当前位置: 首页 > news >正文

YOLOv8实战人员跌倒检测

在这里插入图片描述

  本文采用YOLOv8作为核心算法框架,结合PyQt5构建用户界面,使用Python3进行开发。YOLOv8以其高效的实时检测能力,在多个目标检测任务中展现出卓越性能。本研究针对人员跌倒目标数据集进行训练和优化,该数据集包含丰富人员跌倒图像样本,为模型的准确性和泛化能力提供了有力保障。通过深度学习技术,模型能够自动提取人员跌倒目标的特征并进行分类识别。PyQt5界面设计简洁直观,便于用户操作和实时查看检测结果。本研究不仅提高了人员跌倒目标识别的水平,还为人员跌倒目标保护提供了有力支持,具有重要的理论应用价值。

YOLOv8实战人员跌倒检测

文章目录

  • 研究背景
  • 1.前言
    • 1.1 YOLO 系列:目标检测领域的璀璨明星
    • 1.2 Transformer与注意力机制:为目标检测注入新活力
    • 1.3 人员跌倒目标检测技术:迎接挑战,砥砺前行
    • 1.4 YOLOv8算法在人员跌倒目标检测系统中的精彩演绎
  • 2.人员跌倒目标数据集介绍
  • 3.界面效果演示
    • 3.1 图像测试
    • 3.2 视频测试
    • 3.3 摄像头测试
  • 4. YOLOV8 原理
  • 5 模型训练
    • 5.1 Conda环境构建
    • 5.2 基础环境构建
    • 5.3 安装YOLOv8环境
    • 5.4 构建人员跌倒目标检测模型
  • 6 系统实现
    • 6.1架构设计
    • 6.2 系统流程
    • 6.3 代码实现
  • 安装环境与文件说明
  • 总结与展望
  • 结束语


研究背景

  人员跌倒目标识别研究的背景主要有以下几方面:

1.前言

1.1 YOLO 系列:目标检测领域的璀璨明星

  在实时目标检测的算法星空中,YOLO 系列无疑是最为耀眼的星座之一。从 YOLOv5 到 YOLOv8,每一次的迭代都宛如一次华丽的蜕变,在性能、速度与准确度上实现了跨越式的提升。YOLOv8,作为这一系列的最新杰作,凭借其更为深邃复杂的网络架构以及精妙绝伦的训练技巧,将检测的准确性与速度推向了新的高峰。尤其在应对动态视频流中人员跌倒检测任务时,它宛如一位技艺精湛的舞者,展现出了令人赞叹的卓越性能。这些显著的改进,如同强大的引力,使得 YOLO 系列在人员跌倒目标检测领域的应用版图不断拓展,愈发完美地契合了实时性与准确性的双重严苛要求。
多元算法共筑人员跌倒目标标志检测的坚实堡垒
  除了光芒四射的 YOLO 系列,其他深度学习算法,诸如 Faster R - CNN、SSD 以及基于 Transformer 的 DETR 等,也纷纷在人员跌倒目标佩戴检测的舞台上崭露头角。它们各具独特的优势,恰似一群才华横溢的艺术家,在不同的领域绽放光彩。Faster R - CNN 以其在检测精度上的非凡表现,犹如一位精雕细琢的工匠,刻画着每一个细节;而 SSD 则在速度方面具备明显优势,恰似一阵疾风,迅速而敏捷。最新的研究恰似一场永不停歇的探索之旅,不断挖掘这些算法的改进版本,力求在速度与准确性之间找到那最为完美的平衡点,如同在钢丝上寻找平衡的舞者,追求极致的和谐。

1.2 Transformer与注意力机制:为目标检测注入新活力

  Transformer 在视觉任务中的应用,犹如一颗璀璨的新星划破夜空,吸引了广泛的关注,其中视觉 Transformer(ViT)更是备受瞩目。ViT 通过巧妙引入自注意力机制,仿佛为模型赋予了一双敏锐的眼睛,能够精准捕捉图像中的长距离依赖关系,这在中国人员跌倒目标形态复杂多样且背景纷繁复杂的情况下,显得尤为关键。相较于传统的卷积神经网络(CNN),ViT 在处理图像全局信息时展现出了更为卓越的能力,如同一位宏观把控的大师,为中国人员跌倒目标检测开辟了一片崭新的天地,提供了全新的解决思路。
注意力机制,作为 Transformer 的核心瑰宝,已如同星星之火,在各种深度学习模型中形成燎原之势,在中国人员跌倒目标检测领域更是大放异彩。它赋予了模型对图像特定部分的 “专注” 能力,如同为模型戴上了一副神奇的眼镜,使其能够在复杂的背景或多变的中国人员跌倒目标形态中,依然清晰地定位并准确识别目标,即便在干扰信息如潮水般涌来的环境中,也能稳如泰山,保持较高的检测准确率。

1.3 人员跌倒目标检测技术:迎接挑战,砥砺前行

当前,中国人员跌倒目标检测技术正置身于充满挑战的浪潮之中,亟待提高检测的实时性、准确性以及在多变环境下的适应性,如同在波涛汹涌的大海中航行的船只,需要不断调整航向,迎接风浪的挑战。为了跨越这些难关,研究人员们宛如勇敢的探险家,不断探索新的算法和技术。例如,通过深度学习模型的轻量化设计,如同为船只减轻负重,提高算法的运行效率,使其在复杂的环境中更加灵活敏捷;利用创新的数据增强技术和自适应学习方法,仿佛为船只加固船身,提升模型的泛化能力和鲁棒性,使其能够在各种未知的海域中稳健前行。

