备战蓝桥杯:树的存储与遍历(dfs和bfs)
树的概念
树的逻辑结构是树形结构,和我们之前的线性结构又不太一样了,是一种一对多的关系
树的结点分为根节点,叶子结点(没有分支的结点) 以及分支结点
从上往下看,每个结点都有0个或多个后继
从下往上看,每个结点除了根结点以外都有一个前驱结点
所以每个结点都有一条边去连接前驱结点,而根结点没有边连接前驱结点,所以结点数=边数+1(除了根结点每个结点都有一条边连接前驱结点,再加上根结点就是结点的个数)
如图,从下往上看,除了根结点,每个结点都有一个前驱结点,也就是对应一条边。所以结点数=边数(9)+1 = 10
关于树的一些相关术语
父结点:直接前驱,根结点没有父结点
孩子结点:直接后继,叶子结点没有直接后继
结点的度:该结点孩子的个数,比如上图A结点的度就是3
树的度:所有结点的度的最大值
树的高度:一共有多少层,图中有四层
两个结点之间的路径:两个结点之间的最短路径
路径长度:两点的路径中,边的个数
有序树:结点的子树顺序按从左到右有序,不能随意更改
无序树:结点的子树顺序是无序的,随便变,没事儿
我们竞赛一般用的都是无序树
有根树:根是固定的
无根树:根是不固定的
(无根树会导致父子关系不明确,我们要把所有清空都存储起来,比如假如a和b之间存在一条边,那我们既要把a存在b的孩子里,也要把b存在a的孩子里)
我们竞赛中用的都是无根树
树的存储
关于树的存储方式有很多,我们本篇文章只学孩子表示法,未来我们的并查集里会学到双亲表示法,竞赛里,我们只需要掌握这两种表示方法就ok了
孩子表示法:对于每个结点,把他所有的孩子全部存起来
因为我们竞赛都是无根树,我们需要把所有情况都考虑到
用vector数组实现孩子表示法
我们竞赛里,一般都是这样给信息
我们首先要创建一个大小充足 的vector的数组,把每个结点的孩子都各自存储在各自的vector里面
如图,我们九个结点,我们就创建一个大小为10的vector数组,下标为0的vector数组我们不用
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e5 + 10;
vector <int> v1[N];
int main()
{int n;cin >> n;}
比如我们看第一个输入的是3和1,那么3和1之间有一条边,我们竞赛都是无根树,所以我们把3当成1的孩子存一次,把1当成3的孩子存一次
1的孩子结点:2,3,4
2的孩子结点:1,5,6
3的孩子结点:1
4的孩子结点:1,7,8,9
5的孩子结点:2
6的孩子结点:2
7,8,9的孩子结点:4
存储时候的代码
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e5 + 10;
vector <int> v1[N];
int main()
{int n;cin >> n;for (int i = 1; i < n; i++){int x, y; cin >> x >> y;v1[x].push_back(y);v1[y].push_back(x);}}
用链式前向星实现孩子表示法
链式前向星就是用链表来存储所有的孩子
我们需要创建一个数组来存储每个结点的一个哨兵位,
然后创建一个哨兵位数组2倍的数组来存储完成e[2*N]和ne[2*N]的数组,还要有id表示存储位置(这里是两倍,因为我们有的结点可能不止一个边,那么就有可能存储两次)
我们实现的时候就是用头插来实现的
比如这个图,我们3和1有一条边,那我们就要把3的哨兵位连接一个1,把1结点的哨兵位连接一个3,代码也就是:id++,e[id] = 1,ne[id]=h[3] h[3] = id,这是把1连接到3的哨兵位,3连接1同理,我们暂且不实现,3和4有一条边,我们把4连接到3的哨兵位的后面,同样是采取头插,id++,e[id]=4,ne[id]=h[3],h[3]=id,这样我们的3结点哨兵位就变成了 头->4->1了,也就是3的两个孩子
实现完整代码如下
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e5 + 10;
int h[N], e[2 * N], ne[2 * N], id;
void add(int x, int y)
{id++;e[id] = x;ne[id] = h[y];h[y] = id;
}
int main()
{int n;cin >> n;for (int i = 1; i < n; i++){int x, y; cin >> x >> y;add(x, y); add(y, x);}
}
树的遍历(DFS和BFS)
DFS,即深度优先遍历,英文叫做Depth First Search
是一种遍历树或者图的一种算法,所谓深度优先遍历,就是每次都尝试往更深的结点走
也就是一条路走到黑
从根结点开始,遍历根结点的孩子,然后再以这个孩子为根遍历它的孩子,所以我们可以写成一种递归的形式
vector存储的树进行dfs
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e6 + 10;
vector <int> edges[N];
bool st[N];void dfs(int u)
{cout << u << " ";st[u] = true;for (auto v : edges[u]){if (!st[v])dfs(v);}
