当前位置: 首页 > news >正文

从0开始的opencv之旅(1)cv::Mat的使用

目录

Mat

存储方法

创建一个指定像素方式的图像。


尽管我们完全可以把cv::Mat当作一个黑盒,但是笔者的建议是仍然要深入理解和学习cv::Mat自身的构造逻辑和存储原理,这样在查找问题,或者是遇到一些奇奇怪怪的图像显示问题的时候能够快速的想到问题的跟源。这是笔者打算从这里开始的一个重要的目的

在实际上,我们有多种方法从现实世界获取数字图像:数码相机、扫描仪、计算机断层扫描和磁共振成像等。当然,对于每一个初学者,更多可能是从我们的摄像头开始的。在每种情况下,我们(人类)看到的都是图像。但是,当将其转换为我们的数字设备时,我们记录的是图像每个点的数值。也就是说,我们使用数值来存储记录图像的信息。然后真正显示的时候控制设备按照我们存储的信息还原出来。就是这样的,比如说下面这种

(这个图太经典了,任何一个阅读过《学习Opencv3》的朋友都会知道这张图片),我们人眼看到的是一个车子,但是对于计算机而言,只不过是一个包含像素点所有强度值的矩阵。我们获取和存储像素值的方式可能因我们的需求而异,但最终计算机世界中的所有图像都可以简化为数值矩阵和描述矩阵本身的其他信息。OpenCV 是一个计算机视觉库,其主要重点是处理和操纵这些信息。因此,您需要熟悉的第一件事是 OpenCV 如何存储和处理图像。

Mat

OpenCV 自 2001 年以来一直存在。当时,该库是围绕 C 接口构建的,为了将图像存储在内存中,他们使用了一个名为 IplImage 的 C 结构。这是您在大多数旧教程和教育材料中都会看到的。问题在于,它把 C 语言的所有缺点都带到了桌面上。最大的问题是手动内存管理。它建立在用户负责处理内存分配和释放的假设之上。虽然这对于较小的程序来说不是问题,但一旦您的代码库增长,处理所有这些问题就会更加困难,而不是专注于解决您的开发目标。

幸运的是,C++ 出现了,并引入了类的概念,通过自动内存管理(或多或少)让用户更容易使用。好消息是 C++ 与 C 完全兼容,因此进行更改不会出现兼容性问题。因此,OpenCV 2.0 引入了一个新的 C++ 接口,提供了一种新的方式,这意味着您不需要摆弄内存管理,从而使您的代码更简洁(编写更少,实现更多)。 C++ 接口的主要缺点是,目前许多嵌入式开发系统仅支持 C。因此,除非您针对的是嵌入式平台,否则使用旧方法是没有意义的(除非您是受虐狂程序员,而且您在自找麻烦)。

关于 Mat,您需要知道的第一件事是,您不再需要手动分配内存并在不需要时立即释放它。虽然这样做仍然是可能的,但大多数 OpenCV 函数都会自动分配其输出数据。如果您传递已经为矩阵分配所需空间的现有 Mat 对象,这将被重用,这是一个不错的奖励。换句话说,我们始终只使用执行任务所需的内存。

Mat 基本上是一个包含两个数据部分的类:矩阵头(包含矩阵大小、用于存储的方法、矩阵存储在哪个地址等信息)和指向包含像素值的矩阵的指针(根据选择的存储方法采用任何维度)。矩阵头大小是恒定的,但是矩阵本身的大小可能因图像而异,并且通常大几个数量级。

我们知道,OpenCV 是一个图像处理库。它包含大量图像处理函数。为了解决计算难题,大多数时候您最终会使用库中的多个函数。因此,将图像传递给函数是一种常见的做法。我们不应忘记,我们正在讨论图像处理算法,这些算法往往计算量很大。我们最不想做的事情是通过对可能很大的图像进行不必要的复制来进一步降低程序的速度。

为了解决这个问题,OpenCV 使用引用计数系统。这个想法是每个 Mat 对象都有自己的头,但是可以通过让它们的矩阵指针指向同一地址来在两个 Mat 对象之间共享矩阵。此外,复制运算符只会复制头和指向大矩阵的指针,而不是数据本身。