1.4 YOLOv8算法在人员跌倒目标检测系统中的精彩演绎

  本博客致力于基于 YOLOv8 算法构建一个人员跌倒目标检测系统,并全方位展示其魅力。我们将呈现系统精致的界面效果,如同揭开一幅美丽画卷,让您领略其独特风采;深入阐述其算法原理,恰似探秘一座神秘城堡,为您揭示其中的奥秘;毫无保留地提供代码实现,仿佛为您递上一把开启知识宝库的钥匙;详细分享该系统的实现过程,如同陪伴您走过一段精彩旅程,让您亲身体验其中的艰辛与喜悦。希望本博客的倾心分享能如同一盏明灯,为读者照亮前行的道路,给予您深刻的启示,进而推动更多相关研究的蓬勃发展。本文的核心内容主要涵盖以下几个方面:

  1. YOLOv8 算法的卓越应用与性能对比
      本文不仅详细介绍了基于 YOLOv8 算法的中国人员跌倒目标检测系统的构建历程,如同讲述一个精彩的创业故事,而且还深入细致地比较了 YOLOv7、YOLOv6、YOLOv5 等早期版本的性能差异,仿佛展开一场激烈的武林高手对决。这一全面深入的比较研究,恰似一本权威的指南,为中国人员跌倒目标检测技术的选型提供了坚实有力的参考依据。特别是 YOLOv8 算法在效率和精准度方面所展现出的显著优势,犹如一座明亮的灯塔,为 人员跌倒目标检测指明了一条更为高效、更为准确的技术路径。
  2. PyQt5 打造的友好用户界面
      通过 Python 的 PyQt5 库精心打造人员跌倒检测系统,不仅具备高效卓越的检测能力,如同一位内功深厚的武林高手,更提供了直观便捷、令人赏心悦目的用户操作界面,仿佛为用户搭建了一座温馨的家园。这种贴心的设计,使得人员跌倒目标检测变得更加亲切友好,如同一位热情好客的主人,有助于广泛推广 YOLOv8 算法的应用,同时也为人员跌倒目标检测技术的普及和实用化注入了强大的动力,如同春风化雨,滋润着这片技术的田野。
  3. YOLOv8 模型的深度研究与性能剖析
      本文不仅在实践中应用了 YOLOv8 算法,更对其性能进行了全方位、深层次的评估和分析,如同对一件珍贵的艺术品进行细致入微的鉴赏。我们深入研究了包括精准度、召回率等关键指标,宛如揭开了一幅神秘画卷的每一个细节,以及模型在不同环境条件下的表现,仿佛探索一片未知的森林,每一个角落都不放过。这些深入的研究成果,为全面理解 YOLOv8 算法的性能提供了一个细致入微的视角,如同为观察者配备了一台高倍显微镜,让每一个细微之处都清晰可见。同时,也为算法的进一步优化和改进铺就了坚实的道路,如同为建筑者准备了充足的砖石,助力构建更加宏伟的技术大厦。

2.人员跌倒目标数据集介绍

  人员跌倒目标数据集采取了几项关键步骤以确保数据集的质量。首先,所有图像都经过了自动方向校正。接着,所有图像都被统一调整至640x640像素,通过拉伸的方式来适配这一分辨率。

在这里插入图片描述

3.界面效果演示

3.1 图像测试

在这里插入图片描述

3.2 视频测试

在这里插入图片描述

3.3 摄像头测试

在这里插入图片描述

4. YOLOV8 原理

  YOLOV8是YOLO系列另一个SOTA模型,该模型是相对于YOLOV5进行更新的。其主要结构如下图所示:
在这里插入图片描述
  从图中可以看出,网络还是分为三个部分: 主干网络(backbone),特征增强网络(neck),检测头(head) 三个部分。
  主干网络: 依然使用CSP的思想,改进之处主要有:1、YOLOV5中的C3模块被替换成了C2f模块;其余大体和YOLOV5的主干网络一致。
  特征增强网络: YOLOv8使用PA-FPN的思想,具体实施过程中将YOLOV5中的PA-FPN上采样阶段的卷积去除了,并且将其中的C3模块替换为了C2f模块。
  检测头:区别于YOLOV5的耦合头,YOLOV8使用了Decoupled-Head

  其它更新部分:
  1、摒弃了之前anchor-based的方案,拥抱anchor-free思想。
  2、损失函数方面,分类使用BCEloss,回归使用DFL Loss+CIOU Loss
  3、标签分配上Task-Aligned Assigner匹配方式

5 模型训练

模型训练主要分为如下几步:

5.1 Conda环境构建

  新人安装Anaconda环境可以参考博主写的文章Anaconda3与PyCharm安装配置保姆教程

5.2 基础环境构建

  新人安装PyTorch GPU版本可以参考博主写的文章基于conda的PyTorch深度学习框架GPU安装教程

5.3 安装YOLOv8环境

conda create -n yolov8 python=3.8
conda activate yolov8
pip install ultralytics

5.4 构建人员跌倒目标检测模型

  人员跌倒目标检测系统训练数据集格式

	imagestrainimage1.jpgimage2.jpg...valimage11.jpgimage22.jpg...labelstrainimage1.txtimage2.txt...valimage11.txtimage22.txt...

