当前位置: 首页 > news >正文

国产安路FPGA纯verilog视频图像去雾,基于暗通道先验算法实现,提供5套TD工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目
    • 国产安路FPGA相关方案推荐
    • 本博主已有的图像处理方案
  • 3、设计思路框架
    • 工程设计原理框图
    • 输入Sensor之-->GC0308摄像头
    • 输入Sensor之-->OV7725摄像头
    • 输入Sensor之-->OV5640摄像头
    • 输入Sensor之-->ADV7611芯片解码的HDMI
    • 输入Sensor之-->SC500 MIPI摄像头
    • FDMA图像缓存
    • 图像去雾模块详解
    • HDMI视频输出架构
    • 工程源码架构
  • 4、TD工程源码1详解:GC0308输入版本
  • 5、TD工程源码2详解:OV7725输入版本
  • 6、TD工程源码3详解:OV5640输入版本
  • 7、TD工程源码4详解:HDMI输入版本
  • 8、TD工程源码5详解:SC500-MIPI输入版本
  • 9、上板调试验证并演示
    • 准备工作
    • 国产安路FPGA图像去雾效果演示
  • 10、工程源码

国产安路FPGA纯verilog视频图像去雾,基于暗通道先验算法实现,提供5套TD工程源码和技术支持

1、前言

国产FPGA现状:

“苟利国家生死以,岂因祸福避趋之!”大洋彼岸的我优秀地下档员,敏锐地洞察到祖国的短板在于先进制程半导体的制造领域,于是本着为中华民族伟大复兴的中国梦贡献绵薄之力的初心,懂先生站在高略高度和长远角度谋划,宁愿背当代一世之骂名也要为祖国千秋万世谋,2018年7月,懂先生正式打响毛衣战,随后又使出恰勃纸战术,旨在为祖国先进制程半导体领域做出自主可控的战略推动;2019年初我刚出道时,还是Xilinx遥遥领先的时代(现在貌似也是),那时的国产FPGA还处于黑铁段位;然而才短短7年,如今的国产FPGA属于百家争鸣、百花齐放、八仙过海、神仙打架、方兴未艾、得陇望蜀、友商都是XX的喜极而泣之局面,此情此景,不得不吟唱老人家的诗句:魏武挥鞭,东临碣石有遗篇,萧瑟秋风今又是,换了人间。。。
目前对于国产FPGA优势有以下几点:
1:性价比高,与同级别国外大厂芯片相比,价格相差几倍甚至十几倍;
2:自主可控,国产FPGA拥有完整自主知识产权的产业链,从芯片到相关EDA工具;
3:响应迅速,FAE技术支持比较到位,及时解决开发过程中遇到的问题,毕竟中文数据手册;
4:采购方便,产业链自主可控,采购便捷;

工程概述

本文使用国产安路的PH1系列FPGA做基础的图像视频采集系统;视频输入源有多种,一种是板载的HDMI输入接口,另一种是传统摄像头,包括OV7725、OV5640和SC500;如果你的FPGA开发板没有视频输入接口,或者你的手里没有摄像头时,可以使用FPGA逻辑实现的动态彩条模拟输入视频,代码里通过parametr参数选择视频源,默认不使用动态彩条;FPGA首先对摄像头进行i2c初始化配置,然后采集摄像头视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频;然后视频送入纯verilog代码实现的图像去雾模块实现实时图像去雾;然后去雾视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;针对市场主流需求,本设计提供5套PDS工程源码,具体如下:
在这里插入图片描述
现对上述5套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为GC0308摄像头或者动态彩条,默认使用GC0308;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为640x480@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为640x480@60Hz,然后视频送入纯verilog代码实现的图像去雾模块实现实时图像去雾;然后去雾视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现视频图像去雾系应用;

工程源码2

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为OV7725摄像头或者动态彩条,默认使用OV7725;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为640x480@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为640x480@60Hz,然后视频送入纯verilog代码实现的图像去雾模块实现实时图像去雾;然后去雾视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现视频图像去雾系应用;

工程源码3

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为OV5640摄像头或者动态彩条,默认使用OV5640;FPGA首先使用纯Verilog实现的i2c总线对摄像头进行初始化配置,分辨率配置为1280x720@30Hz;然后采集输入视频,将输入的两个时钟传输一个RGB565像素的视频采集为一个时钟传输一个RGB888像素的视频;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为1280x720@60Hz;然后视频送入纯verilog代码实现的图像去雾模块实现实时图像去雾;然后去雾视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现视频图像去雾系应用;