我们可以具备尝试性质的测试一下。比如说:

Mat A, C; // 仅创建头部分
A = imread(argv[1], IMREAD_COLOR); // 在这里我们将知道使用的方法(分配矩阵)
Mat B(A); // 使用复制构造函数
C = A; // 赋值运算符

所有上述对象最终都指向同一个数据矩阵,使用其中任何一个进行修改也会影响所有其他对象。实际上,不同的对象只是为相同的底层数据提供不同的访问方法。然而,它们的标题部分是不同的。现在您可能会问 - 如果矩阵本身可能属于多个 Mat 对象,那么当不再需要它时,谁负责清理它?简短的回答是:最后一个使用它的对象。这是通过使用引用计数机制来处理的。每当有人复制 Mat 对象的标题时,矩阵的计数器就会增加。每当清理标题时,此计数器就会减少。当计数器达到零时,矩阵将被释放。有时您也希望复制矩阵本身,因此 OpenCV 提供了 cv::Mat::clone() 和 cv::Mat::copyTo() 函数。

笔者在develop_example/examples/basic_usage示例子程序中书写了验证程序,看官可以移步查看。这是显示的效果:

(哦,实在是太长了)

值得一提的是,如果我们想要完全拷贝一个矩阵的时候:

Mat F = A.clone();
Mat G;
A.copyTo(G);

现在修改 F 或 G 不会影响 A 的标头指向的矩阵。您需要记住的是:

  • OpenCV 函数的输出图像分配是自动的(除非另有说明)。

  • 您无需考虑使用 OpenCV 的 C++ 接口进行内存管理。

  • 赋值运算符和复制构造函数仅复制标头。

  • 可以使用 cv::Mat::clone() 和 cv::Mat::copyTo() 函数复制图像的底层矩阵。

真正有趣的部分是,您可以创建仅引用完整数据的一部分的标题。例如,要在图像中创建感兴趣的区域 (ROI),只需创建一个新的头部:

Mat D (A, Rect(10, 10, 100, 100) ); // 使用矩形
Mat E = A(Range::all(), Range(1,3)); // 使用行和列边界

存储方法

这是关于如何存储像素值。您可以选择颜色空间和使用的数据类型。颜色空间是指我们如何组合颜色成分以编码给定的颜色。最简单的是灰度,其中我们可以处理的颜色是黑色和白色。这些组合使我们能够创建多种灰色阴影。

对于丰富多彩的方式,我们有更多的方法可供选择。它们中的每一个都将其分解为三个或四个基本组件,我们可以使用这些组合来创建其他组件。最流行的是 RGB,主要是因为这也是我们的眼睛构建颜色的方式。它的基本颜色是红色、绿色和蓝色。为了对颜色的透明度进行编码,有时会添加第四个元素 alpha (A)。

但是,还有许多其他颜色系统,每个都有自己的优势:

  • RGB 是最常见的,因为我们的眼睛使用类似的东西,但请记住,OpenCV 标准显示系统使用 BGR 颜色空间(红色和蓝色通道交换位置)组成颜色。

  • HSV 和 HLS 将颜色分解为色调、饱和度和值/亮度分量,这是我们描述颜色的更自然的方式。例如,您可能会忽略最后一个组件,从而使您的算法对输入图像的光照条件不太敏感。

  • YCrCb 是流行的 JPEG 图像格式。

  • CIE L*a*b* 是一个感知均匀的颜色空间,如果您需要测量给定颜色与另一种颜色的距离,它会派上用场。

每个构建组件都有自己的有效域。这导致了所使用的数据类型。我们如何存储组件定义了我们对其域的控制。最小的数据类型是 char,这意味着一个字节或 8 位。这可能是无符号的(因此可以存储从 0 到 255 的值)或有符号的(从 -127 到 +127 的值)。虽然在三个组件(如 RGB)的情况下,这个宽度已经提供了 1600 万种可能的颜色来表示,但我们可以通过对每个组件使用浮点(4 字节 = 32 位)或双精度(8 字节 = 64 位)数据类型来获得更精细的控制。不过,请记住,增加组件的大小也会增加内存中整个图片的大小。

