当前位置: 首页 > news >正文

计算机网络(五)——传输层

一、功能

       传输层的主要功能是向两台主机进程之间的通信提供通用的数据传输服务。功能包括实现端到端的通信、多路复用和多路分用、差错控制、流量控制等。

       复用:多个应用进程可以通过同一个传输层发送数据。

       分用:传输层在接收数据后可以将这些数据正确分发给相应的应用进程。

       端口号:在传输层中用端口号来区分一台主机上的不同应用进程。端口号只在本主机中有实际意义,用来唯一标识一个进程,不同主机的相同端口号之间没有联系。

二、UDP

        UDP是一种简单无连接且不可靠的传输层协议,只在IP数据报服务的基础上增加了复用和分用以及差错检测功能。在使用UDP协议进行通信之间不会建立连接,减少了网络开销以及发送时延。UDP不保证可靠交付,也没有拥塞控制。UDP是面向报文的,即无论应用层给UDP多长的报文,UDP都会完整地发送出去。基于这些特性,UDP常用于对实时性要求很高且对少量数据丢失不敏感的场景中

        UDP在进行差错检测时会在UDP报文前加上一个伪首部,之所以称其为伪首部是因为伪首部只负责参与差错检测,并不会发送出去。发送方首先会将首部的检验和部分填入全0,并在数据部分的后面填充0以使整个报文的长度为偶数个字节。然后以两个字节为单位对添加了伪首部的UDP报文作二进制反码求和运算就得到了校验和,最后将这个校验和替换掉原来填充的0,并去掉伪首部就可以将这个UDP报文转交给网络层了。接收方在收到UDP报文后也会先在报文前面加上伪首部,然后以两个字节为单位对UDP报文作二进制反码运算。如果结果为全1说明报文正确,否则表明报文在传输时出现了错误,接收方就会丢弃这个报文。UDP本身是不会要求发送方重新发送的,这也体现了UDP的不可靠性。TCP和UDP的差错检测相同,也使用了伪首部,不同的是当数据出错时TCP会要求发送方重新发送

三、TCP

        TCP是一种面向连接的、可靠的、基于字节流的传输层通信协议。

        面向连接是指:在使用TCP协议进行通信时,通信双方会先建立一条TCP连接,然后开始发送数据;当数据传输完毕后会将这条连接释放掉。

        可靠传输是指:第一,TCP在建立连接时会采用三次握手的形式来确保连接是可靠的。第二,接收方会对接收的数据进行差错检测,确保数据在传输过程中没有出现差错。第三,如果数据在传输时没有出现差错或丢失,那么接收方需要在规定时间内向发送方返回确认报文;如果发送方没有在规定时间内收到确认报文就会重新发送,确保发送的数据是可靠的。第四,TCP支持流量控制,通过滑动窗口机制来动态控制发送方的发送速率,避免接收方因来不及接收数据而丢弃。最后,TCP支持拥塞控制,会根据网络的拥塞情况调整发送的数据量,防止过多的数据涌入网络,进一步提升传输的可靠性。

       基于字节流是指:TCP将应用层发送过来的所有数据看成是一连串的字节序列(也就是字节流),TCP不会区分哪一部分是一个整体,只负责将这些字节按顺序编号之后分割成大小合适的一个个报文进行发送。接收方会根据字节的编号把这些报文按照顺序进行重组,还原成原来的字节流,再交由应用层来将字节流划分为不同的消息整体。

       TCP的三次握手

       客户端会先向服务器端发送连接请求报文段用来请求建立TCP连接;服务器端收到后会为本次连接分配缓存和变量,并向客户端发送确认报文段表示允许建立连接;客户端收到确认报文段后会为本次连接分配缓存和变量,并向服务器端发送对确认报文的确认,此时连接就成功建立了。

       TCP的四次挥手

       当客户端的数据发送完毕后会向服务器端发送连接释放报文段,表示自己已停止发送数据,但仍可以接收服务器端的数据。随后服务器端会向客户端发送确认报文段,此时客户端到服务器端方向的TCP连接被释放。待服务器端发送完数据后会向客户端发送连接释放报文段,客户端收到之后会给服务器端返回一个确认报文段,服务器端收到后便会关闭连接,而客户端会在发送完确认报文后再等待一段时间才会关闭连接。当客户端和服务器端都关闭连接后本次TCP连接彻底结束。