  我们开启训练之旅的第一步是导入一系列不可或缺的模块,其中涵盖了 os 模块,它犹如一把万能钥匙,为我们处理各种文件路径相关的操作提供了便利;torch 模块恰似一台强大的引擎,助力我们高效地执行各类数值计算任务;yaml 模块则如同一位精准的翻译官,能够帮助我们轻松解析配置文件中的各种信息;还有专门的 YOLO 类,它是我们构建模型的关键基石,为实例化模型奠定了基础。
  紧接着,我们着手确定训练过程所依托的计算设备。在这个环节中,我们秉持优先选择的策略,将目光聚焦于 GPU(cuda:0),因为它具备强大的并行计算能力,能够极大地加速训练过程。然而,若 GPU(cuda:0)不可用,我们也做好了充分的应对准备,即退而求其次,选择使用 CPU 来继续我们的训练任务。尽管 CPU 的计算速度相对较慢,但它依然能够确保训练工作的顺利进行,为我们的研究提供持续的支持。

import os
import torch
import yaml
from ultralytics import YOLO  # 导入YOLO模型
device = "cuda:0" if torch.cuda.is_available() else "cpu"

  接下来,我们对一些基本的训练参数进行了设定,其中包括工作进程数以及批次大小。随后,明确了数据集的名称与路径,并且借助 abs_path 函数获取到了配置文件的绝对路径。这样做能够保证在不同的运行环境下路径具有一致性,同时也提升了代码的可移植性。

workers = 1
batch = 8data_name = "fall"
data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')  # 数据集的yaml的绝对路径
unix_style_path = data_path.replace(os.sep, '/')# 获取目录路径
directory_path = os.path.dirname(unix_style_path)')

  在加载数据配置文件之前,必须先读取并解析 YAML 格式的配置文件。这一环节极为重要,原因在于该配置文件中涵盖了训练过程所需的关键信息,例如类别标签以及数据集路径等等。我们对配置文件中的“path”键值进行修改,以此确保模型能够准确无误地找到训练和验证数据。

# 读取YAML文件,保持原有顺序
with open(data_path, 'r') as file:data = yaml.load(file, Loader=yaml.FullLoader)
# 修改path项
if 'path' in data:data['path'] = directory_path# 将修改后的数据写回YAML文件with open(data_path, 'w') as file:yaml.safe_dump(data, file, sort_keys=False)

  接着,我们加载了预先训练好的 YOLOv8 模型,进而开启了训练进程。YOLO 类的 train 方法接纳了众多参数,其中有数据路径、设备、工作进程数、输入图像的尺寸、训练周期以及批次大小。在此处,name参数为训练任务赋予了标识,便于后续进行追踪与分析。


model = YOLO(abs_path('./weights/yolov8s.pt'), task='detect')  # 加载预训练的YOLOv8模型
results = model.train(  # 开始训练模型data=data_path,  # 指定训练数据的配置文件路径workers=0,  imgsz=640,  # 指定输入图像的大小为640x640epochs=100,  # 指定训练100个epochbatch=batch,  # 指定每个批次的大小为8name='train_v8_' + data_name  # 指定训练任务的名称
)

  训练50个epoch输出如下

在这里插入图片描述

  在目标检测领域,对训练过程中的损失函数展开分析可谓至关重要。这是因为它不但能够反映出模型的学习状况,还能指示出模型性能或许存在的问题。
  首先,从训练和验证的损失图当中能够看出,伴随训练进程的不断推进,train/box_loss、train/cls_loss 以及 train/obj_loss 皆呈现出下降的态势,这表明模型在学习的过程里逐渐对训练数据进行拟合,并且在边界框定位、类别分类以及目标检测方面的表现持续改进。相应地,验证损失 val/box_loss、val/cls_loss 和 val/obj_loss 尽管波动较大,然而总体上也显现出下降的趋势,这意味着模型对未曾见过的数据的泛化能力正在增强。
  具体而言,train/box_loss 从接近 0.8 降至大约 0.3,这无疑是一个极为良好的信号,意味着模型在边界框的定位方面变得越发精准。与此类似,train/cls_loss 和 train/obj_loss 的下降表明分类误差在减少,同时对目标的识别准确度得到提高。我们期望验证损失也能够呈现出相似的下降趋势,尽管中途存在一些波动,但整体的下降趋势表明模型的泛化能力在逐步提高,并未出现过拟合的状况。

  在性能指标这一方面,metrics/precision、metrics/recall、metrics/mAP50 以及 metrics/mAP50 - 95 的图表展现出了模型性能的稳步上升。准确率(Precision)与召回率(Recall)随着训练周期的增加而不断增长,这就意味着模型在识别正样本方面变得更为精确,同时也能够回收更多的正样本。mAP(mean Average Precision)属于目标检测中极为重要的评估指标之一,metrics/mAP50 和 metrics/mAP50 - 95 的提升表明模型针对不同 IoU 阈值的检测性能均在提高。mAP50 是指在 IoU 为 0.5 时的平均精度,而 mAP50 - 95 则表示在 IoU 从 0.5 到 0.95 不同阈值下的平均精度,它能够更为全面地反映出模型在各种重叠度下的表现。观察到这些指标的稳步提升,便可以说明模型在整个训练过程中的表现是在持续优化的。