关于这些内容,笔者后面会进行更加详细的介绍。

创建一个指定像素方式的图像。

你已经学会了如何使用 cv::imwrite() 函数将矩阵写入图像文件。(没有?你跳过了0.beginners的篇章,去看看吧)但是,出于调试目的,查看实际值会更方便。你可以使用 Mat 的 << 运算符来执行此操作。请注意,这仅适用于二维矩阵。 虽然 Mat 作为图像容器确实很有效,但它也是一个通用矩阵类。因此,可以创建和操作多维矩阵。你可以用多种方式创建 Mat 对象:对于二维和多通道图像,我们首先定义它们的大小:按行数和列数。然后,我们需要指定用于存储元素的数据类型和每个矩阵点的通道数。为此,我们根据以下约定构建了多个定义:

CV_[每项的位数][有符号或无符号][类型前缀]C[通道号]

例如,CV_8UC3 表示我们使用 8 位长的无符号字符类型,每个像素有三个这样的类型来形成三个通道。最多有四个通道的预定义类型。cv::Scalar 是四个元素的短向量。指定它,您可以使用自定义值初始化所有矩阵点。这样,你可以猜猜我们的灰度图是如何表达的呢?CV_8UC1!可以回去翻翻你数字图像处理的书!0~255,手指头一算一个字节就能表达!

    std::cout << "Creating a image of 2 x 2 (0, 0, 255) Image";cv::Mat simple_image(2, 2, CV_8UC3, cv::Scalar(0, 0, 255));std::cout << "Opencv Implement the override function of the "<< "ofstream to display the cv::Mat\n";std::cout << simple_image;  // will not be an error!

就是这样,我们创建了一个简单的,纯红色的图像(永远注意我们亲爱的Opencv使用的是BGR顺序来描述我们的图像!),你可以把行列拉大一些显示出来!

笔者的显示如上所示。各位看官可以看着玩!更改一下Scalar的值。

你还可以使用 C/C++ 数组并通过构造函数初始化

int sz[3] = {2,2,2};
Mat L(3,sz, CV_8UC(1), Scalar::all(0));

上例展示了如何创建一个多维矩阵。指定其维度,然后传递一个包含每个维度大小的指针,其余保持不变。

甚至可以是cv::Mat::create 函数:

M.create(4,4, CV_8UC(2));
cout << "M = "<< endl << " " << M << endl << endl;

另外,下面的这些内容属于想到了查函数的事情。笔者建议走马观花即可

Mat可以像使用Matlab函数那样的初始化方式

    std::cout << "Also, we can initalize the Mat as Matlab way";cv::Mat E = cv::Mat::eye(4, 4, CV_64F);std::cout << "E = " << std::endl << " " << E << std::endl << std::endl;cv::Mat O = cv::Mat::ones(2, 2, CV_32F);std::cout << "O = " << std::endl << " " << O << std::endl << std::endl;cv::Mat Z = cv::Mat::zeros(3, 3, CV_8UC1);std::cout << "Z = " << std::endl << " " << Z << std::endl << std::endl;

opencv自己还提供了其他的数据类型,比如说Point2D, Point3D。好消息是他们都实现了各自的打印函数。

    cv::Point2f     pt(0, 0);cv::Point3f     pt3(0, 0, 0);cv::Size        sz(10, 10);cv::Rect        rect(0, 0, 100, 100);cv::Scalar      color(255, 0, 0);cv::Range       range(0, 10);cv::Vec<int, 3> vec(0, 0, 0);cv::Vec3b       vec3b(0, 0, 0);cv::Vec3f       vec3f(0, 0, 0);cv::Vec3d       vec3d(0, 0, 0);// you can display themstd::cout << "pt = " << pt << std::endl;std::cout << "pt3 = " << pt3 << std::endl;std::cout << "sz = " << sz << std::endl;std::cout << "rect = " << rect << std::endl;std::cout << "color = " << color << std::endl;std::cout << "range = " << range << std::endl;std::cout << "vec = " << vec << std::endl;std::cout << "vec3b = " << vec3b << std::endl;std::cout << "vec3f = " << vec3f << std::endl;std::cout << "vec3d = " << vec3d << std::endl;