       客户端会在发送完确认报文后再等待一段时间才会关闭连接有两个原因

       一是为了确保确认报文能够被服务器成功接收到。如果确认报文在发送时出现了问题,服务器端会让客户端重发确认报文,此时客户端需要保持连接状态才能响应重发请求;只有服务器端收到了确认报文才会关闭连接。

      另一个原因是为了防止在旧连接中的数据对新建立的连接产生干扰。在旧连接中的数据可能会因为网络繁忙等原因一直处在网络中,如果客户端在发送完确认报文后立即关闭旧连接而开启新的连接,那么这些旧连接中的数据很有可能在新连接的过程中才到达,此时这些数据会被认为是新连接中传输的数据进而对新连接产生干扰。由于数据在网络中传输有生存时间,所以等待一段时间可以让这些旧连接的数据在网络中自然消逝,防止对新连接产生干扰。

       TCP的流量控制:发送方会估计当前网络的拥塞程度,进而自己确定一个发送窗口大小,称之为拥塞窗口;同时,接收方会根据自己当前接收缓存的大小来确定接收窗口的大小。那么发送窗口的实际大小为拥塞窗口和接收窗口的最小值。在通信过程中拥塞窗口和接收窗口是不断变化的,并通过滑动窗口机制来动态控制发送窗口,实现流量控制。

       TCP的拥塞控制:包括慢开始拥塞避免快重传快恢复

       慢开始:拥塞窗口初始为1个最大报文段长度,发送方每收到一个对新报文段的确认就把拥塞窗口增加一个最大报文长度;如果接收窗口足够大,那么下一次就会发送两个最大报文长度的数据;以此类推,拥塞窗口会以指数形式增长。慢开始用于快速探测网络的承载能力。

       拥塞避免:当拥塞窗口达到一个阈值时会进入拥塞避免阶段,此时每经过一个往返时间拥塞窗口只增加1个最大报文长度,从指数增长转为线性增长。拥塞避免用来降低拥塞发生的风险。

       快重传:接收方在收到一个失序报文段后会立即报告给发送方,如果连续收到了多个失序报文,那么接收方也会连续报告给发送方;当发送方连续收到3次报告后会立即重发丢失的报文而不必等待相应报文的计时器超时。

       快恢复:发送方在执行快重传后会将拥塞窗口变为原来的一半,随后采取拥塞避免的方式调整拥塞窗口。快恢复能够在避免网络拥塞的同时保持快速的数据传输。

       TCP和UDP的区别

       ①TCP是面向连接的协议,在数据传输前要建立连接;而UDP不需要建立连接。

       ②TCP提供可靠的传输服务,而UDP是不保证可靠传输。

       ③TCP由于要建立连接且要保证数据的可靠性,所以传输速率较低且网络开销较大;而UDP没有这些复杂的机制,发送过程简单,传输速率高,且实时性较好。

       ④TCP适用于对数据的准确性和完整性要求很高的场景,如文件传输、电子邮件等;UDP适用于对实时性要求很高且对数据准确性要求较低的场景,如实时会议、直播等。

       TCP和UDP也有相同之处,比如都是全双工通信差错检测方式相同等。

相关文章:

计算机网络(五)——传输层

一、功能 传输层的主要功能是向两台主机进程之间的通信提供通用的数据传输服务。功能包括实现端到端的通信、多路复用和多路分用、差错控制、流量控制等。 复用:多个应用进程可以通过同一个传输层发送数据。 分用:传输层在接收数据后可以将这些数据正确分…...

ZCC9159 -7V 300mA 超低功耗高速 LDO

功能描述 ZCC9195是一款超低功耗并具有快速响应、关断快速放电功能的高速LDO。静态电流低至 0.8uA,输出电流最大为300mA。 ZCC9195具有输出过流保护、输出短路保护、温度保护等功能,确保芯片在异常工作条件 下不会损坏。 ZCC9195只需要1uF的陶瓷电容即…...

微信小程序实现个人中心页面

文章目录 1. 官方文档教程2. 编写静态页面3. 关于作者其它项目视频教程介绍 1. 官方文档教程 https://developers.weixin.qq.com/miniprogram/dev/framework/ 2. 编写静态页面 mine.wxml布局文件 <!--index.wxml--> <navigation-bar title"个人中心" ba…...

