【MATLAB第112期】基于MATLAB的SHAP可解释神经网络回归模型(敏感性分析方法)
【MATLAB第112期】基于MATLAB的SHAP可解释神经网络回归模型(敏感性分析方法)
引言
该文章实现了一个可解释的神经网络回归模型,使用BP神经网络(BPNN)来预测特征输出。该模型利用七个变量参数作为输入特征进行训练。为了提高可解释性,应用了SHapley Additive exPlanations(SHAP),去深入了解每个参数对模型预测的贡献。
一、案例数据
1、导入数据
res = xlsread('数据集.xlsx'); %103行样本,7输入,1输出
x = res (:,1:end-1); %
y = res(:,end); % 最后一列为输出
2、数据标准化
该部分使用mapminmax函数对输入和输出数据进行标准化,将数据缩放到[-1, 1]范围内。
% 输入数据归一化
[x_norm, x_settings] = mapminmax(x',-1,1);
% 输出数据归一化
[y_norm, y_settings] = mapminmax(y',-1,1);normalization_x = x_settings;
save ('normalization_x.mat', 'x_settings');
normalization_y = y_settings;
save ('normalization_y.mat', 'y_settings');x_norm_t = x_norm';
y_norm_t = y_norm';
输入数据标准化:输入特征被标准化,标准化设置(x_settings)保存在名为normalization_x.mat的文件中,以便后续使用或反转标准化.
输出数据标准化:同样,输出数据被标准化,标准化设置(y_settings)保存在名为normalization_y.mat的文件中. 标准化后的数据被转置回原始方向,以保持模型进一步处理的一致性. 此步骤确保输入和输出数据适当缩放,以便于神经网络训练,从而有助于提高模型性能和收敛速度.
二、交叉验证和模型评估
该部分执行5折交叉验证以评估基于优化超参数构建的模型性能.
1、交叉验证设置
脚本使用K折交叉验证,numFolds = 5,将数据分成5个子集(折)。在每次迭代中,一个子集用于测试,其余子集用于训练模型.
2、模型训练和测试
对于每个折,使用cvpartition生成的索引将训练和测试数据分开. 使用BP神经网络(BPNN)训练模型,超参数设置:
% 训练模型neuron = 5;%% 创建网络net = newff(trainData', trainLabels', neuron);%% 设置训练参数net.trainParam.epochs = 1000; % 迭代次数 net.trainParam.goal = 1e-6; % 误差阈值net.trainParam.lr = 0.01; % 学习率
3、解释交叉验证结果
RMSE:交叉验证后,可以计算所有折的平均RMSE。如果所有折的RMSE值一致且相对较低,则表明模型对未见数据具有良好的泛化能力。如果RMSE值在各折之间变化较大,可能表明模型对训练数据敏感,这可能是过拟合的迹象.
R²(决定系数):R²值也应在所有折之间进行平均,以评估模型的拟合优度。较高的R²值表明模型能够解释目标变量的更大比例的方差。如果R²值较低,则可能表明模型未能很好地捕捉输入特征与目标之间的关系.
最终模型选择:完成交叉验证后,可以通过所有折的平均RMSE和R²总结模型的整体性能。这有助于选择在偏差和方差之间具有最佳权衡的模型.
通过训练数据集评估模型的预测性能
选择最优数据集进行可视化(折数=3)
三、SHAP分析
1、生成随机数据
在本部分,生成一组合成输入数据用于SHAP分析。这种合成数据允许在受控和一致的方式下评估模型的特征贡献。步骤包括:
样本数量:脚本设置生成的合成样本数量为80(numSamples = 80).
特征范围: 定义操作参数在特定范围内,选择训练数据中各个输入变量的最大值和最小值
VarMin = [137.0000 0 0 160.0000 4.7000 708.0000 640.6000]
VarMax = 1.0e+03 *[ 0.3660 0.1930 0.2600 0.2400 0.0190 1.0495 0.9020]
随机数据生成: 使用rand函数在定义的范围内为每个特征生成随机值,创建80个样本.
for i=1:size(x,2)
x_shap(:,i)=VarMin(i)+ (VarMax(i) - VarMin(i)) * rand(numSamples, 1);
end
此生成数据用于评估SHAP值并分析每个特征如何影响模型的预测。生成随机输入数据确保了SHAP分析中特征值的广泛范围,便于更全面地评估特征重要性.