当然,你可以参考

opencv/samples/cpp/tutorial_code/core/mat_the_basic_image_container/mat_the_basic_image_container.cpp

来进一步学习。

笔者的所有源码地址:Charliechen114514/CCPixelCraft: A PixelLevel Image Convertor And Processor. Also Provide Opencv4 Tourial Usage... (github.com)

相关文章:

从0开始的opencv之旅(1)cv::Mat的使用

目录 Mat 存储方法 创建一个指定像素方式的图像。 尽管我们完全可以把cv::Mat当作一个黑盒&#xff0c;但是笔者的建议是仍然要深入理解和学习cv::Mat自身的构造逻辑和存储原理&#xff0c;这样在查找问题&#xff0c;或者是遇到一些奇奇怪怪的图像显示问题的时候能够快速的想…...

uniapp 微信小程序开发使用高德地图、腾讯地图

一、高德地图 1.注册高德地图开放平台账号 &#xff08;1&#xff09;创建应用 这个key 第3步骤&#xff0c;配置到项目中locationGps.js 2.下载高德地图微信小程序插件 &#xff08;1&#xff09;下载地址 高德地图API | 微信小程序插件 &#xff08;2&#xff09;引入项目…...

Activation Functions

Chapter4&#xff1a;Activation Functions 声明&#xff1a;本篇博客笔记来源于《Neural Networks from scratch in Python》&#xff0c;作者的youtube 其实关于神经网络的入门博主已经写过几篇了&#xff0c;这里就不再赘述&#xff0c;附上链接。 1.一文窥见神经网络 2.神经…...

【TextIn—智能文档解析与DocFlow票据AI自动化处理:赋能企业文档数字化管理与数据治理的双重利器】

TextIn—智能文档解析与票据AI自动化处理&#xff1a;赋能企业文档数字化管理与数据治理的双重利器 ​ 在数据驱动的时代&#xff0c;企业面临的挑战不仅在于海量数据的整理和响应速度的提高&#xff0c;更在于如何有效管理和利用这些日益增长的海量信息。尤其是在信息日趋多样…...

Quartus In-System Sources and Probes Editor 的使用说明

文章目录 前言使用说明参考资料 前言 Quartus 提供了 In-System Sources and Probes Editor 调试工具&#xff0c;通过 JTAG 接口使用该工具可以驱动和采样内部节点的逻辑值。即通过 Sources 功能来驱动 FPGA 内部信号&#xff0c;通过 Probes 功能来探测内部节点的逻辑值。在…...

【视觉SLAM:八、后端Ⅱ】

视觉SLAM后端的核心任务是估计相机的轨迹和场景的三维结构&#xff0c;这需要解决非线性优化问题。为了保证效率和精度&#xff0c;后端主要依赖以下两种方法&#xff1a;滑动窗口法&#xff08;基于局部优化的策略&#xff09;和位姿图优化&#xff08;基于全局优化的策略&…...

【大模型实战篇】LLaMA Factory微调ChatGLM-4-9B模型

1. 背景介绍 虽然现在大模型微调的文章很多&#xff0c;但纸上得来终觉浅&#xff0c;大模型微调的体感还是需要自己亲自上手实操过&#xff0c;才能有一些自己的感悟和直觉。这次我们选择使用llama_factory来微调chatglm-4-9B大模型。 之前微调我们是用两块3090GPU显卡&…...

多个DataV遍历生成

DataV是数据可视化工具 与Echart类似 相对Echart图标边框 装饰可选官网DataV 安装 npm install kjgl77/datav-vue3main.ts import DataVVue3 from kjgl77/datav-vue3 app.use(DataVVue3)多个DataV遍历生成 Vue3viteDataV为例:<template><div w50rem h25rem flex&qu…...

【JavaWeb后端学习笔记】MySQL的常用函数(字符串函数,数值函数,日期函数,流程函数)

MySQL函数 1、字符串函数2、数值函数3、日期函数4、流程函数 1、字符串函数 函数说明concat(s1, s2, …, sn)字符串拼接&#xff0c;将 s1, s2, …, sn 拼接成一个字符串lower(str)将字符串 str 全部转为小写upper(str)将字符串 str 全部转为大写lpad(str, n, pad)左填充&…...