【C语言算法刷题】第7题

题目描述 一个XX产品行销总公司&#xff0c;只有一个boss&#xff0c;其有若干一级分销&#xff0c;一级分销又有若干二级分销&#xff0c;每个分销只有唯一的上级分销。 规定&#xff0c;每个月&#xff0c;下级分销需要将自己的总收入&#xff08;自己的下级上交的&#xf…...

BERT与CNN结合实现糖尿病相关医学问题多分类模型

完整源码项目包获取→点击文章末尾名片&#xff01; 使用HuggingFace开发的Transformers库&#xff0c;使用BERT模型实现中文文本分类&#xff08;二分类或多分类&#xff09; 首先直接利用transformer.models.bert.BertForSequenceClassification()实现文本分类 然后手动实现B…...

RocketMQ消息发送---源码解析

我们知道rocketMQ的消息发送支持很多特性&#xff0c;如同步发送&#xff0c;异步发送&#xff0c;oneWay发送&#xff0c;也支持超时机制&#xff0c;回调机制&#xff0c;并且能够保证消息的可靠性和消息发送的限流&#xff0c;底层使用netty框架等等&#xff0c;如此多的特性…...

机器学习06-正则化

机器学习06-正则化 文章目录 机器学习06-正则化0-核心逻辑脉络1-参考网址3-大模型训练中的正则化1.正则化的定义与作用2.常见的正则化方法及其应用场景2.1 L1正则化&#xff08;Lasso&#xff09;2.2 L2正则化&#xff08;Ridge&#xff09;2.3 弹性网络正则化&#xff08;Elas…...

如何开放2375和2376端口供Docker daemon监听

Linux (以 Ubuntu 为例) 1. 修改 Docker 配置文件 打开 Docker 的配置文件 /etc/docker/daemon.json。如果该文件不存在&#xff0c;则可以创建一个新的。 bash sudo nano /etc/docker/daemon.json在配置文件中添加以下内容&#xff1a; json {"hosts": ["un…...

Vue.js组件开发-如何实现路由懒加载

在Vue.js应用中&#xff0c;路由懒加载是一种优化性能的技术&#xff0c;它允许在需要时才加载特定的路由组件&#xff0c;而不是在应用启动时加载所有组件。这样可以显著减少初始加载时间&#xff0c;提高用户体验。在Vue Router中&#xff0c;实现路由懒加载非常简单&#xf…...

rclone,云存储备份和迁移的瑞士军刀,千字常文解析,附下载链接和安装操作步骤...

一、什么是rclone&#xff1f; rclone是一个命令行程序&#xff0c;全称&#xff1a;rsync for cloud storage。是用于将文件和目录同步到云存储提供商的工具。因其支持多种云存储服务的备份&#xff0c;如Google Drive、Amazon S3、Dropbox、Backblaze B2、One Drive、Swift、…...

集成学习算法

目录 1.必要的导入 2.Bagging集成 3.基于matplotlib写一个函数对决策边界做可视化 4.总结图中结论 5.扩展说明 1.必要的导入 # To support both python 2 and python 3 from __future__ import division, print_function, unicode_literals# Common imports import numpy as np…...

vue3之pinia学习

最近查看了pinia这个状态管理管理&#xff0c;想跟大家一起学习下&#xff0c;下面是我的个人理解&#xff0c;希望对大家有帮助&#xff0c;我们开始吧&#xff01; 第一步&#xff1a;安装pinia npm install pinia 第二步&#xff1a;创建pinia <script setup langts&…...

Flink (七): DataStream API (四) Watermarks

1. Event Time and Processing Time 1. 1 处理时间&#xff08;Processing time&#xff09; 处理时间是指执行相应操作的机器的系统时间。当流处理程序基于处理时间运行时&#xff0c;所有基于时间的操作&#xff08;如时间窗口&#xff09;将使用执行相应算子的机器的系统时…...

卷积神经05-GAN对抗神经网络

卷积神经05-GAN对抗神经网络 使用Python3.9CUDA11.8Pytorch实现一个CNN优化版的对抗神经网络 简单的GAN图片生成 CNN优化后的图片生成 优化模型代码对比 0-核心逻辑脉络 1&#xff09;Anacanda使用CUDAPytorch2&#xff09;使用本地MNIST进行手写图片训练3&#xff09;…...

【原创】大数据治理入门(2)《提升数据质量:质量评估与改进策略》入门必看 高赞实用

提升数据质量&#xff1a;质量评估与改进策略 引言&#xff1a;数据质量的概念 在大数据时代&#xff0c;数据的质量直接影响到数据分析的准确性和可靠性。数据质量是指数据在多大程度上能够满足其预定用途&#xff0c;确保数据的准确性、完整性、一致性和及时性是数据质量的…...