2、计算SHAP值
该代码计算神经网络模型的SHapley Additive exPlanations(SHAP)值。SHAP值量化了每个特征对模型预测的贡献。该过程包括:
- 预分配SHAP值矩阵:初始化一个矩阵以存储所有输入样本和特征的SHAP值.
2.计算参考值:将参考值计算为所有输入特征的平均值,用于在排除或包含特征时进行比较.
3.计算SHAP值:对于每个输入样本,使用自定义的shapley_ann函数计算SHAP值,该函数迭代所有可能的特征组合以确定每个特征对预测的贡献.
4.自定义的shapley函数接受一个训练好的神经网络(net)、当前输入样本和参考值来计算每个特征的SHAP值。该方法提供了对单个特征如何影响模型输出的洞察.
% ------------------------------------
function shapValues = shapley(net, x_shap, refValue) % 假设您有一个名为'net'的训练好的网络% 使用Shapley公式计算SHAP值如果有7个特征,则依次分析每个特征的累计贡献值当分析第1个特征时,排除当前特征,即 1 0 0 0 0 0 0迭代所有可能的特征组合 for i=1:2^(D-1)xt1: 每个样本的特征变量输入值(处理后) 1*7xt2: 计算的每个样本平均值(处理后) 1*7xt3: 当分析不同特征时,将该特征值替换为平均值。 1*7shapValues=shapValues+net(xt3)-net(xt2) end
3、可视化
------蜂群图:为每个特征创建散点图(蜂群图),显示所有样本的SHAP值。特征值被标准化并颜色编码以提高可解释性.
包括轴标签、网格、框以提高清晰度以及带有操作参数标签的颜色条. 此SHAP摘要图有助于理解哪些特征对模型的预测影响最大以及特征在样本中的变化情况.显示每个特征对模型预测的贡献。
-----条形图
计算平均绝对SHAP值:计算每个特征的绝对SHAP值的平均值,以量化每个特征的整体重要性.
条形图可视化:创建一个水平条形图,特征按其平均绝对SHAP值排序。这提供了模型中特征重要性的清晰、排序表示. 结果的SHAP摘要条形图有助于识别哪些特征对模型的预测影响最大.
四、代码获取
1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,私信回复“112期”以及相应指令,即可获取对应下载方式。
相关文章:
【MATLAB第112期】基于MATLAB的SHAP可解释神经网络回归模型(敏感性分析方法)
【MATLAB第112期】基于MATLAB的SHAP可解释神经网络回归模型(敏感性分析方法) 引言 该文章实现了一个可解释的神经网络回归模型,使用BP神经网络(BPNN)来预测特征输出。该模型利用七个变量参数作为输入特征进行训练。为…...
小程序学习06——uniapp组件常规引入和easycom引入语法
目录 一 组件注册 1.1 组件全局注册 1.2 组件全局引入 1.3 组件局部引入 页面引入组件方式 1.3.1 传统vue规范: 1.3.2 通过uni-app的easycom 二 组件的类型 2.1 基础组件列表 一 组件注册 1.1 组件全局注册 (a)新建compoents文件…...
回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测
回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测 目录 回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 一、方法概述 CNN-BiLSTM-Attention多输入单输出回归预测方法旨在通过融合CNN的局…...
直接插入排序、折半插入排序、2路插入排序、希尔排序
本篇是排序专栏博客的第一篇,主要探讨以 “插入” 为核心思想的排序算法该如何实现 文章目录 一、前言二、直接插入排序1. 算法思想与操作分析2. 代码实现version 1version 2 3. 复杂度分析 三、折半插入排序1. 算法思想与操作分析2. 代码实现3. 复杂度分析 四、2路…...
