当前位置: 首页 > news >正文

错误修改系列---基于RNN模型的心脏病预测(pytorch实现)

前言

  • 前几天发布了pytorch实现,TensorFlow实现为:基于RNN模型的心脏病预测(tensorflow实现),但是一处繁琐地方 + 一处错误这篇文章进行修改,修改效果还是好了不少
  • 源文章为:基于RNN模型的心脏病预测,提供tensorflow和pytorch实现

错误一
这个也不算是错误,就是之前数据标准化、划分数据集的时候,我用的很麻烦,如下图(之前):
在这里插入图片描述
这样无疑是很麻烦的,修改后,我们先对数据进行标准化,后再进行划分就会简单很多(详细请看下面代码)


错误二
模型参数输入,这里应该是13个特征维度,而且这里用nn.BCELoss后面处理也不好,因为最后应该还加一层激活函数sigmoid的,所以这次修改采用多分类处理方法,激活函数采用CrossEntropyLoss,具体如图:
在这里插入图片描述
BCELoss、CrossEntropyLoss参考资料

https://blog.csdn.net/qq_36803941/article/details/138673111
https://zhuanlan.zhihu.com/p/98785902
https://www.cnblogs.com/zhangxianrong/p/14773075.html
https://zhuanlan.zhihu.com/p/59800597

修改版本代码

1、数据处理

1、导入库

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from torch.utils.data import DataLoader, TensorDataset
import torch device = 'cuda' if torch.cuda.is_available() else 'cpu'
device
'cuda'

2、导入数据

data = pd.read_csv('./heart.csv')data.head()
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
063131452331015002.30011
137121302500118703.50021
241011302040017201.42021
356111202360117800.82021
457001203540116310.62021
  • age - 年龄
  • sex - (1 = male(男性); 0 = (女性))
  • cp - chest pain type(胸部疼痛类型)(1:典型的心绞痛-typical,2:非典型心绞痛-atypical,3:没有心绞痛-non-anginal,4:无症状-asymptomatic)
  • trestbps - 静息血压 (in mm Hg on admission to the hospital)
  • chol - 胆固醇 in mg/dl
  • fbs - (空腹血糖 > 120 mg/dl) (1 = true; 0 = false)
  • restecg - 静息心电图测量(0:普通,1:ST-T波异常,2:可能左心室肥大)
  • thalach - 最高心跳率
  • exang - 运动诱发心绞痛 (1 = yes; 0 = no)
  • oldpeak - 运动相对于休息引起的ST抑制
  • slope - 运动ST段的峰值斜率(1:上坡-upsloping,2:平的-flat,3:下坡-downsloping)
  • ca - 主要血管数目(0-4)
  • thal - 一种叫做地中海贫血的血液疾病(3 = normal; 6 = 固定的缺陷-fixed defect; 7 = 可逆的缺陷-reversable defect)
  • target - 是否患病 (1=yes, 0=no)

3、数据分析

数据初步分析
data.info()   # 数据类型分析
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):#   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  0   age       303 non-null    int64  1   sex       303 non-null    int64  2   cp        303 non-null    int64  3   trestbps  303 non-null    int64  4   chol      303 non-null    int64  5   fbs       303 non-null    int64  6   restecg   303 non-null    int64  7   thalach   303 non-null    int64  8   exang     303 non-null    int64  9   oldpeak   303 non-null    float6410  slope     303 non-null    int64  11  ca        303 non-null    int64  12  thal      303 non-null    int64  13  target    303 non-null    int64  
dtypes: float64(1), int64(13)
memory usage: 33.3 KB

其中分类变量为:sex、cp、fbs、restecg、exang、slope、ca、thal、target

数值型变量:age、trestbps、chol、thalach、oldpeak

data.describe()  # 描述性
agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathaltarget
count303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000303.000000
mean54.3663370.6831680.966997131.623762246.2640260.1485150.528053149.6468650.3267331.0396041.3993400.7293732.3135310.544554
std9.0821010.4660111.03205217.53814351.8307510.3561980.52586022.9051610.4697941.1610750.6162261.0226060.6122770.498835
min29.0000000.0000000.00000094.000000126.0000000.0000000.00000071.0000000.0000000.0000000.0000000.0000000.0000000.000000
25%47.5000000.0000000.000000120.000000211.0000000.0000000.000000133.5000000.0000000.0000001.0000000.0000002.0000000.000000
50%55.0000001.0000001.000000130.000000240.0000000.0000001.000000153.0000000.0000000.8000001.0000000.0000002.0000001.000000
75%61.0000001.0000002.000000140.000000274.5000000.0000001.000000166.0000001.0000001.6000002.0000001.0000003.0000001.000000
max77.0000001.0000003.000000200.000000564.0000001.0000002.000000202.0000001.0000006.2000002.0000004.0000003.0000001.000000
  • 年纪:均值54,中位数55,标准差9,说明主要是老年人,偏大
  • 静息血压:均值131.62, 成年人一般:正常血压:收缩压 < 120 mmHg,偏大
  • 胆固醇:均值246.26,理想水平:小于 200 mg/dL,偏大
  • 最高心率:均值149.64,一般静息状态下通常是 60 到 100 次每分钟,偏大