GLM: General Language Model Pretraining with Autoregressive Blank Infilling论文解读

论文地址&#xff1a;https://arxiv.org/abs/2103.10360 参考&#xff1a;https://zhuanlan.zhihu.com/p/532851481 GLM混合了自注意力和masked注意力&#xff0c;而且使用了2D位置编码。第一维的含义是在PartA中的位置&#xff0c;如5 5 5。第二维的含义是在Span内部的位置&a…...

总结SpringBoot项目中读取resource目录下的文件多种方法

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目…...

云原生第四次作业

下载 [rootopenEuler-1 ~]# wget https://archive.apache.org/dist/httpd/httpd-2.4.46.tar.gz 压缩 配置实验环境 [rootopenEuler-1 httpd-2.4.46]# yum -y install apr apr-devel cyrus-sasl-devel expat-devel libdb-devel openldap-devel apr-util-devel apr-util pcre-d…...

day10_Structured Steaming

文章目录 Structured Steaming一、结构化流介绍&#xff08;了解&#xff09;1、有界和无界数据2、基本介绍3、使用三大步骤(掌握)4.回顾sparkSQL的词频统计案例 二、结构化流的编程模型&#xff08;掌握&#xff09;1、数据结构2、读取数据源2.1 File Source2.2 Socket Source…...

设计模式-工厂模式/抽象工厂模式

工厂模式 定义 定义一个创建对象的接口&#xff0c;让子类决定实列化哪一个类&#xff0c;工厂模式使一个类的实例化延迟到其子类&#xff1b; 工厂方法模式是简单工厂模式的延伸。在工厂方法模式中&#xff0c;核心工厂类不在负责产品的创建&#xff0c;而是将具体的创建工作…...

【算法学习】——整数划分问题详解(动态规划)

&#x1f9ee;整数划分问题是一个较为常见的算法题&#xff0c;很多问题从整数划分这里出发&#xff0c;进行包装&#xff0c;形成新的题目&#xff0c;所以完全理解整数划分的解决思路对于之后的进一步学习算法是很有帮助的。 「整数划分」通常使用「动态规划」解决&#xff0…...

【新教程】Ubuntu 24.04 单节点安装slurm

背景 网上教程老旧&#xff0c;不适用。 详细步骤 1、安装slurm sudo apt install slurm-wlm slurm-wlm-doc -y检查是否安装成功&#xff1a; slurmd --version如果得到slurm-wlm 23.11.4&#xff0c;表明安装成功。 2、配置slurm。 使用命令&#xff1a; sudo vi /etc/s…...

window下用vim

Windows 默认不支持 vim 命令&#xff0c;需要手动安装后才能使用。以下是解决方案&#xff1a; 1. 安装 Vim 编辑器 方法 1&#xff1a;通过 Scoop 或 Chocolatey 安装 使用 Scoop&#xff1a; 安装 Scoop&#xff08;如果尚未安装&#xff09;&#xff1a;iwr -useb get.sco…...

citrix netscaler13.1 重写负载均衡响应头(基础版)

在 Citrix NetScaler 13.1 中&#xff0c;Rewrite Actions 用于对负载均衡响应进行修改&#xff0c;包括替换、删除和插入 HTTP 响应头。这些操作可以通过自定义策略来完成&#xff0c;帮助你根据需求调整请求内容。以下是三种常见的操作&#xff1a; 1. Replace (替换响应头)…...

使用PWM生成模式驱动BLDC三相无刷直流电机

引言 在 TI 的无刷直流 (BLDC) DRV8x 产品系列使用的栅极驱动器应用中&#xff0c;通常使用一些控制模式来切换MOSFET 开关的输出栅极。这些控制模式包括&#xff1a;1x、3x、6x 和独立脉宽调制 (PWM) 模式。   不过&#xff0c;DRV8x 产品系列&#xff08;例如 DRV8311&…...

常见的php框架有哪几个?

一直以来&#xff0c;PHP作为一种广泛使用的编程语言&#xff0c;拥有着许多优秀的框架来帮助开发人员快速构建稳定的Web应用程序。本文降为大家介绍几种常见的PHP的主流框架&#xff0c;以及它们相关的特点和使用场景。如有问题&#xff0c;欢迎指正&#xff01; 1.Laravel&a…...