HTML-列表标签
列表是一系列排列好的项目,主要分成两类:有序列表和无序列表。 有序列表是每个列表项前面有编号,呈现出顺序,就像下面这样。 1. 列表项 A 2. 列表项 B 3. 列表项 C无序列表则是列表项前面没有编号,只有一个列表符号&…...
计算机网络原理(一)
嘿! 新年的第一篇博客,大家新年快乐呀!希望大家新的一年要多多进步噢! 1.TCP/IP的四层/五层参考模型有哪些层,各层的特点是?计算机网络分层的好处是? TCP/IP 四层参考模型 应用层:直接为用户…...
扩散模型论文概述(二):Google系列工作【学习笔记】
视频链接:扩散模型论文概述(二):Google系列工作_哔哩哔哩_bilibili 本视频讲的是Google在图像生成的工作。 同样,第一张图片是神作,总结的太好了! 在生成式AI的时代,OpenAI和Google不…...
第四届计算机、人工智能与控制工程
第四届计算机、人工智能与控制工程 The 4th International Conference on Computer, Artificial Intelligence and Control Engineering 重要信息 大会官网:www.ic-caice.net 大会时间:2025年1月10-12日 大会地点:中国合肥 (安徽大学磬苑…...
UE4.27 Android环境下获取手机电量
获取电量方法 使用的方法时FAndroidMisc::GetBatteryLevel(); 出现的问题 但是在电脑上编译时发现,会发现编译无法通过。 因为安卓环境下编译时,包含 #include "Android/AndroidPlatformMisc.h" 头文件是可以正常链接的,但在电…...
【人工智能】基于Python与OpenCV构建简单车道检测算法:自动驾驶技术的入门与实践
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着自动驾驶技术的快速发展,车道检测作为自动驾驶系统中的一个重要组成部分,起着至关重要的作用。本文将介绍如何利用Python与OpenCV库构…...
永磁同步电机控制算法--最大转矩电流比控制(牛顿迭代法)
一、原理介绍 搭建了基于牛顿迭代法的MTPA双闭环矢量控制系统 二、仿真验证 在MATLAB/simulink里面验证所提算法,采用和实验中一致的控制周期1e-4,电机部分计算周期为1e-6。仿真模型如下所示: 对直接公式计算法和牛顿迭代法进行仿真对比验…...
基于51单片机(STC32G12K128)和8X8彩色点阵屏(WS2812B驱动)的小游戏《贪吃蛇》
目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、定时器02、矩阵按键模块3、8X8彩色点阵屏 四、主函数总结 系列文章目录 前言 《贪吃蛇》,一款经典的、怀旧的小游戏,单片机入门必写程序。 以《贪吃蛇》为载体,熟悉各种屏幕…...
Ceph 手动部署(CentOS9)
#Ceph手动部署、CentOS9、squid版本、数字版本19.2.0 #部署服务:块、对象、文件 一、部署前规划 1、兼容性确认 2、资源规划 节点类型节点名称操作系统CPU/内存硬盘网络组件安装集群节点CephAdm01CentOS94U/8GOS:40G,OSD:2*100GIP1:192.169.0.9(管理&集群),IP2:…...
Reactor测试框架之StepVerifier
Reactor测试框架之StepVerifier 测试步骤1、创建StepVerifier实例2、添加断言3、执行验证 代码实例 在响应式编程中,Reactor框架提供了StepVerifier测试类,用于对响应式序列进行断言和验证。StepVerifier主要用于对Publisher发出的元素序列进行逐步的、精…...
unity 播放 序列帧图片 动画
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、方法一:代码控制播放序列帧1、设置图片属性2、创建Image组件3、简单的代码控制4、挂载代码并赋值 二、方法二:直接使用1.Image上添加…...