}
int main()
{int n;cin >> n;//建树for (int i = 1; i < n; i++){int a, b; cin >> a >> b;edges[a].push_back(b);edges[b].push_back(a);}//深度优先搜索dfs(1);return 0;
}
过程就是不断的遍历根结点的孩子,不断的遍历根结点的孩子,我们来画一下递归过程图
递归的展开图就是一棵树,递归就是对树进行深度搜索
为了更好的理解递归,我们再画一下斐波那契数列的递归展开图
可以看到,斐波那契算法的递归图画出来也是一棵树
链式前向星存储的树进行dfs
#include <iostream>
using namespace std;
const int N = 1e5 + 10;
int h[N], e[2*N], ne[2*N], id;
bool st[N];
void add(int a, int b)
{id++;e[id] = b;ne[id] = h[a];h[a] = id;
}
void dfs(int u)
{cout << u << " ";st[u] = true;for (int v = h[u]; v; v = ne[v]){if (!st[e[v]]){dfs(e[v]);}}
}
int main()
{int n;cin >> n;for (int i = 1; i < n; i++){int a, b; cin >> a >> b;add(a, b); add(b, a);}dfs(1);return 0;
}
vector存储的树进行bfs
bfs的话,我们的思路就是用队列,我们先把根结点入队列,然后出队列的时候要把该结点的孩子入队列,直到队列为空,搜索完毕
比如这个,我们先把1入队列,然后把输出1并把1出队列,把3,5,2入队列,然后把输出3并把3出队列,把3的孩子7,10带进去,
出5,把4带进去,出2把11带进去,这时候我们的队列里就是7,10,4,11了 我们输出了1,3,5,2 接下来也是这种操作,直到队列为空的时候我们遍历完毕
下面实现我们的代码
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
const int N = 1e5 + 10;
queue <int> q;
vector <int> edges[N];
bool st[N];
void bfs()
{q.push(1); while (q.size()){auto t = q.front();cout << t << " ";st[t] = true;q.pop();for (auto e : edges[t]){if (!st[e]){q.push(e);st[e] = true;}}}}
int main()
{int n;cin >> n;for (int i = 1; i < n; i++){int a, b; cin >> a >> b;edges[a].push_back(b);edges[b].push_back(a);}bfs();}
符合我们的树,结束
链式前向星存储的树进行bfs
#include <iostream>
#include <queue>
using namespace std;const int N = 1e5 + 10;
int h[N], ne[2 * N], e[2 * N], id;
bool st[N];
void add(int a,int b)
{id++;e[id] = b;ne[id] = h[a];h[a] = id;
}
queue <int> q;
void bfs()
{q.push(1);while (q.size()){auto t = q.front(); q.pop();cout << t << " ";st[t] = true;for (int i = h[t]; i; i = ne[i]){if (!st[e[i]]){q.push(e[i]);st[e[i]] = true;}}}
}int main()
{int n;cin >> n;for (int i = 1; i < n; i++){int a, b; cin >> a >> b;add(a, b); add(b, a);}bfs();return 0;
}
相关文章:
备战蓝桥杯:树的存储与遍历(dfs和bfs)
树的概念 树的逻辑结构是树形结构,和我们之前的线性结构又不太一样了,是一种一对多的关系 树的结点分为根节点,叶子结点(没有分支的结点) 以及分支结点 从上往下看,每个结点都有0个或多个后继 从下往上…...
[Deep Learning] Anaconda+CUDA+CuDNN+Pytorch(GPU)环境配置-2025
文章目录 [Deep Learning] AnacondaCUDACuDNNPytorch(GPU)环境配置-20250. 引子1. 安装Anaconda1.1 安装包下载:1.2 启用安装包安装1.3 配置(系统)环境变量1.4 验证Anaconda是否安装完毕1.5 Anaconda换源 2. 安装CUDACuDNN2.1 判断本机的CUDA版本2.2 下载适合自己CU…...