机器学习(2):线性回归Python实现

1 概念回顾 1.1 模型假设 线性回归模型假设因变量y yy与自变量x xx之间的关系可以用以下线性方程表示&#xff1a; y β 0 β 1 ⋅ X 1 β 2 ⋅ X 2 … β n ⋅ X n ε y 是因变量 (待预测值)&#xff1b;X1, X2, ... Xn 是自变量&#xff08;特征&#xff09;β0, β1,…...

Unity-Mirror网络框架-从入门到精通之RigidbodyPhysics示例

文章目录 前言示例一、球体的基础配置二、三个球体的设置差异三、示例意图LatencySimulation前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Unity的开…...

【Unity-Animator】通过 StateMachineBehaviour 实现回调

StateMachineBehaviour 简介 StateMachineBehaviour是一个基类&#xff0c;所有状态脚本都派生自该类。它可以在状态机进入、退出或更新状态时执行代码&#xff0c;而无需编写自己的逻辑来测试和检测状态的变化。这使得开发者可以更方便地处理状态转换时的逻辑&#xff0c;例…...

并行服务、远程SSH无法下载conda,报错404

原下载代码无效&#xff0c;报错404 wget -c https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.sh 使用下面代码下载 wget --user-agent"User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12…...

cuquantum 简介

1. 关于 cuquantum 概述 官方文档&#xff1a; https://docs.nvidia.com/cuda/cuquantum/latest/appliance/overview.html#prerequisites NVIDIA 的 cuQuantum 是一个专门用于量子计算的高性能库&#xff0c;旨在加速量子电路的模拟和量子算法的执行。cuQuantum 提供了一系列…...

小程序如何引入腾讯位置服务

小程序如何引入腾讯位置服务 1.添加服务 登录 微信公众平台 注意&#xff1a;小程序要企业版的 第三方服务 -> 服务 -> 开发者资源 -> 开通腾讯位置服务 在设置 -> 第三方设置 中可以看到开通的服务&#xff0c;如果没有就在插件管理中添加插件 2.腾讯位置服务…...

【react】使用antd Table渲染数据遇到的报错问题

记录自己在开发过程中遇到的报错问题&#xff1a; 目录 原本写法&#xff1a;错误分析&#xff1a;解决方案&#xff1a; 原本写法&#xff1a; render: (text) > {console.log(text, "111111text");console.log(typeof text, "111111text");return t…...

55_OpenResty开发入门

Nginx编程需要用到Lua语言,因此我们必须先学习Lua的基本语法。Nginx本身也是C语言开发,因此也允许基于Lua做拓展。多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。 1.OpenResty概述 OpenResty是一款基于NGINX和LuaJIT的Web平台。通过Lua扩展NGINX实现的可伸…...

(即插即用模块-Attention部分) 四十四、(ICIP 2022) HWA 半小波注意力

文章目录 1、Half Wavelet Attention2、代码实现 paper&#xff1a;HALFWAVELET ATTENTION ON M-NET FOR LOW-LIGHT IMAGE ENHANCEMENT Code&#xff1a;https://github.com/FanChiMao/HWMNet 1、Half Wavelet Attention 传统的图像增强方法主要关注图像在空间域的特征信息&am…...

链家房价数据爬虫和机器学习数据可视化预测

完整源码项目包获取→点击文章末尾名片&#xff01;...

全网首发:编译libssh,产生类似undefined reference to `EVP_aes_256_ctr@OPENSSL_1_1_0‘的大量错误

具体错误 前面和后面的&#xff1a; /opt/linux/x86-arm/aarch64-mix210-linux/host_bin/../lib/gcc/aarch64-linux-gnu/7.3.0/../../../../aarch64-linux-gnu/bin/ld: warning: libcrypto.so.1.1, needed by ../lib/libssh.so.4.10.1, not found (try using -rpath or -rpat…...

springboot 集成javaFx 两个面板之间如何进行跳转

1.创建两个面板 可参考博主的 java8 springboot 集成javaFx 实现一个客户端程序 文章来实现 2.完善代码 以下是博主创建的两个模板 博主在这里实现的是登录跳转功能,注意:这里登录按钮的触发实现方式做了以下小小的改动,也可根据自己的习惯来处理 相较第一篇文章,博主在Lo…...

vue-cli项目配置使用unocss

在了解使用了Unocss后&#xff0c;就完全被它迷住了。接手过的所有项目都配置使用了它&#xff0c;包括一些旧项目&#xff0c;也跟同事分享了使用Unocss的便捷性。 这里分享一下旧项目如何配置和使用Unocss的&#xff0c;项目是vue2vue-cli构建的&#xff0c;node<20平常开…...