  在机器学习领域当中,F1 分数是一个极为关键的性能指标,它对模型的准确率和召回率进行了综合考虑,为我们提供了有关模型分类性能的全面视角。这个指标尤其适用于正负样本分布不平衡的情况,能够助力我们理解模型在检测难以区分的类别时的具体表现。
在这里插入图片描述

6 系统实现

6.1架构设计

   MainWindow 类的核心目标是打造一个用户友好的交互式中国人员跌倒目标检测系统。为了达成这一目标,采用了将界面、媒体处理与模型进行集成的设计理念。通过对象组合的手段,把不同的处理器和模型整合在一起,使得每个功能模块都可以独立运作。与此同时,还运用信号和槽机制来实现模块之间的交互以及数据的传递。
   我们的系统设计理念以三层架构作为核心,分别是处理层、界面层以及控制层。在系统设计过程中,我们将重点置于确保各个组件能够协同运作的同时,保持充分的模块独立性,以便于未来进行维护和升级。
在这里插入图片描述

   处理层(Processing Layer):通过运用模块化的处理层,我们对 YOLOv8Detector 类所实现的深度学习模型予以封装。如此一来,图像处理与目标检测的复杂性对于其他系统组件而言是不可见的。这种封装不但提升了系统的可靠性,还使得未来替换或升级模型变得更为容易。

   界面层(UI Layer):在界面层方面,我们借助 PyQt5 库构建出一套完整的用户界面,提供了直观的操作按钮、状态标签以及实时的图像显示。该界面不但能够对用户的操作做出响应,还能实时反馈模型的检测结果,进而提高用户的操作便利性与系统的交互性。界面的设计目标在于降低用户的学习曲线,即便是没有技术背景的用户也能够轻松掌握。

   控制层(Control Layer):控制层是连接用户界面与后端处理模块的桥梁。在这一层中,MainWindow 类肩负着响应用户交互、控制视频流处理以及展示模型预测结果的重任。通过信号和槽机制,我们能够将用户的操作转化为系统的响应,例如启动和停止视频流、调整检测设置等。这样的设计不仅提高了系统反应的及时性,还增强了用户的控制感。

在这里插入图片描述

6.2 系统流程

在这里插入图片描述
  当用户启动我们的应用程序时,系统会首先对 MainWindow 类进行实例化。该类不但负责初始化用户界面,设定窗口大小以及展示区域,还会准备好后续处理所需的各类参数。用户界面作为与系统交互的重要桥梁,为用户提供了选择视频输入源的机会。输入源的灵活性可谓此系统的一大亮点,用户能够选择实时视频流、预录视频文件或者单张图片作为检测的媒介。

  一旦输入源被用户选定,系统就会开始调用内置的媒体处理器来进行数据的读取与处理。这个过程涵盖了摄像头的实时捕获设置、视频文件的解码读取以及图像数据的加载至内存等环节。这些环节均是自动进行的,无需用户进行手动配置,充分彰显了智能化的设计理念。

  接下来,系统将进入连续的处理循环,持续对实时获取的帧数据进行分析。在预处理阶段,系统会通过一系列的图像处理技术,例如缩放、色彩转换等,让每帧图像符合 YOLOv8 模型的输入标准。这一步骤对于提升模型的识别效率与准确度起着至关重要的作用。

  紧接着,经过预处理的图像会被送入经过训练的 YOLOv8 模型进行实时检测。模型能够快速地在图像中定位中国人员跌倒目标,并对它们进行分类,其结果将用于后续的界面更新。我们的系统设计允许在用户界面上实时显示检测框,标注目标类别,并在界面上实时展示检测的统计数据。这种即时的反馈为用户提供了清晰的视觉指引,有助于他们了解当前环境的安全状况。

6.3 代码实现

  在现代计算机视觉领域中,把深度学习模型应用于实时图像处理任务已然成为一项关键技术。在本博客里,我们会详细阐述如何运用 YOLOv8 算法,并结合 PyQt5 来创建一个实时目标检测系统。这个系统能够在视频流中识别并标注特定对象,比如人员跌倒目标检测。

(1)引入必要的库:

  首先,系统的构建从导入必要的 Python 模块开始。sys 模块是 Python 内置的模块,它提供了诸多与 Python 解释器紧密相关的功能。例如,sys.argv 可用于获取命令行参数,这在启动应用程序时非常重要。time 模块允许我们获取当前时间,这对于性能评估以及监控推理时间起着至关重要的作用。OpenCV 库(cv2)是图像处理的核心,它提供了一系列强大的功能来捕捉和处理图像数据。

import cv2
import numpy as np
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
from PyQt5.QtGui import QImage, QPixmap, QPalette
from PyQt5.QtWidgets import QMainWindow, QFileDialog, QDesktopWidgetfrom ui_mainwindow import Ui_MainWindow
from utils import image_read_from_chinese_pathfrom ultralytics import YOLO

(2)设置主窗口:

  构建用户界面(UI)是实现系统的关键一步。我们借助 PyQt5 库构建了图形用户界面。QMainWindow 作为我们窗口的基类,为展示处理后的图像提供了一个画布。

class MyMainWindow(QMainWindow):def __init__(self, parent=None):# 调用父类构造函数,创建窗体super().__init__(parent)# 创建UI对象self.ui = Ui_MainWindow()# 构造UI界面self.ui.setupUi(self)self.set_centre()self.image_file_path = None

(3)初始化模型

self.model = YOLO('./weights/best.pt')     