最大值和最小值都可能发生,无异常值

缺失值
data.isnull().sum()
age         0
sex         0
cp          0
trestbps    0
chol        0
fbs         0
restecg     0
thalach     0
exang       0
oldpeak     0
slope       0
ca          0
thal        0
target      0
dtype: int64
相关性分析
import seaborn as snsplt.figure(figsize=(20, 15))sns.heatmap(data.corr(), annot=True, cmap='Greens')plt.show()


在这里插入图片描述

相关系数的等级划分

  • 非常弱的相关性:
    • 0.00 至 0.19 或 -0.00 至 -0.19
    • 解释:几乎不存在线性关系。
  • 弱相关性:
    • 0.20 至 0.39 或 -0.20 至 -0.39
    • 解释:存在一定的线性关系,但较弱。
  • 中等相关性:
    • 0.40 至 0.59 或 -0.40 至 -0.59
    • 解释:有明显的线性关系,但不是特别强。
  • 强相关性:
    • 0.60 至 0.79 或 -0.60 至 -0.79
    • 解释:两个变量之间有较强的线性关系。
  • 非常强的相关性:
    • 0.80 至 1.00 或 -0.80 至 -1.00
    • 解释:几乎完全线性相关,表明两个变量的变化高度一致。

target与chol、没有什么相关性,fbs是分类变量,chol胆固醇是数值型变量,但是从实际角度,这些都有影响,故不剔除特征

4、数据标准化

from sklearn.preprocessing import StandardScalerscaler = StandardScaler()X = data.iloc[:, :-1]
y = data.iloc[:, -1]# 这里只需要对X标准化即可
X = scaler.fit_transform(X)

5、数据划分

这里先划分为:训练集:测试集 = 9:1

from sklearn.model_selection import train_test_split# 由于要使用pytorch,先将数据转化为torch
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)# 输出维度
X_train.shape, y_train.shape
(torch.Size([272, 13]), torch.Size([272]))

6、动态加载数据

from torch.utils.data import TensorDataset, DataLoader 
train_dl = DataLoader(TensorDataset(X_train, y_train),                       batch_size=64,                        shuffle=True) 
test_dl  = DataLoader(TensorDataset(X_test, y_test),                       batch_size=64,                        shuffle=False)

2、创建模型

  • 定义一个RNN层
    rnn = nn.RNN(input_size=10, hidden_size=20, num_layers=2, nonlinearity=‘tanh’,
    bias=True, batch_first=False, dropout=0, bidirectional=False)
  • input_size: 输入的特征维度
  • hidden_size: 隐藏层的特征维度
  • num_layers: RNN 层的数量
  • nonlinearity: 非线性激活函数 (‘tanh’ 或 ‘relu’)
  • bias: 如果为 False,则内部不含偏置项,默认为 True
  • batch_first: 如果为 True,则输入和输出张量提供为 (batch, seq, feature),默认为 False (seq, batch, feature)
  • dropout: 如果非零,则除了最后一层,在每层的输出中引入一个 Dropout 层,默认为 0
  • bidirectional: 如果为 True,则将成为双向 RNN,默认为 False
import torch  
import torch.nn as nn # 创建模型
'''
该问题本质是二分类问题,故最后一层全连接层用激活函数为:sigmoid
模型结构:RNN:隐藏层200,激活函数:reluLinear:--> 100(relu) -> 1(sigmoid)
'''
# 创建模型
class Model(nn.Module):def __init__(self):super().__init__()self.rnn = nn.RNN(input_size=13, hidden_size=200, num_layers=1, batch_first=True)self.fc1 = nn.Linear(200, 50)#self.fc2 = nn.Linear(100, 50)self.fc3 = nn.Linear(50, 2)def forward(self, x):x, hidden1 = self.rnn(x)x = self.fc1(x)#x = self.fc2(x)x = self.fc3(x)return xmodel = Model().to(device)
model
Model((rnn): RNN(13, 200, batch_first=True)(fc1): Linear(in_features=200, out_features=50, bias=True)(fc3): Linear(in_features=50, out_features=2, bias=True)
)
# 查看模型输出的维度
model(torch.rand(30,13).to(device)).shape
torch.Size([30, 2])

