;校验前端传入的参数是否符合预期 1、引入依赖 使用Spring Validation框架 <!-- validation参数校验框架--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validatio…...

sunrays-framework 微调

文章目录 1.common-log4j2-starter 动态获取并打印日志存储的根目录的绝对路径以及应用的访问地址1.目录2.log4j2.xml 配置LOG_HOME3.LogHomePrinter.java 配置监听器4.spring.factories 注册监听器5.测试1.common-log4j2-starter-demo 配置2.启动测试 2.common-minio-starter …...

Java正则转带中划线或下划线属性名为驼峰命名

Java正则转带中划线或下划线属性名为驼峰命名。 利用Java正则分组匹配的方式&#xff0c;将属性名中 -(_) 后接的字母&#xff0c;匹配上了去掉当前 -(_)&#xff0c;将后接的字母转为大写&#xff0c;再追加拼接起来&#xff0c;就完成了驼峰命名。 String lineToHump(Strin…...

WebSocket实现分布式的不同方案对比

引言 随着实时通信需求的日益增长&#xff0c;WebSocket作为一种基于TCP的全双工通信协议&#xff0c;在实时聊天、在线游戏、数据推送等场景中得到了广泛应用。然而&#xff0c;在分布式环境下&#xff0c;如何实现WebSocket的连接管理和消息推送成为了一个挑战。本文将对比几…...

Linux下的dev,sys和proc(TODO)

&#xff08;TODO&#xff09; 还有一个sysfs 在 Linux 系统中&#xff0c;/dev、/sys 和 /proc 是三个特殊的虚拟文件系统目录&#xff0c;它们各自有特定的用途&#xff0c;主要用于与设备和内核交互。以下是它们的详细区别和功能说明&#xff1a; 1. /dev&#xff08;Devi…...

JavaScript系列(32)-- WebAssembly集成详解

JavaScript WebAssembly集成详解 &#x1f680; 今天&#xff0c;让我们深入了解JavaScript与WebAssembly的集成&#xff0c;这是一项能够显著提升Web应用性能的关键技术。 WebAssembly基础概念 &#x1f31f; &#x1f4a1; 小知识&#xff1a;WebAssembly&#xff08;简称W…...

通过外部链接启动 Flutter App(详细介绍及示例)

通过外部链接启动 Flutter App&#xff08;firebase_dynamic_links 和 app_links&#xff09; 详细介绍 通过外部链接启动flutter App 的使用及示例 在我们的APP中&#xff0c;经常有点击链接启动并进入APP的需求&#xff08;如果未安装跳转到应用商店&#xff09;。Android通…...

计算机视觉模型的未来:视觉语言模型

一、视觉语言模型 人工智能已经从识别数据中的简单模式跃升为理解复杂的多模态数据。该领域的发展之一是视觉语言模型 (VLM) 的兴起。这类模型将视觉和文本之间联系起来,改变了我们理解视觉数据并与之交互的方式。随着 VLM 的不断发展,它们正在为计算机视觉设定一个新的水平…...

CTK插件框架学习-源码下载编译(01)

1、编译环境 window11、vs17、Qt5.14.0、cmake3.27.4 2、下载链接 cmake&#xff1a;Index of /files/v3.20 qt&#xff1a;Index of / vs22以前的版本需要登录下载&#xff1a;Visual Studio 较旧的下载 - 2019、2017、2015 和以前的版本 vs22下载&#xff1a;下载 Visu…...

Python 字符串分割时 spilt 和 re 效率对比

假设 有一些文件名是 数字_文档名 的格式&#xff0c;如何用python将数字提取出来&#xff1f; 可以使用 Python 的正则表达式模块 re 提取文件名中的数字部分。以下是实现代码&#xff1a; 示例代码&#xff1a; import re# 示例文件名列表 file_names ["1_file1.txt…...

AUTOSAR通信篇 - PDU和收发数据

点击订阅专栏不迷路 文章目录 一、概述二、OSI模型与AUTOSAR层级关系三、I-PDU、N-PDU、L-PDU及其关系3.1. L-PDU3.2. N-PDU3.3. I-PDU 四、数据流4.1. 普通数据流4.2. 诊断数据流4.3. 动态PDU数据流4.4. 安全通信数据流4.5. XCP数据流 返回总目录 一、概述 在学习Autosar通信…...

wps数据分析000002

目录 一、快速定位技巧 二、快速选中技巧 全选 选中部分区域 选中部分区域&#xff08;升级版&#xff09; 三、快速移动技巧 四、快速录入技巧 五、总结 一、快速定位技巧 ctrl→&#xff08;上下左右&#xff09;快速定位光标对准单元格的上下部分双击名称单元格中…...

【C++基础】enum,union,uint8_t,static

enum 所以有时候使用 Enum 的目的&#xff0c;不是为了自定义一种数据类型&#xff0c;而是为了声明一组常量。 from: https://github.com/wangdoc/clang-tutorial/blob/main/docs/enum.md union C 语言提供了 Union 结构&#xff0c;用来自定义可以灵活变更的数据结构。它内部…...

node.js的进程保活

nodejs的进程保活其实用PM2应该更好用些&#xff0c;不过由于原理其实并不复杂&#xff0c;我们可以自己手写一个服务来干这个工作。 假设我们有一个服务&#xff0c;可以这样来定义下它的相关信息&#xff1a; const svcs[ {"sid":"apl","name"…...

css中的阴影详解

在 CSS 中&#xff0c;阴影效果通常使用 box-shadow 和 text-shadow 来实现&#xff0c;它们分别适用于元素的框和文本。阴影是提升页面设计感和层次感的重要工具。下面&#xff0c;我会详细讲解这两个属性&#xff0c;并结合代码示例说明。 目录 1. box-shadow示例 2. text-sh…...