工程源码4

开发板FPGA型号为国产安路–PH1A90SBG484-3;输入视频为HDMI视频,用笔记本电脑模拟,笔记本电脑通过HDMI线连接FPGA开发板的HDMI输入接口,板载的ADV7611芯片实现HDMI视频解码,FPGA使用纯Verilog实现的i2c总线对ADV7611进行初始化配置,分辨率配置为1920x1080@60Hz,输出RGB888视频给FPGA;然后视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RGB888视频,输出分辨率为1920x1080@60Hz;然后视频送入纯verilog代码实现的图像去雾模块实现实时图像去雾;然后去雾视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现视频图像去雾系应用;

工程源码5

开发板FPGA型号为国产安路–PH1A90SBG484-3;视频输入源为SC500摄像头,2 Lane模式,FPGA首先使用纯verilog实现的i2c模块对摄像头进行i2c初始化配置,配置为RAW10的分辨率为1920x1080@30Hz的2 Lane MIPI视频输出;然后MIPI视频送入安路FPGA自带的MIPI-DPHY硬核IP,解出HS和LP电路;然后HS电路视频信号送入纯verilog代码实现的MIPI-CSI2-RX模块,实现MIPI协议层解码;然后解码视频送入纯verilog代码实现的RAW10转RAW8模块输出RAW8视频,此时一个像素时钟下输出4个RAW8格式的像素数据;然后RAW8视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RAW8视频;然后RAW8视频送入纯verilog代码实现的RAW8转RGB888输出RGB888视频;然后RGB视频送入纯verilog代码实现的自动白平衡模块实现成像质量;然后RGB视频送入纯verilog代码实现的图像剪裁模块去掉边沿的黑色像素;然后视频送入纯verilog代码实现的图像去雾模块实现实时图像去雾;然后去雾视频送入安路官方提供的RGB转HDMI IP实现RGB转HDMI功能,输出分辨率为1920x1080@60Hz;最后视频通过板载HDMI输出接口送显示器显示即可;该工程适用于国产安路FPGA实现视频图像去雾系应用;

本博客描述了国产安路FPGA纯verilog视频图像去雾的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目

其实一直有朋友反馈,说我的博客文章太多了,乱花渐欲迷人,自己看得一头雾水,不方便快速定位找到自己想要的项目,所以本博文置顶,列出我目前已有的所有项目,并给出总目录,每个项目的文章链接,当然,本博文实时更新。。。以下是博客地址:
点击直接前往

国产安路FPGA相关方案推荐

鉴于国产FPGA的优异表现和市场需求,我专门开设了一个人国产安路FPGA专栏,里面收录了基于国产安路FPGA的图像处理、UDP网络通信、GT高速接口、PCIE等博客,感兴趣的可以去看看,博客地址:
点击直接前往

本博主已有的图像处理方案

目前我这里已有的图像处理方案有很多,包括图像缩放、图像拼接、图像旋转、图像识别跟踪、图像去雾等等,所有工程均在自己的板子上跑通验证过,保证代码的可靠性,对图像处理感兴趣或有项目需求的兄弟可以参考我的图像处理专栏,里面包含了上述工程源码的详细设计方案和验证视频演示:
直接点击前往

3、设计思路框架

工程设计原理框图

工程设计原理框图如下:
在这里插入图片描述

输入Sensor之–>GC0308摄像头

输入Sensor是本工程的输入设备,其一为GC0308摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出GC0308摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
!!!注意!!!图像去雾工程中,动态彩条不可用;

GC0308摄像头需要i2c初始化配置,本设计配置为640x480@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,GC0308摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将GC0308摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>OV7725摄像头

输入Sensor是本工程的输入设备,其一为OV7725摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出OV7725摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
!!!注意!!!图像去雾工程中,动态彩条不可用;

OV7725摄像头需要i2c初始化配置,本设计配置为640x480@60Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV7725摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将OV7725摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>OV5640摄像头

输入Sensor是本工程的输入设备,其一为OV5640摄像头,此外本博主在工程中还设计了动态彩条模块,彩条由FPGA内部逻辑产生,且是动态移动的,完全可模拟Sensor,输入源选择Sensor还是彩条,通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出OV5640摄像头采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
!!!注意!!!图像去雾工程中,动态彩条不可用;

OV5640摄像头需要i2c初始化配置,本设计配置为1280x720@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV5640摄像头还需要图像采集模块实现两个时钟输出一个RGB565的视频转换为一个时钟输出一个RGB888视频,本设计提供纯verilog代码实现的图像采集模块实现配置功能;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;将OV5640摄像头配置采集和动态彩条进行代码封装,形成helai_OVsensor.v的顶层模块,整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>ADV7611芯片解码的HDMI