3、模型训练

1、设置超参数

loss_fn = nn.CrossEntropyLoss()
lr = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

2、设置训练函数

def train(dataloader, model, loss_fn, optimizer):# 总大小size = len(dataloader.dataset)# 批次大小batch_size = len(dataloader)# 准确率和损失trian_acc, train_loss = 0, 0# 训练for X, y in dataloader:X, y = X.to(device), y.to(device)# 模型训练与误差评分pred = model(X)loss = loss_fn(pred, y)# 梯度清零optimizer.zero_grad()  # 梯度上更新# 方向传播loss.backward()# 梯度更新optimizer.step()# 记录损失和准确率train_loss += loss.item()trian_acc += (pred.argmax(1) == y).type(torch.float64).sum().item()# 计算损失和准确率trian_acc /= sizetrain_loss /= batch_sizereturn trian_acc, train_loss

3、设置测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)batch_size = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_loss += loss.item()test_acc += (pred.argmax(1) == y).type(torch.float64).sum().item()test_acc /= size test_loss /= batch_sizereturn test_acc, test_loss

4、模型训练

train_acc = []
train_loss = []
test_acc = []
test_loss = []# 定义训练次数
epoches = 50for epoch in range(epoches):# 训练model.train()epoch_trian_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)# 测试model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 记录train_acc.append(epoch_trian_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')print(template.format(epoch+1, epoch_trian_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
Epoch: 1, Train_acc:49.6%, Train_loss:0.686, Test_acc:58.1%, Test_loss:0.684
Epoch: 2, Train_acc:62.1%, Train_loss:0.682, Test_acc:64.5%, Test_loss:0.671
Epoch: 3, Train_acc:68.0%, Train_loss:0.662, Test_acc:71.0%, Test_loss:0.658
Epoch: 4, Train_acc:69.1%, Train_loss:0.655, Test_acc:77.4%, Test_loss:0.645
Epoch: 5, Train_acc:73.9%, Train_loss:0.643, Test_acc:80.6%, Test_loss:0.632
Epoch: 6, Train_acc:74.3%, Train_loss:0.637, Test_acc:80.6%, Test_loss:0.620
Epoch: 7, Train_acc:75.7%, Train_loss:0.620, Test_acc:80.6%, Test_loss:0.608
Epoch: 8, Train_acc:78.3%, Train_loss:0.612, Test_acc:80.6%, Test_loss:0.596
Epoch: 9, Train_acc:79.8%, Train_loss:0.591, Test_acc:83.9%, Test_loss:0.586
Epoch:10, Train_acc:79.0%, Train_loss:0.590, Test_acc:83.9%, Test_loss:0.575
Epoch:11, Train_acc:81.2%, Train_loss:0.584, Test_acc:83.9%, Test_loss:0.563
Epoch:12, Train_acc:79.8%, Train_loss:0.562, Test_acc:83.9%, Test_loss:0.553
Epoch:13, Train_acc:80.5%, Train_loss:0.546, Test_acc:83.9%, Test_loss:0.542
Epoch:14, Train_acc:80.1%, Train_loss:0.546, Test_acc:83.9%, Test_loss:0.531
Epoch:15, Train_acc:81.2%, Train_loss:0.517, Test_acc:83.9%, Test_loss:0.521
Epoch:16, Train_acc:81.6%, Train_loss:0.521, Test_acc:83.9%, Test_loss:0.509
Epoch:17, Train_acc:82.4%, Train_loss:0.508, Test_acc:83.9%, Test_loss:0.497
Epoch:18, Train_acc:82.7%, Train_loss:0.494, Test_acc:83.9%, Test_loss:0.487
Epoch:19, Train_acc:83.1%, Train_loss:0.496, Test_acc:83.9%, Test_loss:0.477
Epoch:20, Train_acc:82.4%, Train_loss:0.469, Test_acc:83.9%, Test_loss:0.469
Epoch:21, Train_acc:83.1%, Train_loss:0.472, Test_acc:83.9%, Test_loss:0.463
Epoch:22, Train_acc:82.4%, Train_loss:0.451, Test_acc:83.9%, Test_loss:0.458
Epoch:23, Train_acc:83.5%, Train_loss:0.456, Test_acc:83.9%, Test_loss:0.455
Epoch:24, Train_acc:83.1%, Train_loss:0.438, Test_acc:83.9%, Test_loss:0.453
Epoch:25, Train_acc:83.5%, Train_loss:0.431, Test_acc:80.6%, Test_loss:0.451
Epoch:26, Train_acc:84.2%, Train_loss:0.444, Test_acc:80.6%, Test_loss:0.449
Epoch:27, Train_acc:83.1%, Train_loss:0.427, Test_acc:80.6%, Test_loss:0.449
Epoch:28, Train_acc:84.2%, Train_loss:0.409, Test_acc:80.6%, Test_loss:0.449
Epoch:29, Train_acc:83.8%, Train_loss:0.405, Test_acc:80.6%, Test_loss:0.448
Epoch:30, Train_acc:83.8%, Train_loss:0.411, Test_acc:80.6%, Test_loss:0.448
Epoch:31, Train_acc:83.8%, Train_loss:0.378, Test_acc:80.6%, Test_loss:0.446
Epoch:32, Train_acc:84.6%, Train_loss:0.421, Test_acc:80.6%, Test_loss:0.444
Epoch:33, Train_acc:84.6%, Train_loss:0.391, Test_acc:80.6%, Test_loss:0.443
Epoch:34, Train_acc:85.7%, Train_loss:0.388, Test_acc:80.6%, Test_loss:0.446
Epoch:35, Train_acc:84.2%, Train_loss:0.396, Test_acc:80.6%, Test_loss:0.449
Epoch:36, Train_acc:84.2%, Train_loss:0.346, Test_acc:80.6%, Test_loss:0.451
Epoch:37, Train_acc:84.9%, Train_loss:0.379, Test_acc:80.6%, Test_loss:0.453
Epoch:38, Train_acc:84.9%, Train_loss:0.389, Test_acc:80.6%, Test_loss:0.453
Epoch:39, Train_acc:83.1%, Train_loss:0.386, Test_acc:80.6%, Test_loss:0.453
Epoch:40, Train_acc:84.9%, Train_loss:0.350, Test_acc:80.6%, Test_loss:0.452
Epoch:41, Train_acc:83.5%, Train_loss:0.353, Test_acc:80.6%, Test_loss:0.455
Epoch:42, Train_acc:85.7%, Train_loss:0.373, Test_acc:80.6%, Test_loss:0.458
Epoch:43, Train_acc:84.6%, Train_loss:0.345, Test_acc:80.6%, Test_loss:0.459
Epoch:44, Train_acc:85.3%, Train_loss:0.377, Test_acc:80.6%, Test_loss:0.461
Epoch:45, Train_acc:85.7%, Train_loss:0.354, Test_acc:80.6%, Test_loss:0.462
Epoch:46, Train_acc:84.9%, Train_loss:0.327, Test_acc:80.6%, Test_loss:0.467
Epoch:47, Train_acc:82.7%, Train_loss:0.347, Test_acc:80.6%, Test_loss:0.470
Epoch:48, Train_acc:84.6%, Train_loss:0.350, Test_acc:80.6%, Test_loss:0.470
Epoch:49, Train_acc:84.9%, Train_loss:0.344, Test_acc:80.6%, Test_loss:0.470
Epoch:50, Train_acc:85.3%, Train_loss:0.375, Test_acc:80.6%, Test_loss:0.472