1-markdown转网页样式页面 --[制作网页模板] 【测试代码下载】
markdown转网页 将Markdown转换为带有样式的网页页面通常涉及以下几个步骤:首先,需要使用Markdown解析器将Markdown文本转换为HTML;其次,应用CSS样式来美化HTML内容。此外,还可以加入JavaScript以增加交互性。下面我将…...
ubuntu 创建服务、查看服务日志
1. 在 /etc/systemd/system/ 下创建文件,名称为 xxx.service [Unit] DescriptionYour Service Description Afternetwork.target[Service] Typesimple ExecStart/path/to/your/service/executable Restarton-failure[Install] WantedBymulti-user.target2. 配置服务…...
[python3]Excel解析库-openpyxl
https://openpyxl.readthedocs.io/en/stable/ openpyxl 是一个用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件的 Python 库。它允许开发者创建、修改和保存电子表格,而无需依赖 Microsoft Excel 软件本身。openpyxl 支持读取和写入 Excel 的工作簿(Work…...
使用 LlamaIndex 构建智能文档查询系统
使用 LlamaIndex 构建智能文档查询系统 1. 环境准备2. 初始化模型3. 加载文档4. 构建索引和查询引擎5. 生成扩展查询6. 主函数7. 总结 在现代信息检索系统中,如何高效地从大量文档中提取出有用的信息是一个重要的挑战。本文将介绍如何使用 LlamaIndex 构建一个智能文…...
C++——继承
目录 前言 1. 继承的概念和定义 1.1 继承的概念 1.2 继承的定义 1.2.1 定义格式 1.2.2 继承基类成员访问方式的变化 1.3 继承类模板 2. 基类和派生类之间的转换 3. 继承中的作用域 3.1 隐藏规则 3.2 考察继承作用域相关选择题 4. 派生类的默认成员函数 4.1 4个常…...
01:C语言的本质
C语言的本质 1、ARM架构与汇编2、局部变量初始化与空间分配2.1、局部变量的初始化2.1、局部变量数组初始化 3、全局变量/静态变量初始化化与空间分配4、堆空间5、函数 1、ARM架构与汇编 ARM简要架构如下:CPU,ARM(能读能写),Flash(…...
Jmeter进阶篇(32)Jmeter 在 MySQL 数据库压测中的应用
一、引言 在当今数字化时代,数据库性能的优化对于企业的发展至关重要。随着业务量的不断增长,数据库需要承受越来越大的压力。MySQL作为一种广泛使用的开源数据库,其性能和稳定性备受关注。为了确保数据库在高负载情况下能够正常运行,进行压测是必不可少的环节。Jmeter作为…...
TCPDump参数详解及示例
TCPDump参数详解及示例 TCPDump参数详解TCPDump -G的示例TCPDump -i any -s 2048 -G 600 -p udp -Z root -n -X -tt -w %Y_%m%d_%H%M_%S.pcap &的含义TCPDump是一款强大的网络数据包截获分析工具,可以将网络中传送的数据包的完全截获下来提供分析。它支持针对网络层、协议…...
Protocol Buffer
1、什么是 Protocol Buffers? Protocol Buffers (protobuf) 是一种序列化结构化数据的方法,由 Google 开发。它们提供了一种与语言无关、与平台无关且可扩展的机制,用于高效序列化结构化数据。 Protocol Buffers 中的…...
高等数学学习笔记 ☞ 连续与间断
1. 连续 1. 点连续定义: 设函数在点的某邻域内有定义,取附近的点,对应的函数值分别和, 令,当时,若,则称函数在点处连续。 记作。 此式为增量形式。 又知,则可改写为:。 …...
【three.js】Shader着色器
原始着色器材质RawShaderMaterial 两种着色器材质的 RawShaderMaterial 和 ShaderMaterial 的区别和用法 区别: ShaderMaterial 会自动将一些初始化着色器的参数添加到代码中(内置 attributes 和 uniforms) RawShaderMaterial 则什么都不会添…...
在 macOS 中,设置自动将文件夹排在最前
文章目录 1、第一步访达设置2、第二步排序方式 需要两步设置 1、第一步访达设置 按名称排序的窗口中 2、第二步排序方式 选择名称...