(4)界面信号槽绑定

self.ui.comboBox_source.currentIndexChanged.connect(self.comboBox_source_slot)self.ui.toolButton_fileOpen.clicked.connect(self.toolButton_fileOpen_slot)
self.ui.pushButton_infer.clicked.connect(self.pushButton_infer_slot)
self.ui.pushButton_infer_stop.clicked.connect(self.pushButton_infer_stop_slot)
self.ui.doubleSpinBox_conf.valueChanged.connect(self.doubleSpinBox_conf_slot)
self.ui.horizontalSlider_conf.valueChanged.connect(self.horizontalSlider_conf_slot)self.ui.doubleSpinBox_iou.valueChanged.connect(self.doubleSpinBox_iou_slot)
self.ui.horizontalSlider_iou.valueChanged.connect(self.horizontalSlider_iou_slot)

(5)图像显示

@staticmethod
def show_image(img_src, label):try:# img_src = cv2.resize(img_src, None, fx=0.5, fy=0.5)ih, iw, _ = img_src.shapew = label.geometry().width()h = label.geometry().height()# 保持纵横比# 找出长边if iw > ih:scal = w / iwnw = wnh = int(scal * ih)img_src_ = cv2.resize(img_src, (nw, nh))else:scal = h / ihnw = int(scal * iw)nh = himg_src_ = cv2.resize(img_src, (nw, nh))frame = cv2.cvtColor(img_src_, cv2.COLOR_BGR2RGB)img = QImage(frame.data, frame.shape[1], frame.shape[0], frame.shape[2] * frame.shape[1],QImage.Format_RGB888)label.setPixmap(QPixmap.fromImage(img))except Exception as e:print(repr(e))

安装环境与文件说明

离线安装配置文件说明

总结与展望

  在本博客当中,我们对一个基于YOLOv8 模型的实时人员跌倒目标检测系统进行了详细的介绍。该系统采用模块化的设计方式,充分运用了合理的架构设计,从而具备良好的可维护性与可扩展性。它的用户界面十分友好,能够实时展示人员跌倒目标检测和识别的结果。

  此系统支持摄像头、视频、图像以及批量文件等多种输入源,能够满足用户在不同场景下的需求。后续可以添加更多的预训练模型,以增加检测和识别的种类;对用户界面进行优化,增强个性化设置;并且积极倾听用户反馈,期望不断改进系统,从而更好地满足用户的需求。

结束语

   由于博主能力有限,博文中提及的方法即使经过试验,也难免会有疏漏之处。希望您能热心指出其中的错误,以便下次修改时能以一个更完美更严谨的样子,呈现在大家面前。同时如果有更好的实现方法也请您不吝赐教。

相关文章:

YOLOv8实战人员跌倒检测

本文采用YOLOv8作为核心算法框架,结合PyQt5构建用户界面,使用Python3进行开发。YOLOv8以其高效的实时检测能力,在多个目标检测任务中展现出卓越性能。本研究针对人员跌倒目标数据集进行训练和优化,该数据集包含丰富人员跌倒图像样…...

瑞芯微rk3568平台 openwrt系统适配ffmpeg硬件解码(rkmpp)

瑞芯微rk3568平台 openwrt系统适配ffmpeg硬件解码(rkmpp) RK3568及rkmpp介绍编译安装mpp获取源码交叉编译安装 libdrmlibdrm-2.4.89 make 方式编译(cannot find -lcairo, 不推荐)下载源码编译编译错误: multiple definition of `nouveau debug‘错误cannot find -lcairo:…...

自动驾驶控制与规划——Project 6: A* Route Planning

目录 零、任务介绍一、算法原理1.1 A* Algorithm1.2 启发函数 二、代码实现三、结果分析四、效果展示4.1 Dijkstra距离4.2 Manhatten距离4.3 欧几里德距离4.4 对角距离 五、后记 零、任务介绍 carla-ros-bridge/src/ros-bridge/carla_shenlan_projects/carla_shenlan_a_star_p…...

wordpress报错open_basedir restriction in effect

Warning: file_exists(): open_basedir restriction in effect. File(/www/wwwroot/wp-content/plugins/woocommerce/patterns/banner.php) is not within the allowed path(s): 关闭防跨站攻击...

VSCode Live Server 插件安装和使用

VSCode Live Server是一个由Ritwick Dey开发的Visual Studio Code扩展插件,它提供了一个带有实时重载功能的本地开发服务器。在VSCode中安装和使用Live Server插件进行实时预览和调试Web应用程序。这将大大提高前端开发效率,使网页设计和开发变得更为流畅…...

网络安全-XSS跨站脚本攻击(基础篇)

漏洞扫描的原理 1.跨站脚本攻击介绍 xss跨站脚本攻击: xSS 全称(Cross site Scripting )跨站脚本攻击,是最常见的Web应用程序安全漏洞之一,位于OWASP top 10 2013/2017年度分别为第三名和第七名,XSS是指攻…...

【C++笔记】红黑树(RBTree)深度剖析和AVL树的对比分析

【C笔记】红黑树(RBTree)深度剖析和AVL树的对比分析 🔥个人主页:大白的编程日记 🔥专栏:C笔记 文章目录 【C笔记】红黑树(RBTree)深度剖析和AVL树的对比分析前言一.红黑树的定义1.1 红黑树的概念1.2红黑树的规则1.3 红黑树对比A…...