5、结果展示

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epoch_length = range(epoches)plt.figure(figsize=(12, 3))plt.subplot(1, 2, 1)
plt.plot(epoch_length, train_acc, label='Train Accuaray')
plt.plot(epoch_length, test_acc, label='Test Accuaray')
plt.legend(loc='lower right')
plt.title('Accurary')plt.subplot(1, 2, 2)
plt.plot(epoch_length, train_loss, label='Train Loss')
plt.plot(epoch_length, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Loss')plt.show()


在这里插入图片描述

趋于平稳不是没有变化,是变化很小,整体模型效果还可以

6、模型评估

# 评估:返回的是自己在model.compile中设置,这里为accuracy
test_acc, test_loss = test(test_dl, model, loss_fn)
print("socre[loss, accuracy]: ", test_acc, test_loss) # 返回为两个,一个是loss,一个是accuracy
socre[loss, accuracy]:  0.8064516129032258 0.47150832414627075

相关文章:

错误修改系列---基于RNN模型的心脏病预测(pytorch实现)

前言 前几天发布了pytorch实现&#xff0c;TensorFlow实现为&#xff1a;基于RNN模型的心脏病预测(tensorflow实现)&#xff0c;但是一处繁琐地方 一处错误&#xff0c;这篇文章进行修改&#xff0c;修改效果还是好了不少&#xff1b;源文章为&#xff1a;基于RNN模型的心脏病…...

修改之前的代码使得利用设备树文件和Platform总线设备驱动实现对多个LED的驱动【只是假想对LED进行驱动,并没有实际的硬件操作】

引言 在下面这篇博文中&#xff1a; 利用Linux的Platform总线设备驱动实现对多个LED的驱动【只是假想对LED进行驱动,并没有实际的硬件操作】 我们利用Platform总线设备驱动的思想实现了对多个LED的驱动。 Platform总线设备驱动以及其它的总线设备驱动都将驱动分成了三个部分…...