输入Sensor是本工程的输入设备,其一为板载的HDMI输入接口;输入源为板载的HDMI输入接口或动态彩条,分辨率为1920x1080@60Hz,使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;HDMI解码方案为芯片解码,使用ADV7611,可将输入的HDMI视频解码为RGB888视频;FPGA纯verilog实现的i2c配置模块完成对ADV7611芯片的配置,分辨率配置为1920x1080@60Hz;可以通过Sensor模块的顶层参数配置,默认选择Sensor输入;Sensor模块如下:
在这里插入图片描述
SENSOR_TYPE=0;则输出HDMI接口采集的视频;
SENSOR_TYPE=1;则输出动态彩条的视频;
!!!注意!!!图像去雾工程中,动态彩条不可用;
整个模块代码架构如下:
在这里插入图片描述

输入Sensor之–>SC500 MIPI摄像头

输入Sensor是本工程的输入设备,其一为SC500 MIPI摄像头,2 Lane模式,FPGA首先使用纯verilog实现的i2c模块对摄像头进行i2c初始化配置,配置为RAW10的分辨率为1920x1080@30Hz的2 Lane MIPI视频输出;然后MIPI视频送入安路FPGA自带的MIPI-DPHY硬核IP,解出HS和LP电路;然后HS电路视频信号送入纯verilog代码实现的MIPI-CSI2-RX模块,实现MIPI协议层解码;然后解码视频送入纯verilog代码实现的RAW10转RAW8模块输出RAW8视频,此时一个像素时钟下输出4个RAW8格式的像素数据;然后RAW8视频送入本博主常用的FDMA图像缓存架构实现视频3帧缓存功能,本设计使用DDR3作为缓存介质;然后Native视频时序控制图像缓存架构从DDR3中读取视频,并做Native视频时序同步,输出RAW8视频;然后RAW8视频送入纯verilog代码实现的RAW8转RGB888输出RGB888视频;然后RGB视频送入纯verilog代码实现的自动白平衡模块实现成像质量;然后RGB视频送入纯verilog代码实现的图像剪裁模块去掉边沿的黑色像素;
关于SC500 MIPI摄像头解码和ISP处理的详细设计细节,请参考博主之前发布的博客,博客链接如下:
点击直接前往

FDMA图像缓存

FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中再读出送后续模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了安路官方的MIG IP核作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为3帧缓存;图像缓存模块代码架构如下:
在这里插入图片描述

图像去雾模块详解

图像去雾模块设计架构如下:
在这里插入图片描述
图像去雾模块代码架构如下:
在这里插入图片描述
图像去雾模块顶层接口如下:

module defogging_top (input		  pixelclk     ,	//像素时钟input         reset_n      ,	//低电平复位input  [23:0] i_rgb        ,	//原始图像像素数据input		  i_hsync      ,	//原始图像行同步input		  i_vsync      ,	//原始图像场同步input		  i_de         ,	//原始图像数据有效input [7:0]   i_thre       ,	//大气光阈值,初始值为8'd26,数值越小,去雾效果越好output [23:0] o_defog_rgb  ,	//去雾图像像素数据output		  o_defog_hsync,	//去雾图像行同步output		  o_defog_vsync,	//去雾图像场同步    output		  o_defog_de    	//去雾图像数据有效          
);

图像去雾模块由纯verilog代码实现,采用暗通道先验算法理论,由3个模块顺序执行,3个模块内部并行执行,实现了FPGA加速算法的目的,分别由求RGB最小值模块、求折射率模块、图像去雾组成;
求RGB最小值的目的是实时的比较求出每个像素点RGB分量的最小值,也就是暗通道,该模块顶层接口如下:
在这里插入图片描述
求折射率的目的是输出暗通道最大值和折射率,该模块顶层接口如下:
该模块有个i_thre输入接口,该接口为阈值,初始值为26,数值越小,去雾效果越好,vivado工程中通过VIO动态控制;
在这里插入图片描述
图像去雾的目的是输出暗通道最大值和折射率,该模块顶层接口如下:
在这里插入图片描述

HDMI视频输出架构

缓存图像从DDR3读出后经过Native时序生成模块输出标准的VGA时序视频,然后经过纯verilog显示的RGB转HDMI模块输出HDMI差分视频;最后送显示器显示即可;代码例化如下:
在这里插入图片描述