Mysql 性能优化:索引条件下推(ICP)

MySQL 索引下推(Index Condition Pushdown,ICP)是一种查询优化技术,旨在提高使用索引的查询效率。它是在 MySQL 5.6 中引入的,通过将部分 WHERE 子句的过滤条件下推到索引扫描阶段来减少不必要的回表操作,从…...

docker如何进入交互模式

目录 使用 docker run -it 使用 docker exec -it 示例: 使用 docker attach 示例: 在写代码的时候对小白来说避免不了本地和docker环境执行结果不一样的情况 这个时候需要进入正在运行的容器进行调试或执行一些命令操作。这时可以使用 Docker 提供的…...

闲谭SpringBoot--ShardingSphere分库分表探究

文章目录 1. 背景2. 创建数据库3. 修改yml配置文件4. 分片算法类5. 测试6 小结 1. 背景 接上文,我们对日志表,进行了按月的分表,这样每个月几百万条数据量还是扛得住的。 但是如果数据再多呢,除了提高硬件性能,还有一…...

在Java中Semaphore的解释及主要用途

目录 定义 使用方法 主要用途 使用场景示例 定义 Semaphore(信号量)是Java并发编程中的一个同步工具类,用于控制对共享资源的访问。它通过维护一个计数器来管理多个线程对资源的并发访问数量。这个计数器表示当前可用的许可数&#xff0c…...

React Native 项目 Error: EMFILE: too many open files, watch

硬件:MacBook Pro (Retina, 13-inch, Mid 2014) OS版本:MacOS BigSur 11.7.10 (20G1427) 更新: 删除modules的方法会有反弹,最后还是手动安装了预编译版本的watchman。 React Native 项目运行npm run web,出现如下错误&#xff1a…...

四、VSCODE 使用GIT插件

VSCODE 使用GIT插件 一下载git插件与git Graph插件二、git插件使用三、文件提交到远程仓库四、git Graph插件 一下载git插件与git Graph插件 二、git插件使用 git插件一般VSCode自带了git,就是左边栏目的图标 在下载git软件后vscode的git插件会自动识别当前项目 …...

5 分布式ID

这里讲一个比较常用的分布式防重复的ID生成策略,雪花算法 一个用户体量比较大的分布式系统必然伴随着分表分库,分机房部署,单体的部署方式肯定是承载不了这么大的体量。 雪花算法的结构说明 如下图所示: 雪花算法组成 从上图我们可以看…...

flink的EventTime和Watermark

时间机制 Flink中的时间机制主要用在判断是否触发时间窗口window的计算。 在Flink中有三种时间概念:ProcessTime、IngestionTime、EventTime。 ProcessTime:是在数据抵达算子产生的时间(Flink默认使用ProcessTime) IngestionT…...

T-SQL语言的函数实现

T-SQL语言的函数实现 在数据库管理系统中,函数是一种非常重要的编程结构。SQL Server支持多种类型的函数,包括标量函数、表值函数和系统函数。本文将详细介绍T-SQL中函数的实现,结合实际应用场景,帮助读者深入理解函数的使用方法…...

SpringBoot 使用 Cache 集成 Redis做缓存保姆教程

1. 项目背景 Spring Cache是Spring框架提供的一个缓存抽象层,它简化了缓存的使用和管理。Spring Cache默认使用服务器内存,并无法控制缓存时长,查找缓存中的数据比较麻烦。 因此Spring Cache支持将缓存数据集成到各种缓存中间件中。本文已常…...

Delphi+SQL Server实现的(GUI)户籍管理系统

1.项目简介 本项目是一个户籍管理系统,用于记录住户身份信息,提供新户登记(增加)、户籍变更(修改)、户籍注销(删除)、户籍查询、曾用名查询、迁户记录查询以及创建备份、删除备份共8…...

Ungoogled Chromium127 编译指南 MacOS篇(七)- 安装依赖包

1. 引言 在获取了 Ungoogled Chromium 的源代码之后,我们需要安装所有必要的依赖包。这些依赖包对于成功编译 Chromium 至关重要。本文将指导您完成所有必需软件包的安装。 2. 依赖包安装 2.1 使用 Homebrew 安装基础依赖 # 安装 Ninja 构建系统 brew install n…...

开放词汇检测新晋SOTA:地瓜机器人开源DOSOD实时检测算法

在计算机视觉领域,目标检测是一项关键技术,旨在识别图像或视频中感兴趣物体的位置与类别。传统的闭集检测长期占据主导地位,但近年来,开放词汇检测(Open-Vocabulary Object Detection-OVOD 或者 Open-Set Object Detec…...

json dump避免转义字符反斜杠

笔者在将json序列化到文件时,发现内容包含了反斜杠: [{"video": "MSRVTT-QA\/video_features\/7010.mp4","id": 170859},... ]解决办法是使用ensure_asciiFalse: json.dump(result_items, f, ensure_asciiFa…...

PL/SQL语言的正则表达式

PL/SQL语言的正则表达式详解 在现代软件开发中,数据处理和文本处理是至关重要的环节之一。尤其是在数据库操作中,使用正则表达式来处理字符串数据能大幅提高效率和灵活性。PL/SQL(Procedural Language/SQL)是Oracle数据库的过程性…...

C/C++中头文件time

在C/C中&#xff0c;<ctime>头文件提供了处理时间和日期的函数&#xff0c;这些函数允许你获取当前时间、计算时间差、格式化时间字符串等。以下是一些<ctime>头文件中常用函数的详细介绍和使用示例&#xff1a; time()&#xff1a;获取当前时间。 time_t currentT…...