从CentOS到龙蜥:企业级Linux迁移实践记录(龙蜥开局)

引言&#xff1a; 在我们之前的文章中&#xff0c;我们详细探讨了从CentOS迁移到龙蜥操作系统的基本过程和考虑因素。今天&#xff0c;我们将继续这个系列&#xff0c;重点关注龙蜥系统的实际应用——特别是常用软件的安装和配置。 龙蜥操作系统&#xff08;OpenAnolis&#…...

多云架构,JuiceFS 如何实现一致性与低延迟的数据分发

随着大模型的普及&#xff0c;GPU 算力成为稀缺资源&#xff0c;单一数据中心或云区域的 GPU 资源常常难以满足用户的全面需求。同时&#xff0c;跨地域团队的协作需求也推动了企业在不同云平台之间调度数据和计算任务。多云架构正逐渐成为一种趋势&#xff0c;然而该架构下的数…...

Jenkins持续集成与交付安装配置

Jenkins 是一款开源的持续集成&#xff08;CI&#xff09;和持续交付&#xff08;CD&#xff09;工具&#xff0c;它主要用于自动化软件的构建、测试和部署流程。为项目持续集成与交付功能强大的应用。下面我们来介绍下它的安装与配置。 环境准备 更新系统组件&#xff08;这…...

十大排序简介

十大排序简介 一、排序分类二、排序思路1&#xff0e;冒泡排序&#xff08;Bubble Sort&#xff09;2&#xff0e;选择排序&#xff08;Selection Sort&#xff09;3&#xff0e;插入排序&#xff08;Insertion Sort&#xff09;4&#xff0e;希尔排序&#xff08;Shell Sort&a…...

uniapp小程序中隐藏顶部导航栏和指定某页面去掉顶部导航栏小程序

uniappvue3开发小程序过程中隐藏顶部导航栏和指定某页面去掉顶部导航栏方法 在page.json中 "globalStyle": {"navigationStyle":"custom",}, 如果是指定某个页面关闭顶部导航栏&#xff0c;在style中添加"navigationStyle": "cus…...

echarts:dataZoom属性横向滚动条拖拽不生效

问&#xff1a; 拖拽的过程中&#xff0c;第一次向右拖拽正常&#xff0c;然后就报错&#xff1a; echarts报错&#xff1a; var pointerOption pointerShapeBuilder[axisPointerType](axis,pixeValue,otherExtent),(axis,pixeValue,otherExtent)下划线红色报错&#xff1a;…...

【Leetcode 热题 100】739. 每日温度

问题背景 给定一个整数数组 t e m p e r a t u r e s temperatures temperatures&#xff0c;表示每天的温度&#xff0c;返回一个数组 a n s w e r answer answer&#xff0c;其中 a n s w e r [ i ] answer[i] answer[i] 是指对于第 i i i 天&#xff0c;下一个更高温度…...

R数据分析:多分类问题预测模型的ROC做法及解释

有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评估指标。那么肯定是统一成ROC了,刚好借这个机会给大家讲讲ROC在多…...

如何用 SSH 访问 QNX 虚拟机

QNX 虚拟机默认是开启 SSH 服务的&#xff0c;如果要用 SSH 访问 QNX 虚拟机&#xff0c;就需要知道虚拟机的 IP 地址&#xff0c;用户和密码。本文我们来看看如何获取这些参数。 1. 启动虚拟机 启动过程很慢&#xff0c;请耐心等待。 2. 查看 IP 地址 等待 IDE 连接到虚拟机。…...

交响曲-24-3-单细胞CNV分析及聚类

CNV概述 小于1kb是常见的插入、移位、缺失等的变异 人体内包含<10% 的正常CNV&#xff0c;我们的染色体数是两倍体&#xff0c;正常情况下&#xff0c;只有一条染色体表达&#xff0c;另一条沉默&#xff0c;当表达的那条染色体发生CNV之后&#xff0c;表达数量就会成倍增加…...

java远程调试debug

文章目录 首先被调试的服务配置idea 中配置远程调试连接上被调试服务打断点开始调试 首先被调试的服务配置 被调试的 java 服务需要开启允许被远程调试的配置&#xff0c;具体就是启动脚本中&#xff0c;加上允许被远程调试以及相应端口 # 针对JDK15.-1.8 -agentlib:jdwptran…...

操作系统之系统调用

系统调用 从上文简介得知&#xff0c;操作系统是计算机硬件和软件之间的桥梁&#xff0c;通过管理计算机软件和硬件资源&#xff0c;最终为我们用户提供服务。就如同一个管家帮助我们对CPU&#xff08;进程&#xff09;的管理、内存的管理、设备的管理、文件的管理。而我们如何…...