计算机的错误计算(二百一十二)
摘要 利用两个大模型计算 实验表明,两个大模型均进行了中肯的分析。另外,其中一个大模型给出了 Python代码,运行后,结果中有7位错误数字;而一个大模型进行加减运算时出错。 例1. 计算 下面是与一个大模型的对话…...
Inxpect毫米波安全雷达:精准检测与动态保护,工业自动化可靠选择
Inxpect毫米波安全雷达具备“精准检测、动态区域保护、环境适应性”三大核心功能。在工业自动化和机器人系统里,这些功能发挥着重要作用,有助于提升安全性与效率。Inxpect雷达运用毫米波技术,在诸如存在灰尘、烟雾或碎屑等复杂环境中,也能保持…...
springboot房屋租赁管理系统
Spring Boot房屋租赁管理系统是一种基于Spring Boot框架构建的,旨在解决传统租房市场中房源信息更新不及时、虚假信息泛滥、交易流程繁琐等问题的信息化解决方案。 一、系统背景与目的 随着城市化进程的加快和人口流动性的增强,租房市场需求急剧增长。…...
如何使用wireshark 解密TLS-SSL报文
目录 前言 原理 操作 前言 现在网站都是https 或者 很多站点都支持 http2。这些站点为了保证数据的安全都通过TLS/SSL 加密过,用wireshark 并不能很好的去解析报文,我们就需要用wireshark去解密这些报文。我主要讲解下mac 在 chrome 怎么配置的&…...
Gensim字典和语料库
自然语言处理(NLP)是计算机科学中涉及语言数据处理的核心领域之一,应用广泛,包括文本分类、情感分析、机器翻译、主题建模等任务。在处理海量文本时,如何将非结构化的语言数据转化为机器能够理解的结构化数据,是解决这些任务的关键。 Gensim 是一个用于处理和分析文本数…...
RK3588-NPU pytorch-image-models 模型编译测试
RK3588-NPU pytorch-image-models 模型编译测试 一.背景二.操作步骤1.下载依赖2.创建容器3.安装依赖4.创建脚本A.生成模型名列表B.生成ONNX模型C.生成RKNN模型D.批量测试脚本 一.背景 测试RK3588-NPU对https://github.com/huggingface/pytorch-image-models.git中模型的支持程…...
Doris 导入慢该如何排查及优化?
在使用 Apache Doris 进行数据导入时,经常会遇到导入性能不理想的情况。今天我们就来深入分析这些问题的原因及其解决方案! Stream Load 导入慢 Stream Load 支持通过 HTTP 协议将本地文件或数据流导入到 Doris 中的一种方式,其速度还是相当…...
iOS - 关联对象的实现
根据源码总结一下关联对象(Associated Objects)的实现: 1. 关联对象的基本结构 // 对象的 isa 结构中包含关联对象标记 union isa_t {struct {uintptr_t nonpointer : 1; // 是否使用优化的 isauintptr_t has_assoc : 1; // 是否有关联对象// ...其他位…...
AudioGPT全新的 音频内容理解与生成系统
AudioGPT全新的 音频内容理解与生成系统 ChatGPT、GPT-4等大型语言模型 (LLM) 在语言理解、生成、交互和推理方面表现出的非凡能力,引起了学界和业界的极大关注,也让人们看到了LLM在构建通用人工智能 (AGI) 系统方面的潜力。 现有的GPT模型具有极高的语言生成能力,是目前最…...
【maptalks】加载SVG和GIF
加载SVG和GIF 一、加载SVG方法一:直接载入SVG文件,类似载入图片方法二:载入SVG路径 二、加载GIFVUEmaptalks实现GIF可拖拽点VUEmaptalks实现GIF跟随线条动画 一、加载SVG 方法一:直接载入SVG文件,类似载入图片 缺点&…...
【HarmonyOS NEXT】鸿蒙跳转华为应用市场目标APP下载页
【HarmonyOS NEXT】鸿蒙跳转华为应用市场目标APP下载页 一、问题背景: 如今,大家都离不开各种手机应用。随着鸿蒙系统用户越来越多,大家都希望能在鸿蒙设备上快速找到想用的 APP。华为应用市场里有海量的 APP,但之前从鸿蒙设备进…...