AI刷题-饭馆菜品选择问题、构造回文字符串问题

目录 一、饭馆菜品选择问题 问题描述 测试样例 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 最终代码&#xff1a; 运行结果&#xff1a; 二、构造回文字符串问题 问题描述 测试样例 解题思路&#xff1a; 解题思路 具体步骤 最终代码&#xff1a;…...

时间序列分析ARIMA(AutoRegressive Integrated Moving Average,自回归积分滑动平均)模型:中英双语

ARIMA模型&#xff1a;时间序列分析中的强大工具 在时间序列分析中&#xff0c;ARIMA&#xff08;AutoRegressive Integrated Moving Average&#xff0c;自回归积分滑动平均&#xff09;模型是一种广泛使用的模型。它通过结合自回归、差分和滑动平均三种方法来对时间序列进行…...

青少年编程与数学 02-007 PostgreSQL数据库应用 02课题、PostgreSQL数据库安装

青少年编程与数学 02-007 PostgreSQL数据库应用 02课题、PostgreSQL数据库安装 一、安装Windows系统安装PostgreSQL 17Linux系统安装PostgreSQL 17 二、配置Windows系统Linux系统 三、启动&#xff08;一&#xff09;Windows系统使用服务管理器&#xff08;services.msc&#x…...

群发邮件适合外贸行业吗

一、群发邮件契合外贸行业的市场拓展需求 外贸业务的本质在于跨越地域限制&#xff0c;与全球各地的潜在客户建立联系。群发邮件能够突破时空限制&#xff0c;瞬间将产品或服务信息传递到世界各地。通过精准的市场调研与客户数据整理&#xff0c;企业可以针对不同国家和地区的…...

面试之《new关键字》

一问&#xff1a;new关键字做了什么操作&#xff0c;手写一个new方法&#xff0c;实现new关键字的作用 二问&#xff1a; // 第一题 / function Test(){this.name 1;return {name: 2} } const a new Test(); console.log(a.name) // 打印什么/// 第二题 / function Test2()…...

《机器学习》——SVD(奇异分解)降维

文章目录 SVD基本定义SVD降维的步骤SVD降维使用场景SVD 降维的优缺点SVD降维实例导入所需库定义SVD降维函数导入图像处理图像处理图像打印降维结果并显示处理后两个图像的对比图 SVD基本定义 简单来说就是&#xff0c;通过SVD&#xff08;奇异值分解&#xff09;对矩阵数据进行…...

【MySQL实战】mysql_exporter+Prometheus+Grafana

要在Prometheus和Grafana中监控MySQL数据库&#xff0c;如下图&#xff1a; 可以使用mysql_exporter。 以下是一些步骤来设置和配置这个监控环境&#xff1a; 1. 安装和配置Prometheus&#xff1a; - 下载和安装Prometheus。 - 在prometheus.yml中配置MySQL通过添加以下内…...

业务架构、数据架构、应用架构和技术架构

TOGAF(The Open Group Architecture Framework)是一个广泛应用的企业架构框架&#xff0c;旨在帮助组织高效地进行架构设计和管理。 TOGAF 的核心就是由我们熟知的四大架构领域组成:业务架构、数据架构、应用架构和技术架构。 企业数字化架构设计中的最常见要素是4A 架构。 4…...

mysql-5.7.18保姆级详细安装教程

本文主要讲解如何安装mysql-5.7.18数据库&#xff1a; 将绿色版安装包mysql-5.7.18-winx64解压后目录中内容如下图&#xff0c;该例是安装在D盘根目录。 在mysql安装目录中新建my.ini文件&#xff0c;文件内容及各配置项内容如下图&#xff0c;需要先将配置项【skip-grant-tab…...

Linux测试处理fps为30、1920*1080、一分钟的视频性能

前置条件 模拟fps为30、1920*1080、一分钟的视频 项目CMakeLists.txt cmake_minimum_required(VERSION 3.30) project(testOpenGl)set(CMAKE_CXX_STANDARD 11)add_executable(testOpenGl main.cpptestOpenCl.cpptestOpenCl.hTestCpp.cppTestCpp.hTestCppThread.cppTestCppTh…...

kubeneters-循序渐进Ingress

文章目录 overviewIngress 是什么&#xff1f;为什么使用 Ingress&#xff1f;我们会在这里做些什么&#xff1f;HTTP 服务器&#xff08;Nginx&#xff09;还能做什么&#xff1f;Kubernetes 中的简单示例&#xff1a;A) 使用 Service ClusterIPB) 手动配置 Nginx 服务作为代理…...

Shell控监Kafka积压

1、获取Kafka消息堆积情况 vi check-kafka-lag.sh #&#xff01;/bin/bashTOPIC"total_random" GROUP_ID"etl-dw" BOOTSTRAP_SERVER"node-01:9092,node-02:9092,node-03:9092"# 检查第一个参数是否为数字 if ! [[ $1 ~ ^[0-9]$ ]]; thenecho &…...

USB3020任意波形发生器4路16位同步模拟量输出卡1MS/s频率 阿尔泰科技

信息社会的发展&#xff0c;在很大程度上取决于信息与信号处理技术的先进性。数字信号处理技术的出现改变了信息 与信号处理技术的整个面貌&#xff0c;而数据采集作为数字信号处理的必不可少的前期工作在整个数字系统中起到关键 性、乃至决定性的作用&#xff0c;其应用已经深…...