【.NET】Kafka消息队列介绍,使用Confluent.Kafka集成Kafka消息队列

一、Kafka介绍 kafka是一种高吞吐量、分布式、可扩展的消息中间件系统&#xff0c;最初由LinkedIn公司开发。随着不断的发展&#xff0c;在最新的版本中它定义为分布式的流处理平台&#xff0c;现在在大数据应用中也是十分广泛。 它可以处理大量的实时数据流&#xff0c;被广…...

图像处理|膨胀操作

在图像处理领域&#xff0c;形态学操作是一种基于图像形状的操作&#xff0c;用于分析和处理图像中对象的几何结构。**膨胀操作&#xff08;Dilation&#xff09;**是形态学操作的一种&#xff0c;它能够扩展图像中白色区域&#xff08;前景&#xff09;或减少黑色区域&#xf…...

kali安装

2024年最新kali Linux安装教程&#xff08;超详细&#xff0c;图文并茂&#xff09;_kali安装-CSDN博客 【2024年最新版】Kali安装详细教程-CSDN博客 Kali Linux 安装过程 超详细&#xff08;图文并茂&#xff0c;通用版&#xff09;-腾讯云开发者社区-腾讯云...

【Python3】异步操作 redis

aioredis 在高版本已经不支持了&#xff0c; 不要用 代码示例 redis 连接池异步操作redis以及接口 import asyncio from sanic import Sanic from sanic.response import json import redis.asyncio as redis from redis.asyncio import ConnectionPool# 创建 Sanic 应用 app…...

C++ vtordisp的应用场景

文章目录 问题代码1. 基本概念回顾2. 应用场景虚继承与虚函数并存的类层次结构 3. 编译器相关考虑 问题代码 #include <iostream> using namespace std;class base { public:base() {}virtual void show() { cout << "base:: show"<<endl; } priv…...

花生好坏缺陷识别数据集,7262张图片,支持yolo,coco json,pasical voc xml格式的标注,识别准确率在95.7%

花生好坏缺陷识别数据集,7262张图片&#xff0c;支持yolo&#xff0c;coco json&#xff0c;pasical voc xml格式的标注&#xff0c;识别准确率在95.7% 数据集分割 训练组87&#xff05; 6353图片 有效集8% 606图片 测试集4% 303图片 预处理 自动定…...

递归构建树菜单节点

一、获取所有分类上下级信息 /*** 获取所有分类上下级信息*/ public R<List<ResearchTypeTreeVO>> getTypeTreeList(){//获取所有分类数据List<ResearchTypeVO> list ibResearchTypeService.getSuperList(null);List<ResearchTypeTreeVO> researchTy…...

物联网无线芯片模组方案,设备智能化交互升级,ESP32-C3控制应用

无线交互技术的核心在于实现设备之间的无缝连接和数据传输。在智能家居系统中&#xff0c;各种智能设备如智能灯泡、智能插座、智能门锁等&#xff0c;都通过无线网络相互连接&#xff0c;形成一个互联互通的生态。 用户可以通过语音助手、手机APP或其他智能终端&#xff0c;远…...

【Unity万人同屏插件】使用手册 保姆级教程 GPU动画 Jobs多线程渲染

【万人同屏插件】 基于Dots技术&#xff0c;高性能实现3D、2D Spine渲染、海量单位锁敌/碰撞检测。同时通过自定义BRG渲染器绕过对Entities包的依赖&#xff0c;也就是不用写ECS代码即可拥有Entities Graphics的高性能渲染&#xff0c;使用传统开发方式BRG接管Renderer组件。 …...

结合前端的响应式开发深入理解设备像素比

前端响应式开发中设备像素比是一个绕不开的概念&#xff0c;彻底理解这个概念&#xff0c;我们首先要梳理清楚屏幕设备的物理像素&#xff08;Physical Pixel&#xff09;、逻辑像素&#xff08;Logical Pixel&#xff09;以及css像素&#xff08;px&#xff09;之前的区别和联…...

QT c++ 按钮 样式 设置按下和松开的背景颜色

上一篇文章&#xff0c;需要自定义类&#xff0c;本文使用样式设置按下和松开的背景颜色。 1.头文件 #ifndef WIDGET_H #define WIDGET_H #include <QWidget> //#include "CustomButton.h" #include <QVBoxLayout> //#include <QLinearGradient>…...

解决Docker冲突问题

错误&#xff1a;docker-ce-cli conflicts with 2:docker-1.13.1-210.git7d71120.el7.centos.x86_64 错误&#xff1a;docker-ce conflicts with 2:docker-1.13.1-210.git7d71120.el7.centos.x86_64 您可以尝试添加 --skip-broken 选项来解决该问题 您可以尝试执行&#xff1a;…...

C++之闭散列哈希表

目录 unordered_set和unordered_map 哈希概念 哈希表基本结构 哈希冲突 线性探测​编辑 二次探测 前几期我们学习了红黑树和红黑树的模拟实现&#xff0c;最终使用红黑树封装了map和set。本期开始我们将学习下一个重要的知识点---哈希表&#xff0c;最终使用哈希表封装u…...