工程源码架构

以工程3为例,工程源码架构如下:
在这里插入图片描述

4、TD工程源码1详解:GC0308输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:GC0308摄像头或FPGA内部动态彩条,分辨率640x480@30Hz;
输出:HDMI,RTL编码,分辨率640x480@60Hz;
图像处理:纯Verilog代码实现的实时图像去雾;
图像去雾算法:暗通道先验算法;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA纯verilog视频图像去雾的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、TD工程源码2详解:OV7725输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:OV7725摄像头或FPGA内部动态彩条,分辨率640x480@30Hz;
输出:HDMI,RTL编码,分辨率640x480@60Hz;
图像处理:纯Verilog代码实现的实时图像去雾;
图像去雾算法:暗通道先验算法;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA纯verilog视频图像去雾的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、TD工程源码3详解:OV5640输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:OV5640摄像头或FPGA内部动态彩条,分辨率1280x720@30Hz;
输出:HDMI,RTL编码,分辨率1280x720@60Hz;
图像处理:纯Verilog代码实现的实时图像去雾;
图像去雾算法:暗通道先验算法;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA纯verilog视频图像去雾的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、TD工程源码4详解:HDMI输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:HDMI或者FPGA内部动态彩条,ADV7611芯片解码方案,分辨率1920x1080@60Hz,笔记本电脑模拟输入源;
输出:HDMI,RTL编码,分辨率1920x1080@60Hz;
图像处理:纯Verilog代码实现的实时图像去雾;
图像去雾算法:暗通道先验算法;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA纯verilog视频图像去雾的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

8、TD工程源码5详解:SC500-MIPI输入版本

开发板FPGA型号:国产安路–PH1A90SBG484-3;
开发环境:TangDynasty 6.0.2;
输入:SC500摄像头;
摄像头详情:MIPI-2 Lane,RAW10颜色空间,分辨率1920x1080@30Hz;
输出:HDMI,RTL编码,分辨率1920x1080@60Hz;
图像处理:纯Verilog代码实现的实时图像去雾;
图像去雾算法:暗通道先验算法;
图像缓存方案:FDMA图像缓存,3帧缓存;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握国产安路FPGA纯verilog视频图像去雾的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:
在这里插入图片描述

9、上板调试验证并演示

准备工作

你需要有以下装备才能移植并测试该工程代码:
1:FPGA开发板;
2:OV7725或OV5640摄像头或笔记本电脑,没有则请使用FPGA内部生成的彩条;
3:HDMI传输线;
4:HDMI显示,要求分辨率支持1920x1080;

国产安路FPGA图像去雾效果演示

国产安路FPGA图像去雾效果演示如下:

FPGA图像去雾,工程源码分享

10、工程源码

工程源码如下:
在这里插入图片描述

相关文章:

国产安路FPGA纯verilog视频图像去雾,基于暗通道先验算法实现,提供5套TD工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目国产安路FPGA相关方案推荐本博主已有的图像处理方案 3、设计思路框架工程设计原理框图输入Sensor之-->GC0308摄像头输入Sensor之-->OV7725摄像头输入Sensor之--…...

利用大型语言模型增强边缘云 AI 系统安全性

大家读完觉得有帮助及的关注和点赞!!! 抽象 随着边缘计算和云系统在 AI 驱动应用中的广泛应用,如何在确保数据隐私的同时保持高效性能已成为一个紧迫的安全问题。本文提出了一种基于联邦学习的数据协作方法,以提高边缘…...

微信小程序中 rpx与px的区别

在微信小程序中的rpx比px方便的多 <!--pages/welcome/welcome.wxml--> <!--rpx替换px--> <image style"width:200rpx;height: 200rpx"src"/images/avatar/3.png"></image> <text>你好&#xff0c;冻梨</text> <but…...

解锁阿里云AnalyticDB:数据仓库的革新利器

AnalyticDB&#xff1a;云数据仓库新势力 在数字化浪潮中&#xff0c;数据已成为企业的核心资产&#xff0c;而云数据仓库作为数据管理与分析的关键基础设施&#xff0c;正扮演着愈发重要的角色。阿里云 AnalyticDB 作为云数据仓库领域的佼佼者&#xff0c;以其卓越的性能、创…...

告别水印烦恼,一键解锁高清无痕图片与视频!

在这个数字化飞速发展的时代&#xff0c;无论是设计小白还是创意达人&#xff0c;都可能遇到这样的困扰&#xff1a;心仪的图片或视频因水印而大打折扣&#xff0c;创意灵感因水印而受限。别急&#xff0c;今天就为大家带来几款神器&#xff0c;让你轻松告别水印烦恼&#xff0…...