创建并配置华为云虚拟私有云
目录 私有云 创建虚拟私有云 私有云 私有云是一种云计算模式,它将云服务部署在企业或组织内部的私有基础设施上,仅供该企业或组织内部使用,不对外提供服务.私有云的主要特点包括: 私密性:私有云的资源(如…...
Spark是什么?Flink和Spark区别
Spark是什么?Flink和Spark区别 一、Spark二、Spark和Flink区别三、总结 一、Spark Apache Spark 是一个开源的大数据处理框架,主要用于大规模数据处理和分析。它支持多种数据处理模式,包括批处理、流处理、SQL 查询、机器学习和图处理等。 核…...
代码随想录 day 25
第七章 回溯算法 part04 491.递增子序列 本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。 https://programmercarl.com/0491.%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97.html 视频讲解:https://www.bilibili.com/…...
数据仓库中的指标体系模型介绍
数据仓库中的指标体系介绍 文章目录 数据仓库中的指标体系介绍前言什么是指标体系指标体系设计有哪些模型?1. 指标分层模型2. 维度模型3. 指标树模型4. KPI(关键绩效指标)模型5. 主题域模型6.平衡计分卡(BSC)模型7.数据指标框架模…...
xr-frame 通过shader去除视频背景色,加载透明视频
目录 前言 实现思路 获取 XR 框架系统: 注册自定义效果 创建效果对象 渲染通道配置 着色器代码 顶点着色器 片元着色器(颜色分量g达到条件的片元将被透透明) effect-removeBlack 完整代码 wxml中使用 前言 实现了一个用于注册自定…...
论文解读 | NeurIPS'24 IRCAN:通过识别和重新加权上下文感知神经元来减轻大语言模型生成中的知识冲突...
点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 点击 阅读原文 观看作者讲解回放! 作者简介 史丹,天津大学博士生 内容简介 大语言模型(LLM)经过海量数据训练后编码了丰富的世界知识。最近的研究表明,…...
Kraft模式安装Kafka(含常规、容器两种安装方式)
一、#创作灵感# 公司使用Kafka的软件项目较多,故写技术笔记巩固知识要点 二、软件环境 - Kafka 3.9.0 官方下载地址:Kafka 3.9.0 - Docker Desktop 4.37 容器图形化工具 官方下载地址:Docker Desktop 4.37 特别说明 - Docker Desktop…...
旷视科技C++面试题及参考答案
在 Linux 系统下常用的命令有哪些? 在 Linux 系统中有许多常用命令。首先是文件和目录操作相关的命令。“ls” 命令用于列出目录的内容,它有很多选项,比如 “ls -l” 可以以长格式显示文件和目录的详细信息,包括文件权限、所有者、大小、修改时间等;“ls -a” 则会显示所有…...
IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)
时序预测 | MATLAB实现IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元) 目录 时序预测 | MATLAB实现IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现IWOA-GRU和GRU时间序列预测…...
edeg插件/扩展推荐:助力生活工作
WeTab 此插件在我看来有2个作用 1.改变edeg的主页布局和样式,使其更加精简,无广告 2.提供付费webtab Ai(底层是chatGpt) 沉浸式翻译 此插件可翻译网页的内容 假设我们浏览github 翻译前 翻译后 Better Ruler 可以对网页的距离进行测量 适合写前端的小伙伴 用法示例:...
TPS和QPS的区别
TPS全称(Transactions Per Second)QPS全称(Queries Per Second)它们都是衡量系统性能的指标,都是表示单位时间内处理的事务或者查询的数量 TPS 定义:TPS指的是系统每秒可以处理的事务数量,一个…...
鸿蒙HarmonyOS开发:拨打电话、短信服务、网络搜索、蜂窝数据、SIM卡管理、observer订阅管理
文章目录 一、call模块(拨打电话)1、使用makeCall拨打电话2、获取当前通话状态3、判断是否存在通话4、检查当前设备是否具备语音通话能力 二、sms模块(短信服务)1、创建短信2、发送短信 三、radio模块(网络搜索&#x…...