《leetcode-runner》【图解】如何手搓一个debug调试器——调试程序【JDI开发】【万字详解】
前文: 《leetcode-runner》如何手搓一个debug调试器——引言 《leetcode-runner》如何手搓一个debug调试器——架构 《leetcode-runner》如何手搓一个debug调试器——指令系统 本文主要聚焦于如何编写调试程序 背景 在leetcode算法背景下,用户只编写了…...
【高阶数据结构】线段树加乘(维护序列)详细解释乘与加懒标记
文章目录 1.题目[AHOI2009] 维护序列 2.懒标记处理先加后乘的形式1. 先加后乘的操作 先乘后加的形式2. 先乘后加的操作**乘法操作****加法操作** 懒标记的下传 3.代码 1.题目 题目来源:https://www.luogu.com.cn/problem/P2023 [AHOI2009] 维护序列 题目背景 老师交给小可可…...
ElasticSearch常见知识点
1、什么是ElasticSearch? Elasticsearch 是基于 Lucene 的 Restful 的分布式实时全文搜索引擎,每个字段都被索引并可被搜索,可以快速存储、搜索、分析海量的数据。 2、什么是倒排索引? 正常的索引是比如二叉树。倒排索引是用内容…...
ARM与x86:架构对比及其应用
典型的服务器架构的x86采用模块化方法,基于带有可更换组件的主板。CPU和其他组件(如显卡和GPU、内存控制器、存储或处理核心)针对特定功能进行了优化,可以轻松更换或扩展。然而,这种便利是有代价的;这些硬件…...
macos 搭建 ragflow 开发环境
ragflow 是一个很方便的本地 RAG 库。本文主要记录一下在本机的部署过程 1、总体架构说明 开发环境:macbook pro(m1),16G内存 512G固态 因本机的内存和硬盘比较可怜,所以在服务器上部署基础 docker 包,…...
CVPR 2024 人体姿态估计总汇(3D人体、手语翻译和人体网格恢复/重建等)
1、Human Pose Estimation(人体姿态估计) CLOAF: CoLlisiOn-Aware Human FlowMeta-Point Learning and Refining for Category-Agnostic Pose EstimationSurMo: Surface-based 4D Motion Modeling for Dynamic Human Rendering ⭐codeGALA: Generating Animatable Layered Ass…...
docker 安装mongodb
1、先获取mongodb镜像 docker pull mongo:4.2 2、镜像拉取完成后,运行mongodb容器 docker run \ -d \ --name mongo \ --restartalways \ --privilegedtrue \ -p 27017:27017 \ -v /home//mongodb/data:/data/db \ mongo:4.2 --auth 3、mongodb服务配置 如上图&…...
82_Redis缓存雪崩击穿穿透问题
在实际业务应用中,Redis常常与诸如MySQL这类关系型数据库协同工作,旨在缓解后端数据库的负担。它扮演了一个高效缓存的角色,特别是针对那些频繁被访问的热点数据。当用户发起查询时,系统首先尝试从Redis中获取这些数据。由于Redis提供了极快的访问速度,如果数据存在于Redi…...
统计学习算法——逻辑斯谛回归
内容来自B站Up主:动画讲编程https://www.bilibili.com/video/BV1CR4y1L7RC、风中摇曳的小萝卜https://www.bilibili.com/video/BV17r4y137bW,仅为个人学习所用。 极大似然估计 几率、概率与似然 几率是指某个事件发生的可能性与不发生的可能性之比&am…...
设计模式03:行为型设计模式之策略模式的使用情景及其基础Demo
1.策略模式 好处:动态切换算法或行为场景:实现同一功能用到不同的算法时和简单工厂对比:简单工厂是通过参数创建对象,调用同一个方法(实现细节不同);策略模式是上下文切换对象,调用…...
C51交通控制系统的设计与实现
实验要求: 本题目拟设计一个工作在十字路口的交通信号灯控制系统,设东西方向为主干道A,南北方向为辅助干道B。要求:(1)用发光二极管模拟交通灯信号;(2)灵活控制主、辅干…...
css 实现自定义虚线
需求: ui 画的图是虚线,但是虚线很宽正常的border 参数无法做到 进程: 尝试使用 border:1px dashed 发现使用这个虽然是虚线但是很短密密麻麻的 这并不是我们想要的那就只能换方案 第一个最简单,让ui 画一个图然…...