开源AI智能名片2+1链动模式O2O商城小程序在流量留存与转化中的深度应用与优化策略

摘要 在数字化时代&#xff0c;企业面临的市场竞争日益激烈&#xff0c;传统的营销手段已难以满足当前市场的多样化需求。开源AI智能名片21链动模式O2O商城小程序作为一种创新的数字化营销工具&#xff0c;凭借其开源特性、AI智能名片功能、21链动模式以及O2O商城小程序的优势…...

API多并发识别、C#文字识别

在当今数字化转型的浪潮中&#xff0c;信息处理的速度和准确性成为了企业在市场中立足的关键因素之一。特别是在大数据时代&#xff0c;海量的信息需要被快速、精确的解析和利用&#xff0c;因此&#xff0c;这正是文字识别技术大放异彩的舞台。翔云平台针对市场需求&#xff0…...

JVM和异常

Java 虚拟机&#xff08;Java Virtual Machine&#xff0c;简称 JVM&#xff09; 概述 JVM 是运行 Java 字节码的虚拟计算机&#xff0c;它是 Java 程序能够实现 “一次编写&#xff0c;到处运行&#xff08;Write Once, Run Anywhere&#xff09;” 特性的关键所在。Java 程…...

设计模式 创建型 单例模式(Singleton Pattern)与 常见技术框架应用 解析

单例模式&#xff08;Singleton Pattern&#xff09;是一种创建型设计模式&#xff0c;旨在确保某个类在应用程序的生命周期内只有一个实例&#xff0c;并提供一个全局访问点来获取该实例。这种设计模式在需要控制资源访问、避免频繁创建和销毁对象的场景中尤为有用。 一、核心…...

idea( 2022.3.2)打包报错总结

一 报错 class lombok.javac.apt.LombokProcessor (in unnamed module 0x4fe64d23) cannot access class com.sun.tools.javac.processing.JavacProcessingEnvironment (in module jdk.compiler) because module jdk.compiler does not export com.sun.tools.javac.processing …...

基于SpringBoot在线竞拍平台系统功能实现十一

## 一、前言介绍&#xff1a;1.1 项目摘要 随着网络技术的飞速发展和电子商务的普及&#xff0c;竞拍系统作为一种新型的在线交易方式&#xff0c;已经逐渐深入到人们的日常生活中。传统的拍卖活动需要耗费大量的人力、物力和时间&#xff0c;从组织拍卖、宣传、报名、竞拍到成…...

kubernetes学习-Service

kubernetes学习-Service 1. Service说明2. 功能3.Service类型3.1 NodePort3.1.1 创建web-service.yaml3.1.2 创建web-pod.yaml3.1.3 部署3.1.4 验证 3.2 ClusterIP3.2.1 创建web-clusterIp-service.yaml3.2.2 创建web-clusterIp-pod.yaml3.2.3 部署3.2.4 验证 3.3 LoadBalancer…...

【bluedroid】A2dp Source播放流程源码分析(4)

接上集分析:【bluedroid】A2dp Source播放流程源码分析(3)-CSDN博客 蓝牙和AUDIO之间的接口 蓝牙和audio之间的通信是通过socket,管理socket中的文件是UIPC,UIPC管理两条socket。 A2DP_CTRL_PATH /data/misc/bluedroid/.a2dp_ctrl A2DP_DATA_PATH /data/misc/bluedroid…...

vue3基础,小白从入门到精通

目录 一、vue.js 简述 二、 下载 vue.esm-browser.js 这个模块文件 三、创建第一个Vue程序 3.1创建代码过程 四、v-on 五、循环遍历(v-for) 六、判断语法(v-if和v-show) 6.1节点的动态属性v-bind 6.2 用v-bind实现CSS样式绑定 一、vue.js 简述 Vue 3 是一款流行的 J…...

Go 如何优雅退出进程

优雅退出设计步骤 在 Go 项目中&#xff0c;设计优雅退出&#xff08;Graceful Shutdown&#xff09;时&#xff0c;通常需要确保在收到退出信号时&#xff0c;程序能够安全地清理资源并优雅地退出。以下是常见的优雅退出设计步骤&#xff1a; 步骤 1&#xff1a;创建 contex…...