如何处理 JavaScript 中的函数防抖问题?
在 JavaScript 中,函数防抖(Debouncing)是一种控制函数执行频率的技术,通常用于处理用户输入事件(例如键盘输入、滚动事件等)。防抖的核心思想是:在连续触发某个事件时,只有在事件停…...
sql server期末复习
表操作 创建create 删除drop 修改alter 数据操作 查询 select from <tableName> 插入 insert into <tableName> values 修改 update <tableName> set 删除 delete from <tableName> 授权与收回对数据的操作权限 授予 grant <权…...
初学STM32 --- 外部SRAM
目录 SRAM简介 SRAM特性: XM8A51216 功能框图 8080并口读时序编辑 8080并口写时序 SRAM 读写操作步骤 FSMC介绍 FSMC时序介绍 FSMC控制器对内核地址映射编辑 FSMC HAL库相关驱动 SRAM驱动步骤 SRAM简介 静态随机存取存储器(Static Random-Access Memory&am…...
XXX公司面试真题
一、一面问题 1.线程池的主要参数 核心线程数最大线程数空闲线程存活时间存活时间单位任务队列线程工厂拒绝策略允许核心线程超时 2. 线程的状态 新建状态就绪状态运行状态阻塞状态死亡状态 补充:线程阻塞的原因 线程调用sleep()方法进入睡眠状态 线程得到一个…...
MySQL 01 02 章——数据库概述与MySQL安装篇
一、数据库概述 (1)为什么要使用数据库 数据库可以实现持久化,什么是持久化:数据持久化意味着将内存中的数据保存到硬盘上加以“固化”持久化的主要作用是:将内存中的数据存储在关系型数据库中,当然也可以…...
[读书日志]8051软核处理器设计实战(基于FPGA)第四篇:verilog语法特性
第一篇https://blog.csdn.net/m0_74021449/article/details/144796689 第二篇https://blog.csdn.net/m0_74021449/article/details/144813103 第三篇https://blog.csdn.net/m0_74021449/article/details/144834117 4.verilog硬件描述语言基础 这部分主要讲述verilog基础语法…...
大模型高效推理综述
大模型高效推理综述 1 Introduction2 Preliminaries2.1 transformer架构的LLM2.2 大模型推理过程2.3 推理效率分析 3 TAXONOMY(分类)4.数据级别优化4.1输入压缩4.1.1 提示词裁剪(prompt pruning)4.1.2 提示词总结(prompt summary)…...
HTML5实现好看的博客网站、通用大作业网页模板源码
HTML5实现好看的博客网站、通用大作业网页模板源码 前言一、设计来源1.1 主界面1.2 列表界面1.3 文章界面 二、效果和源码2.1 动态效果2.2 源代码 源码下载结束语 HTML5实现好看的博客网站、通用大作业网页模板源码,博客网站源码,HTML模板源码࿰…...
在Microsoft Windows上安装MySQL
MySQL仅适用于Microsoft Windows 64位操作系统,在Microsoft Windows上安装MySQL有不同的方法:MSI、包含您解压缩的所有必要文件的标准二进制版本(打包为压缩文件)以及自己编译MySQL源文件。 注意:MySQL8.4服务器需要在…...
adaface人脸特征提取之ncnn推理
目录 1. 背景2. 准备工作2.1 ncnn库下载2.2 adaface模型下载2.3 模型转换 3. 代码实现4. 模型量化 1. 背景 最近项目要求Android端使用adaface做人脸特征提取,最终选择ncnn作为推理框架 2. 准备工作 2.1 ncnn库下载 https://github.com/Tencent/ncnn/tree/maste…...
iOS 逆向学习 - iOS Security Features:硬件与软件多重防护体系
iOS 逆向学习 - iOS Security Features:硬件与软件多重防护体系 iOS 安全特性全面解析:构筑多层次防御体系一、iOS 的硬件安全特性1. Secure Enclave(安全隔区)2. Hardware Root of Trust(硬件信任根)3. De…...