网络协议基础--协议分层
一.协议概述 1.TCP/IP 传输协议概述 TCP/IP 传输协议,即传输控制 / 网络协议,也被称作网络通讯协议。它是网络中使用的最基本通信协议,对互联网中各部分进行通信的标准和方法予以规定。通常所说的 TCP/IP 协议并非仅指 TCP 和 IP 两个协议&a…...
iOS - TLS(线程本地存储)
从源码中,详细总结 TLS (Thread Local Storage) 的实现: 1. TLS 基本结构 // TLS 的基本结构 struct tls_data {pthread_key_t key; // 线程本地存储的键void (*destructor)(void *); // 清理函数 };// 自动释放池的 TLS class Autorelease…...
主链和Layer2之间资产转移
主链和Layer2之间资产转移 主链和Layer2之间资产转移是实现Layer2技术的关键环节,以下是资产转移的流程、流行解决方案及原理: 资产从主链转移到Layer2 用户在主链上发起一笔交易,将资产发送到一个特定的智能合约地址,这个合约是主链与Layer2之间的桥梁。智能合约会锁定用…...
深度学习-算法优化与宇宙能量梯度分布
在当今迅速发展的科技世界中,算法优化和能量分布问题已成为研究的热点,尤其是在人工智能、机器学习和物理科学领域。算法优化通常涉及提高计算效率和降低资源消耗,而宇宙能量梯度分布则涉及宇宙中能量的分布和流动方式。两者看似是完全不同的…...
《Java核心技术II》实现服务器
实现服务器 这节实现简单服务器,可以向客户端发送信息。 服务器套接字 ServerSocket用于建立套接字 var s new ServerSocket(8189); 建立一个监听端口8189的服务器。 Socket incoming s.accept(); 此对象可以得到输入流和输出流。 InputStream inStream incomin…...
登上Nature!交叉注意力机制 发顶会流量密码!
在深度学习领域,交叉注意力融合技术正迅速崛起,并成为处理多模态数据的关键工具。这一技术通过有效地整合来自不同模态的信息,使得模型能够更好地理解和推理复杂的数据关系。 随着多模态数据的日益普及,如图像、文本和声音等&…...
Windows 正确配置android adb调试的方法
下载适用于 Windows 的 SDK Platform-Tools https://developer.android.google.cn/tools/releases/platform-tools?hlzh-cn 设置系统变量,路径为platform-tools文件夹的绝对路径 点击Path添加环境变量 %adb%打开终端输入adb shell 这就成功了!...
leetcode刷题记录(五十六)——53. 最大子数组和
(一)问题描述 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 子数组是数组中的一个连续部分。 示例 1: 输入:nums [-2,1,…...
SQL BETWEEN 操作符
SQL BETWEEN 操作符 SQL中的BETWEEN操作符用于选取介于两个值之间的数据范围。这些值可以是数字、文本或日期。BETWEEN操作符是SQL中非常实用的一个功能,它可以帮助我们快速地筛选出符合特定条件的数据记录。 BETWEEN操作符的基本用法 BETWEEN操作符的基本语法如…...
分布式 IO 模块:引领立体车库迈向智能化新时代
在城市空间愈发珍贵的当下,立体车库作为高效利用空间的停车解决方案,正日益普及。而明达技术MR30分布式 IO 模块的应用,如同为立体车库注入了智能 “芯” 动力,让停车变得更加便捷、高效、智能。 MR30分布式 IO 模块,作…...
《C++11》深入剖析正则表达式库:解锁文本处理的高效之道
在现代编程领域,文本处理是一项不可或缺的任务,而正则表达式无疑是这一领域的强大利器。C11标准库的引入,为C开发者带来了正则表达式库,极大地丰富了C在文本处理方面的能力。本文将全方位、多角度地深入探讨C11正则表达式库&#…...
Mongodb相关内容
Mongodb相关内容 1、Windows平台安装2、Linux平台安装3、基本常用命令文档更新删除文档分页查询索引 pymongo操作 客户端下载:https://download.csdn.net/download/guoqingru0311/90273435 1、Windows平台安装 方式一: 方式2: 方式3&#…...