#Vue3篇: 无感刷新token的原理JSESSIONID无感刷新和JWT接口刷新

基于这个后端是怎么更新token的 为了理解后端是如何更新 Token 的&#xff0c;我们需要考虑一个典型的基于 Token 的身份验证流程&#xff0c;特别是涉及 JSESSIONID 和自定义 Token&#xff08;如 JWT, JSON Web Token&#xff09;的情况。 下面我将介绍两种常见的更新 Token …...

从零开始学桶排序:Java 示例与优化建议

目录 一、桶排序的工作原理 二、适用场景 三、桶排序的时间复杂度 四、Java 实现桶排序 桶排序&#xff08;Bucket Sort&#xff09;是一种基于分桶的排序算法&#xff0c;适用于输入数据分布较均匀的场景。它通过将元素分配到不同的“桶”中&#xff0c;然后对每个桶内的元…...

自定义luacheck校验规则

安装运行环境 安装环境及源码解析&#xff0c;参考&#xff1a;LuaCheck校验原理解析 自定义校验规则 从代码中可以看出&#xff0c;定义一条规则有以下关键点&#xff1a; 需要定义告警信息&#xff1a;由键值对组成&#xff0c;key为告警编码&#xff08;不一定为纯数字&…...

Mac连接云服务器工具推荐

文章目录 前言步骤1. 下载2. 安装3. 常用插件安装4. 连接ssh测试5. 连接sftp测试注意&#xff1a;ssh和sftp的区别注意&#xff1a;不同文件传输的区别解决SSL自动退出 前言 Royal TSX是什么&#xff1a; Royal TSX 是一款跨平台的远程桌面和连接管理工具&#xff0c;专为 mac…...

【react】Redux的设计思想与工作原理

Redux 的设计理念 Redux 的设计采用了 Facebook 提出的 Flux 数据处理理念 在 Flux 中通过建立一个公共集中数据仓库 Store 进行管理&#xff0c;整体分成四个部分即: View &#xff08;视图层&#xff09;、Action &#xff08;动作&#xff09;、Dispatcher (派发器)、Stor…...

深入解析Android JNI:以Visualizer为例

深入解析Android JNI:以Visualizer为例 引言 Java Native Interface (JNI) 是Java平台提供的一种机制,允许Java代码与本地代码(如C/C++)进行交互。在Android开发中,JNI被广泛用于性能优化、访问底层系统API、以及复用现有的C/C++库。本文将通过Android中的Visualizer类,…...

Java基于SpringBoot的甘肃非物质文化网站的设计与实现,附源码

博主介绍&#xff1a;✌Java老徐、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&…...

Unity小白工作心得(无限记录)

24届毕业&#xff0c;11月才找到工作在一家小公司。工作两个月了&#xff0c;遇到最大的问题就是探索新知识&#xff0c;每天都是摸索式前进&#xff0c;因为工作面临着交付&#xff0c;你不得不想尽办法解决问题然后交给上面&#xff0c;但其他程序员用的引擎不一样&#xff0…...

STC单片机内部常见寄存器及其作用

STC单片机内部常见寄存器及其作用 STC单片机是基于8051架构的增强型单片机&#xff0c;广泛应用于嵌入式系统中。其内部有多个特殊功能寄存器&#xff08;SFR, Special Function Register&#xff09;&#xff0c;用于控制硬件模块&#xff08;如定时器、串口、中断等&#xf…...

【亚马逊云】基于Amazon EC2实例部署 NextCloud 云网盘并使用 Docker-compose 搭建 ONLYOFFICE 企业在线办公应用软件

文章目录 1. 部署EC2实例2. 安装 Docker 服务3. 安装docker-compose4. 创建Docker-compose文件5. 创建nginx.conf文件6. 运行docker-compose命令开始部署7. 访问ONLYOFFICE插件8. 访问NextCloud云盘9. 下载并启用ONLYOFFICE插件10. 上传文件测试11. 所遇问题12. 参考链接 1. 部…...

vim、watch、cp和mv

一、vim使用技巧 vim主配置文件&#xff1a;/etc/vimrc &#xff08;对所有用户都生效&#xff09; vim子配置文件&#xff1a;vim ~/.vimrc (只对当前用户生效&#xff09; 可写入&#xff1a; set nu 显示行号 ts2 tab键长度为两个空格&#xff08;默认为8个空格…...