微信小程序map组件所有markers展示在视野范围内

注意&#xff1a;使用include-points属性不生效&#xff0c;要通过createMapContext实现 <template><view class"map-box"><map id"map" class"map" :markers"markers" :enable-traffic"true" :enable-poi&…...

Ubuntu平台虚拟机软件学习笔记

Ubuntu平台上常见虚拟机软件 VirtualBox [Download]KVM/QEMU 1. VirtualBox 1.1 查看安装版本 VBoxManage -V2. KVM/QEMU KVM: Kernel-based Virtual Machine QEMU: Quick EMUlator 通义千问&#xff1a; virt-manager 既不是QEMU也不是KVM&#xff0c;而是用于管理和创建…...

EasyExcel数据的导入导出

1.easyExcel简介 EasyExcel是一个基于Java的、快速、简洁、解决大文件内存溢出的Excel处理工具。 他能让你在不用考虑性能、内存的等因素的情况下&#xff0c;快速完成Excel的读、写等功能。 EasyExcel 的主要特点如下&#xff1a; 1、高性能&#xff1a;EasyExcel 采用了异…...

CSS Grid 布局全攻略:从基础到进阶

文章目录 一.Grid 是什么二.示例代码1. 基础使用 - 固定宽高2.百分百宽高3.重复设置-repeat4.单位-fr5.自适应6.间距定义其他 一.Grid 是什么 CSS 中 Grid 是一种强大的布局方式&#xff0c;它可以同时处理行和列 Grid 和Flex有一些类似&#xff0c;都是由父元素包裹子元素使用…...

C语言的语法

C语言的语法与应用探讨 C语言作为一种高效的程序设计语言&#xff0c;自1970年代问世以来&#xff0c;一直在科学计算、系统编程、嵌入式系统等领域中扮演着重要角色。本文将深入探讨C语言的基本语法、数据结构、控制结构以及其在实际应用中的重要性。 一、C语言基础 1.1 数…...

Go中的context 包使用详解

context 包在 Go 中非常重要&#xff0c;特别是在处理并发和超时的场景下&#xff0c;它能让你在多个 goroutine 之间传递取消信号、超时控制或其他控制信息。context 是 Go 并发模型中的一个重要工具&#xff0c;尤其适用于 HTTP 请求、数据库操作、分布式系统等场景。 1. 基…...

通俗易懂之线性回归时序预测PyTorch实践

线性回归&#xff08;Linear Regression&#xff09;是机器学习中最基本且广泛应用的算法之一。它不仅作为入门学习的经典案例&#xff0c;也是许多复杂模型的基础。本文将全面介绍线性回归的原理、应用&#xff0c;并通过一段PyTorch代码进行实践演示&#xff0c;帮助读者深入…...

机器学习模型评估指标

模型的评估指标是衡量一个模型应用于对应任务的契合程度&#xff0c;常见的指标有&#xff1a; 准确率&#xff08;Accuracy&#xff09;: 正确预测的样本数占总样本数的比例。适用于类别分布均衡的数据集。 精确率&#xff08;Precision&#xff09;: 在所有被预测为正类的样…...

嵌入式软件C语言面试常见问题及答案解析(三)

嵌入式软件C语言面试常见问题及答案解析(三) 上一篇已经足够长了,再长也就有点不礼貌了,所以在这儿继续来总结分享那个面试中遇到的题目,文中的问题和提供的答案或者代码均代表个人的理解,如有不合理或者错误的地方,欢迎大家批评指正。 本文中题目列表 1. 编码实现子串定…...

LeetCode:165. 比较版本号(双指针 Java)

目录 165. 比较版本号 题目描述&#xff1a; 实现代码与解析&#xff1a; 双指针 原理思路&#xff1a; 165. 比较版本号 题目描述&#xff1a; 给你两个 版本号字符串 version1 和 version2 &#xff0c;请你比较它们。版本号由被点 . 分开的修订号组成。修订号的值 是它…...

Golang中遇到“note module requires Go xxx”后的解决方案,不升级Go版本!

前几天&#xff0c;需要对一个两年前写的项目添加点儿新功能&#xff0c;需要用到一个 Http 客户端包&#xff0c;于是就用了 https://github.com/go-resty/resty 这个插件包。 我先是直接在项目根目录下执行了以下包的安装命令&#xff1a; go get -v github.com/go-resty/res…...

ubuntu编译ijkplayer,支持rmvb以及mkv

1. 准备环境 sudo apt-get update apt install gcc yasm cmake python p7zip-full vim pkg-config autoconf automake build-essential dos2unix mercurial cmake-curse-gui -y apt-get -y --force-yes install libass-dev libtheora-dev libtool libva-dev libvdpau-dev libv…...

mysql之sql的优化方案(重点)

1、全字段匹配是最棒的 假如一个Staffs 这个表&#xff0c;将 name,age ,pos 组合成了一个联合索引&#xff0c;在where条件下&#xff0c;能够使用到的索引越多越好。 EXPLAIN SELECT * FROM staffs WHERE NAME July; EXPLAIN SELECT * FROM staffs WHERE NAME July AND age…...

使用Qt实现json数据的格式检测并序列化输出 Qt5.4.0环境

问题&#xff1a; 使用 Qt 实现 JSON 数据的格式检测&#xff0c;并输出各个键值 代码&#xff1a; widget.h #include <QWidget> #include <QJsonDocument> /*序列化 反序列化(F1查看帮助文档)*/ #include <QJsonObject> /*利用对象代表了一段json数据*/ …...