United States of America三种表示
"United States of America", "United States", 和 "America" 都表示美国,但它们的使用场景和背景略有不同。以下是关于为什么这些名称可以合在一起表示美国的详细解释: 1. "United States of America" 全称&a…...
【Redis】Redis特性及其应用场景
目录 Redis特性 在内存中存储数据 可编程性 可扩展性 持久化 集群 高可用 补充特性 Redis的应用场景 数据库 缓存 会话存储 消息队列中间件 Redis特性 Redis是一个在内存中存储数据的中间件,用于作为数据库、数据缓存。Redis在分布式系统中有着较…...
Vue 使用blob下载文件,打开文件,文件是损毁的
文章目录 问题分析解决 问题 如图所示,在进行图片下载时下载的文件显示图片已被损 分析 代码如下: import axios from axios; async function downloadImage1(link, name) {try {const response await axios.get(link, {responseType: blob, // 设置响…...
Android 通过systrace如何快速找到app的刷新率
1. 如何抓取systrace: 方法一 andrdoid11以及以上的android版本都支持使用perfetto的方式抓取systrace,简单好用。 adb shell perfetto --buffer 512mb --time 10s --out /data/misc/perfetto-traces/perfetto_trace gfx input view wm am hal res dalv…...
vulnhub靶场【Raven系列】之2 ,对于mysql udf提权的复习
前言 靶机:Raven-2,IP地址为192.168.10.9 攻击:kali,IP地址为192.168.10.2 都采用虚拟机,网卡为桥接模式 文章所用靶机来自vulnhub,可通过官网下载,或者通过链接:https://pan.quark.cn/s/a65…...
【单片机开发 - STM32(H7)】启动流程、方式、烧录方式详解
如侵权,联系删,个人总结学习用 参考资料:(最末尾有我的原生笔记,那个格式规范点) 安富莱 ARM汇编伪指令详解-CSDN博客 【STM32】STM32内存映射以及启动过程(超详细过程)-CSDN博客…...
[手机Linux] ubuntu 错误解决
Ubuntu: 1,ttyname failed: Inappropriate ioctl for device 将 /root/.profile 文件中的 mesg n || true 改为如下内容。 vim /root/.profile tty -s && mesg n || true 2,Errors were encountered while processing: XXX XXXX sudo apt-get --purge remove xxx…...
springCloudGateway+nacos自定义负载均衡-通过IP隔离开发环境
先说一下想法,小公司开发项目,参考若依框架使用的spring-cloud-starter-gateway和spring-cloud-starter-alibaba-nacos, 用到了nacos的配置中心和注册中心,有多个模块(每个模块都是一个服务)。 想本地开发,…...
MyBatis-增删改查操作一些细节
目录 删除 新增 修改 查询 小结: 删除功能 需求:根据ID删除用户信息 SQL:delete from user where id 5; Mapper接口方法(注意这里不是实现类): /*** 根据id删除*/ Delete("delete from user wher…...
windows 极速安装 Linux (Ubuntu)-- 无需虚拟机
1. 安装 WSL 和 Ubuntu 打开命令行,执行 WSL --install -d ubuntu若报错,则先执行 WSL --update2. 重启电脑 因安装了子系统,需重启电脑才生效 3. 配置 Ubuntu 的账号密码 打开 Ubuntu 的命令行 按提示,输入账号,密…...
【学习笔记】各种强化学习环境
0. 写在前面 0.1 强化学习综述/资料(更新中) 鹏程实验室: 中文报道:学术分享丨具身智能综述:鹏城实验室&中大调研近400篇文献,英文原文:Aligning Cyber Space with Physical World…...
统计有序矩阵中的负数
统计有序矩阵中的负数 描述 给你一个 m * n 的矩阵 grid,矩阵中的元素无论是按行还是按列,都以非递增顺序排列。 请你统计并返回 grid 中 负数 的数目 示例 1: 输入:grid [[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]]…...
【已解决】git clone报错:Failed to connect to github.com port 443: Timed out
1.问题原因1 报错信息1: fatal: unable to access https://github.com/microsoft/xxx/: Failed to connect to github.com port 443: Timed out 报错信息2: fatal: unable to access https://github.com/xxx/xx/: OpenSSL SSL_read: Connection was …...