【Linux】:线程安全 + 死锁问题

&#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;Linux—登神长阶 ⛺️ 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f442;&#x1f3fd;留言 &#x1f60d;收藏 &#x1f49e; &#x1f49e; &#x1f49e; 1. 线程安全和重入问题&…...

HarmonyOS Next 应用元服务开发-应用接续动态配置迁移保持迁移连续性

保证迁移连续性&#xff0c;由于迁移加载时&#xff0c;目标端拉起的应用可能执行过自己的迁移状态设置命令&#xff08;如&#xff1a;冷启动时目标端在onCreate中设置了INACTIVE&#xff1b;热启动时对端已打开了不可迁移的页面&#xff0c;迁移状态为INACTIVE等情况&#xf…...

重装操作系统后 Oracle 11g 数据库数据还原

场景描述&#xff1a; 由于SSD系统盘损坏&#xff0c;更换硬盘后重装了操作系统&#xff0c;Oracle数据库之前安装在D盘(另一个硬盘)&#xff0c;更换硬盘多添加一个盘符重装系统后盘符从D变成E&#xff0c;也就是之前的D:/app/... 变成了现在的 E:/app/...&#xff0c;重新安装…...

《Vue3实战教程》39:Vue3无障碍访问

如果您有疑问&#xff0c;请观看视频教程《Vue3实战教程》 无障碍访问​ Web 无障碍访问 (也称为 a11y) 是指创建可供任何人使用的网站的做法——无论是身患某种障碍、通过慢速的网络连接访问、使用老旧或损坏的硬件&#xff0c;还是仅处于某种不方便的环境。例如&#xff0c;…...

Linux-Redis哨兵搭建

环境资源准备 主机名IP端口号角色vm1192.168.64.156379/26379mastervm2192.168.64.166379/26379slavevm3192.168.64.176379/26379slave 6379为redis服务暴露端口号、26379为sentinel暴露端口号。 安装Redis # 包文件下载 wget https://github.com/redis/redis/archive/7.2.2…...

数据分析思维(六):分析方法——相关分析方法

数据分析并非只是简单的数据分析工具三板斧——Excel、SQL、Python&#xff0c;更重要的是数据分析思维。没有数据分析思维和业务知识&#xff0c;就算拿到一堆数据&#xff0c;也不知道如何下手。 推荐书本《数据分析思维——分析方法和业务知识》&#xff0c;本文内容就是提取…...

Go基础之环境搭建

文章目录 1 Go1.1 简介1.1.1 定义1.1.2 特点用途 1.2 环境配置1.2.1 下载安装1.2.2 环境配置1.2.2.1 添加环境变量1.2.2.2 各个环境变量理解 1.2.3 验证环境变量 1.3 包管理工具 Go Modules1.3.1 开启使用1.3.2 添加依赖包1.3.3 配置国内包源1.3.3.1 通过 go env 配置1.3.3.2 修…...

Flume的安装和使用

一、安装Flume 1. 下载flume-1.7.0 http://mirrors.shu.edu.cn/apache/flume/1.7.0/apache-flume-1.7.0-bin.tar.gz 2. 解压改名 tar xvf apache-flume-1.7.0-bin.tar.gz mv apache-flume-1.7.0-bin flume 二、配置Flume 1. 配置sh文件 cp conf/flume-env.sh.template …...

原生js封装ajax请求以及css实现提示效果和禁止点击效果

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0,user-scalableno"><title>本地模式网络切换</title>&l…...

idea 的 springboot项目spring-boot-devtools 自动编译 配置热部署

1&#xff0c;设置一 2&#xff0c;设置二 设置二&#xff08;旧版本&#xff09; CtrlShiftAlt/ 点击弹出框中Registry... 引入&#xff08;如果报错&#xff0c;换不同的版本&#xff09; <dependency><groupId>org.springframework.boot</groupId><a…...