ASP.NET Core - IStartupFilter 与 IHostingStartup

ASP.NET Core - IStartupFilter 与 IHostingStartup 1. IStartupFilter2 IHostingStartup2.5.1 创建外部程序集2.5.2 激活外部程序集 1. IStartupFilter 上面讲到的方式虽然能够根据不同环境将Startup中的启动逻辑进行分离&#xff0c;但是有些时候我们还会可以根据应用中的功能…...

学习ASP.NET Core的身份认证(基于JwtBearer的身份认证5)

用户在前端页面登录成功后会从服务端获取Token&#xff0c;后续调用服务器的服务接口时都得带着Token&#xff0c;否则就会验证失败。之前使用postman测试的时候&#xff0c;获取Token后再调用其它服务都是人工将Token添加到Header中&#xff0c;网页中没法这么做&#xff0c;只…...

【Vue】let、const、var的区别、适用场景

let、const、var&#xff0c;有哪些区别&#xff0c;适用场景 var 特点&#xff1a; var 是 JavaScript 中最传统的变量声明方式。具有函数作用域&#xff0c;即在函数内声明的 var 变量&#xff0c;在整个函数内都可以访问。变量提升&#xff1a;使用 var 声明的变量会被提升…...

【llama_factory】qwen2_vl训练与批量推理

训练llama factory配置文件 文件&#xff1a;examples/train_lora/qwen2vl_lora_sft.yaml ### model model_name_or_path: qwen2_vl/model_72b trust_remote_code: true### method stage: sft do_train: true finetuning_type: lora lora_target: all### dataset dataset: ca…...

计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)

在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交…...

Python 扫描枪读取发票数据导入Excel

财务需要一个扫描枪扫描发票文件&#xff0c;并将主要信息录入Excel 的功能。 文件中sheet表的列名称&#xff0c;依次为&#xff1a;发票编号、发票编码、日期、金额、工号、扫描日期。 扫描的时候&#xff0c;Excel 文件需要关闭&#xff0c;否则会报错。 import openpyxl …...

SpringMVC复习笔记

文章目录 SpringMVC 概念和基本使用SpringMVC 简介SpringMVC 核心组件和调用流程SpringMVC 基本使用第一步&#xff1a;导入依赖第二步&#xff1a;Controller 层开发第三步&#xff1a;SpringMVC 配置类配置核心组件第四步&#xff1a;SpringMVC 环境搭建第五步&#xff1a;部…...

arcgis提取不规则栅格数据的矢量边界

效果 1、准备数据 栅格数据:dem或者dsm 2、栅格重分类 分成两类即可 3、新建线面图层 在目录下选择预先准备好的文件夹,点击右键,选择“新建”→“Shapefile”,新建一个Shapefile文件。 在弹出的“新建Shapefile”对话框内“名称”命名为“折线”,“要素类型”选…...

【机器学习】零售行业的智慧升级:机器学习驱动的精准营销与库存管理

我的个人主页 我的领域&#xff1a;人工智能篇&#xff0c;希望能帮助到大家&#xff01;&#xff01;&#xff01;&#x1f44d;点赞 收藏❤ 在当今数字化浪潮汹涌澎湃的时代&#xff0c;零售行业正站在转型升级的十字路口。市场竞争的白热化使得企业必须另辟蹊径&#xff0…...

链路追踪SkyWalking

链路追踪 链路追踪作用链路追踪的关键概念链路追踪的工作原理常用链路追踪工具链路追踪的实现步骤链路追踪的典型场景 SkyWalkingSkyWalking 的主要功能SkyWalking 的架构安装 SkyWalking从 SkyWalking 的官方 GitHub 仓库 下载最新版本。配置后端存储SkyWalking使用&#xff0…...

linux下的线程

一、pthread 线程 线程可以说是轻量级的进程&#xff0c;一般是一个进程中的多个任务。 进程&#xff1a;系统中的最小资源分配单元 线程:系统中最小执行单元 二、线程的特征 1、共享资源 2、效率高30% 3.使用第三方库&#xff08;头文件加pthread.h 编译时添加 -lpthre…...