【docker】exec /entrypoint.sh: no such file or directory

dockerfile生成的image 报错内容&#xff1a; exec /entrypoint.sh: no such file or directory查看文件正常在此路径&#xff0c;但是就是报错没找到。 可能是因为sh文件的换行符使用了win的。...

CAPL概述与环境搭建

CAPL概述与环境搭建 目录 CAPL概述与环境搭建1. CAPL简介与应用领域1.1 CAPL简介1.2 CAPL的应用领域 2. CANoe/CANalyzer 安装与配置2.1 CANoe/CANalyzer 简介2.2 安装CANoe/CANalyzer2.2.1 系统要求2.2.2 安装步骤 2.3 配置CANoe/CANalyzer2.3.1 配置CAN通道2.3.2 配置CAPL节点…...

ML-Agents:智能体(三)

注&#xff1a;本文章为官方文档翻译&#xff0c;如有侵权行为请联系作者删除 Agent - Unity ML-Agents Toolkit–原文链接> ML-Agents&#xff1a;智能体&#xff08;一&#xff09; ML-Agents&#xff1a;智能体&#xff08;二&#xff09; ML-Agents&#xff1a;智能体&a…...

【harbor】离线安装2.9.0-arm64架构服务制作和升级部署

执行: .prepare 【作用就是产生一些配置信息 和docker-compose.yaml文件&#xff0c;然后docker-compose发布docker】 harbor官网地址&#xff1a;Harbor 参考文档可以看这里&#xff1a;部署 harbor 2.10.1 arm64 - 简书。 前提环境准备&#xff1a; 安装docker 和 docker…...

可视化-Visualization

可视化-Visualization 1.Introduction Visualization in Open CASCADE Technology is based on the separation of: on the one hand – the data which stores the geometry and topology of the entities you want to display and select, andon the other hand – its pr…...

完整化安装kubesphere,ks-jenkins的状态一直为init

错误描述&#xff1a; 打印日志&#xff1a; kubectl describe pod ks-jenkins-7fcff7857b-gh4g5 -n kubesphere-devops-system 日志描述如下&#xff1a; Events: Type Reason Age From Message ---- ------ ---- …...

halcon三维点云数据处理(十)locate_cylinder_3d

目录 一、locate_cylinder_3d例程代码二、gen_binocular_rectification_map函数三、binocular_disparity函数四、自定义函数select_best_candidates五、自定义函数remove_shadowed_regions 一、locate_cylinder_3d例程代码 1、读取或者创建3D形状模型&#xff0c; 2、根据双目…...

【CSS】设置滚动条样式

文章目录 基本语法用法案例 基本语法 在CSS中&#xff0c;可以使用 ::-webkit-scrollbar 和相关伪元素来为滚动条设置样式&#xff0c;但请注意这些伪元素是非标准的&#xff0c;主要用于WebKit内核浏览器&#xff08;如Chrome、Safari&#xff09;。 ::-webkit-scrollbar CSS …...

一个运行在浏览器中的开源Web操作系统Puter本地部署与远程访问

文章目录 前言1.关于Puter2.本地部署Puter3.Puter简单使用4. 安装内网穿透5.配置puter公网地址6. 配置固定公网地址 &#x1f4a1; 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击跳转到网站…...

支持selenium的chrome driver更新到131.0.6778.264

最近chrome释放新版本&#xff1a;131.0.6778.264 如果运行selenium自动化测试出现以下问题&#xff0c;是需要升级chromedriver才可以解决的。 selenium.common.exceptions.SessionNotCreatedException: Message: session not created: This version of ChromeDriver only s…...

conda+jupyter+pycharm:如何在Windows conda环境下运行jupyter并使用浏览器或者pycharm运行.ipynb

1 安装conda 2 conda环境下安装jupyter pip install jupyter3 设置jupyter配置文件 1&#xff09;创建 jupyter_notebook_config.py文件 jupyter notebook --generate-config 2&#xff09;设置密码 3&#xff09;设置参数 直接将以下参数修改为自己的配置后复制到配置文件…...

生成式数据增强在大语言模型中的应用与实践

引言 近年来&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;如GPT、BERT等在自然语言处理&#xff08;NLP&#xff09;领域取得了巨大突破。然而&#xff0c;这些模型的性能往往依赖于大量高质量的训练数据&#xff0c;而在许多实际应用场景中&am…...

深度学习笔记11-优化器对比实验(Tensorflow)

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 目录 一、导入数据并检查 二、配置数据集 三、数据可视化 四、构建模型 五、训练模型 六、模型对比评估 七、总结 一、导入数据并检查 import pathlib,…...