算法 class 005 (对数器C语言实现)

对数器的概念&#xff1a; 用来测试你的算法是否正确。 怎么做呢&#xff1f; 1&#xff1a;比如&#xff0c;写个冒泡排序&#xff0c;作为对比的对象 2&#xff1a;生成一个随机数 数组&#xff0c;用来测试 3&#xff1a;用冒泡排序和你想要验证的那个排序算法&#xff0c;同…...

靶场搭建问题(技巧)总结

目录 DVWA靶场问题 待续、更新中...... DVWA靶场 问题 错误信息 Parse error: syntax error, unexpected ‘[’, expecting ‘)’ in C:\Softwares\phpstudy\PHPTutorial\WWW\dvwa\dvwa\includes\dvwaPage.inc.php on line 52 原因 phpstudy2018所使用的php版本过低&#xff0c…...

Elasticsearch DSL版

文章目录 1.索引库操作创建索引库&#xff1a;删除索引库&#xff1a;查询索引库&#xff1a;修改索引库&#xff1a;总结 2.文档操作创建文档&#xff1a;查询文档&#xff1a;删除文档&#xff1a;全量修改文档&#xff1a;增量修改文档&#xff1a;总结 3.DSL查询语法&#…...

在K8S中,Pod请求另一个Pod偶尔出现超市或延迟,如何排查?

在Kubernetes中&#xff0c;当Pod请求另一个Pod时偶尔出现超时或延迟&#xff0c;可能是由于多种原因造成的。以下是一些建立的排查步骤&#xff1a; 1. 检查网络配置和插件&#xff1a; 确认你的kubernetes集群使用了合适的网络插件&#xff08;如Calico、Flannel等&#xf…...

Echarts实现大屏可视化2

目录 一、效果展示 二、说明 2.1 销售额统计图表 2.2 全国热榜模块 三、边框图片【border-image】 3.1 使用场景 3.2 边框图片切图原理 3.3 边框图片语法【重要】 四、代码展示 4.1 展示页面 4.2 数据概览区域 4.3 监控区域 4.4 点位分布统计区域 4.5 设备数据统…...

HarmonyOS NEXT 应用开发练习:智能视频推荐

一、整体思路 本DEMO展示了如何在HarmonyOS NEXT平台上开发一个智能视频推荐应用。应用通过模拟的用户偏好数据&#xff0c;为用户推荐可能感兴趣的视频。用户可以通过滑动屏幕查看推荐的视频列表&#xff0c;并点击视频封面进入播放页面&#xff0c;本例中仅模拟点击效果&…...

FPGA(二)组成结构基础内容

1. FPGA的基本结构 FPGA主要由以下部分组成&#xff1a; &#xff08;1&#xff09;可编程逻辑单元&#xff08;CLB&#xff09;&#xff1a;CLB是FPGA中最基本的逻辑单元&#xff0c;由查找表&#xff08;LUT&#xff09;和触发器组成&#xff0c;可实现任意逻辑功能。查找表…...

linux中执行命令

1.1 命令格式 命令格式&#xff1a; 主命令 选项 参数&#xff08;操作对象&#xff09; 命令分为两类&#xff1a; 内置命令&#xff08; builtin &#xff09;&#xff1a;由 shell 程序自带的命令 外部命令&#xff1a;有独立的可执行程序文件&#xff0c;文件名即命令…...

《Java 数据结构》

《Java 数据结构》 1. 概述 Java 数据结构是计算机科学中的一种基础概念&#xff0c;它涉及到数据的组织和存储方式&#xff0c;以便能够高效地访问和修改数据。在 Java 中&#xff0c;数据结构通常通过类和接口来实现&#xff0c;这些类和接口提供了用于操作数据的各种方法。…...

C# 设计模式(结构型模式):装饰器模式

C# 设计模式&#xff08;结构型模式&#xff09;&#xff1a;装饰器模式 在软件开发中&#xff0c;面对需要扩展功能但又不想修改已有代码的情况时&#xff0c;装饰模式&#xff08;Decorator Pattern&#xff09;是一个非常有用的设计模式。装饰模式允许我们在不改变对象自身…...