汽车免拆诊断 | 2007款保时捷Carrera S车行驶中发动机冷却液温度报警灯异常点亮

故障现象 一辆2007款保时捷Carrera S车&#xff0c;搭载3.8 L自然吸气发动机&#xff0c;累计行驶里程约为7.8万km。车主反映&#xff0c;车辆行驶一段距离后&#xff0c;组合仪表上的发动机冷却液温度报警灯异常点亮。为此&#xff0c;在其他维修厂已更换过节温器、发动机冷却…...

【蓝牙】win11 笔记本电脑连接 hc-06

文章目录 前言步骤 前言 使用电脑通过蓝牙添加串口 步骤 设置 -> 蓝牙和其他设备 点击 显示更多设备 更多蓝牙设置 COM 端口 -> 添加 有可能出现卡顿&#xff0c;等待一会 传出 -> 浏览 点击添加 hc-06&#xff0c;如果没有则点击 再次搜索 确定 添加成…...

what?ngify 比 axios 更好用,更强大?

文章目录 前言一、什么是ngify&#xff1f;二、npm安装三、发起请求3.1 获取 JSON 数据3.2 获取其他类型的数据3.3 改变服务器状态3.4 设置 URL 参数3.5 设置请求标头3.6 与服务器响应事件交互3.7 接收原始进度事件3.8 处理请求失败3.9 Http Observables 四、更换 HTTP 请求实现…...

EFCore HasDefaultValueSql (续2 HasComputedColumnSql)

前情&#xff1a;EFCore HasDefaultValueSql EFCore HasDefaultValueSql (续1 ValueGeneratedOnAdd)-CSDN博客 小伙伴在使用 HasDefaultValueSql 时&#xff0c;对相关的 ValueGeneratedOnAdd, HasComputedColumnSql 也有了疑问&#xff1a; HasComputedColumnSql 对于计算…...

springboot整合h2

在 Spring Boot 中整合 H2 数据库非常简单。H2 是一个轻量级的嵌入式数据库&#xff0c;非常适合开发和测试环境。以下是整合 H2 数据库的步骤&#xff1a; 1. 添加依赖 首先&#xff0c;在你的 pom.xml 文件中添加 H2 数据库的依赖&#xff1a; <dependency><grou…...

Unity自带的真车模拟系统,速度不够大r时如何以匀速上桥

在 Unity 中&#xff0c;如果你使用自带的真车模拟系统&#xff08;如 Wheel Collider&#xff09;时&#xff0c;发现车辆上桥时速度不够&#xff0c;导致无法顺利上坡&#xff0c;可以通过以下方法调整车辆的行为&#xff0c;使其能够以匀速上桥&#xff1a; 1. 调整 Wheel C…...

HarmonyOS鸿蒙-@State@Prop装饰器限制条件

一、组件Components级别的状态管理&#xff1a; State组件内状态限制条件 1.State装饰的变量必须初始化&#xff0c;否则编译期会报错。 // 错误写法&#xff0c;编译报错 State count: number;// 正确写法 State count: number 10; 2.嵌套属性的赋值观察不到。 // 嵌套的…...

C# 中的 Task 和 Async/Await

理解 C# 中的 Task 和 Async/Await&#xff1a;提升程序性能的利器 前言&#xff1a;在现代应用程序开发中&#xff0c;特别是在设计用户界面&#xff08;UI&#xff09;和进行网络请求等 I/O 操作时&#xff0c;异步编程变得尤为重要。C# 提供了一套强大的异步编程模型&#…...

vue.js 基于VueCli自定义创建项目

在使用Vue.js进行项目开发时&#xff0c;我们可以使用Vue CLI来快速创建项目。Vue CLI是一个基于Vue.js的命令行工具&#xff0c;它提供了一套完整的项目脚手架&#xff0c;可以帮助开发者快速搭建Vue.js项目的开发环境。 下面我们来详细解析如何使用Vue CLI自定义创建项目&am…...

Java中的反射机制及其应用场景

目录 什么是Java反射机制&#xff1f; 工作原理 主要应用场景 注意事项 总结 什么是Java反射机制&#xff1f; Java反射机制是一种强大的工具&#xff0c;它允许程序在运行时访问、检查和修改其本身的类和对象的信息。通过反射&#xff0c;开发者可以在不知道类的具体实现…...

金融项目实战 03|JMeter脚本实现手工接口测试

目录 一、环境说明 1、项目环境搭建 2、Mock说明 二、构造测试数据 1、通过系统页面构造 2、通过接口构造 3、通过数据库构造【推荐】 4、案例&#xff1a;构造借款业务数据 三、JMeter执行接口测试用例 1、获取图片验证码、获取短信验证码 2、注册脚本 3、登录脚本…...

前端工具汇总

1. vscode 下载地址&#xff1a;https://code.visualstudio.com/ vscode扩展汇总&#xff1a; 1.1 Code Spell Checker&#xff08;必须安装&#xff09; 代码拼写检查器 1.2 Auto Close Tag 自动添加HTML/XML的关闭标签 3. Auto Import 自动查找、解析并为所有可用导入…...

【学习路线】Python数据分析(数据科学) 详细知识点学习路径(附学习资源)

学习本路线内容之前&#xff0c;请先学习Python的基础知识 其他路线&#xff1a; Python基础 >> Python进阶 >> Python爬虫 >> Python数据分析&#xff08;数据科学&#xff09; >> Python 算法&#xff08;人工智能&#xff09; >> Pyth…...

Flutter 实现验证码输入框学习

学习flutter代码 实现一个用于输入验证码的自定义组件&#xff0c;它允许用户输入固定长度的验证码&#xff0c;并在输入完成时触发回调。 前置知识点学习 TextStyle TextStyle 是 Flutter 中用于定义文本样式的类。它提供了一组属性来控制文本的外观&#xff0c;如字体大小、…...

hutool糊涂工具通过注解设置excel宽度

import java.lang.annotation.*;Documented Retention(RetentionPolicy.RUNTIME) Target({ElementType.METHOD, ElementType.FIELD, ElementType.PARAMETER}) public interface ExcelStyle {int width() default 0; }/*** 聊天记录*/ Data public class DialogContentInfo {/**…...

汽车基础软件AutoSAR自学攻略(四)-AutoSAR CP分层架构(3) (万字长文-配21张彩图)

汽车基础软件AutoSAR自学攻略(四)-AutoSAR CP分层架构(3) (万字长文-配21张彩图) 前面的两篇博文简述了AutoSAR CP分层架构的概念&#xff0c;下面我们来具体到每一层的具体内容进行讲解&#xff0c;每一层的每一个功能块力求用一个总览图&#xff0c;外加一个例子的图给大家进…...

有收到腾讯委托律师事务所向AppStore投诉带有【水印相机】主标题名称App的开发者吗

近期&#xff0c;有多名开发者反馈&#xff0c;收到来自腾讯科技 (深圳) 有限公司委托北京的一家**诚律师事务所卞&#xff0c;写给AppStore的投诉邮件。 邮件内容主要说的是&#xff0c;腾讯注册了【水印相机】这四个字的商标&#xff0c;所以你们这些在AppStore上的app&…...

SpringBoot操作spark处理hdfs文件

SpringBoot操作spark处理hdfs文件 1、导入依赖 <!-- spark依赖--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.2</version></dependency><depend…...

Spring Boot中的依赖注入是如何工作

Spring Boot 中的依赖注入&#xff08;Dependency Injection&#xff0c;简称 DI&#xff09;是通过 Spring 框架的核心机制——控制反转&#xff08;Inversion of Control&#xff0c;IOC&#xff09;容器来实现的。Spring Boot 基于 Spring Framework&#xff0c;在应用中自动…...

算法面试1

简述yolov1的网络架构 YOLOv1网络结构包括24层卷积层用来提取图像的特征&#xff0c;2层全连接层回归得到7730&#xff08;141420&#xff09;的张量。   网络结构大概如下&#xff1a;输入的是4484483通道的图像&#xff0c;就是RGB图像&#xff0c;然后用64个卷积核大小是…...

Android车机DIY开发之软件篇(八)单独编译

Android车机DIY开发之软件篇(八)单独编译 1.CarLauncher单独编译 CarLauncher源码位于 packages/apps/Car/Launcher 用Eclipse ADT 谷歌定制版编译而成&#xff0c;.mk .bp编译 Android13目录如下: alientekalientek:~/packages/apps/Car$ ls Calendar …...

保证Mysql数据库到ES的数据一致性的解决方案

文章目录 1.业务场景介绍1.1 需求分析1.2 技术实现方案 2.业界常用数据一致性方案分析2.1 同步双写方案2.2 MQ异步双写方案2.3 扫表定期同步方案2.4 监听binlog同步方案 1.业务场景介绍 1.1 需求分析 某知名的在线旅游平台&#xff0c;在即将到来的春季促销活动之前&#xff…...

Cursor实现go项目配置并实现仓库Gin项目运行

✅作者简介&#xff1a;大家好&#xff0c;我是 Meteors., 向往着更加简洁高效的代码写法与编程方式&#xff0c;持续分享Java技术内容。 &#x1f34e;个人主页&#xff1a;Meteors.的博客 &#x1f49e;当前专栏&#xff1a;知识备份 ✨特色专栏&#xff1a;知识分享 &#x…...