前端面试记录

前言&#xff1a;面试题永远是刷不完的&#xff0c;即使刷了一大堆下次面试又忘记了&#xff0c;重要的是组织自己的语言&#xff0c;保持自信&#xff0c;不给自己制造面不过的心理负担&#xff0c;对刷过的题要有个大致印象&#xff0c;好在答题的时候能够多多少少说出点贴近…...

RAG实战基础篇/windows电脑快速部署qwen3:14B

现阶段&#xff0c;在本地部署ollama非常简单&#xff0c;准备好一个有GPU的电脑&#xff0c;十分钟轻松部署qwen3:14b。实现本地的大模型部署。 我这里为了方便起见&#xff0c;直接使用windows电脑下载一个ollama。 访问ollama GIthub地址&#xff1a;ollama开源地址 直接…...

Java SE - 图书管理系统模拟实现

目录 1.设计框架2. 实现用户类3.实现书和书架类4.登录界面的实现5.实现menu方法6.测试菜单选择7.实现一个IFun接口7.1 查找功能的实现7.2 展示功能的实现7.3 增加功能的实现7.4 删除功能的实现7.5 退出功能的实现7.6 借阅功能的实现7.7 归还功能的实现 8.实现IFuntion类型的数组…...

华为HN8145V光猫改华为蓝色公版界面,三网通用,xgpon公版光猫

咸鱼只卖20多元一个&#xff0c;还是xgpon的万兆猫&#xff0c;性价比不错哦 除了没有2.5G网口&#xff0c;其他还行。 改成公版光猫后&#xff0c;运营商是无法纳管光猫&#xff0c;无法后台修改光猫数据及超密。 华为 HN8145V 光猫具有以下特点&#xff1a; 性能方面 高速接…...

【ARM 嵌入式 编译系列 7.5 -- GCC 打印链接脚本各段使用信息】

文章目录 Overview1 在 linker script 中定义符号2 编译并生成 ELF 文件3 使用 nm awk 输出各段地址及大小&#xff08;含单位&#xff09;4 实际输出示例5 进阶建议 Overview 在 GCC 编译生成 elf 后 打印出出数据段的开始地址及结束地址&#xff0c;bss 段的开始地址和结束…...

在大数据求职面试中如何回答分布式协调与数据挖掘问题

在大数据求职面试中如何回答分布式协调与数据挖掘问题 场景&#xff1a;小白的大数据求职面试 小白是一名初出茅庐的程序员&#xff0c;今天他来到一家知名互联网公司的面试现场&#xff0c;面试官是经验丰富的老黑。以下是他们之间的对话&#xff1a; 第一轮提问&#xff1…...

小白成长之路--nginx基础配置(一)

文章目录 一、概述1.1 Nginx 特点1.2 Nginx 作用1.3Nginx工作原理 二、Nginx服务搭建2.1安装2.2 目录结构2.3 配置文件作用2.4 nginx,conf配置文件详解2.5 核心命令2.6 Nginx信号三.Nginx3.1启动 总结 一、概述 Nginx 是开源、高性能、高可靠的 Web服务器 和反向代理服务器&am…...

基于 SpringBoot+JSP 的医疗预约与诊断系统设计与实现

摘要 本研究针对传统医疗预约与诊断流程中存在的效率低下、信息不透明、患者等待时间长等问题&#xff0c;设计并实现了一个基于 SpringBootJSP 的医疗预约与诊断系统。系统采用 B/S 架构&#xff0c;整合了用户管理、科室管理、医生排班、预约挂号、在线问诊、检查检验、诊断…...

C++语言发展历程-2025

C语言发展历程-2025 前言 C是一种高级编程语言&#xff0c;由Bjarne Stroustrup于1979年在贝尔实验室创建&#xff0c;是C语言的扩展和改进版。 C从最初的C with class&#xff0c;经历了C98、C03、C11、C 14、C17、C20、C23多次标准化改造&#xff0c;成为一门多范式、高性…...

Zynq + FreeRTOS + YAFFS2 + SQLite3 集成指南

Zynq FreeRTOS YAFFS2 SQLite3 集成指南 一、系统架构设计 #mermaid-svg-qvuP6slyza89wsiT {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-qvuP6slyza89wsiT .error-icon{fill:#552222;}#mermaid-svg-qvuP6slyz…...

Python基础之函数

代码仓库地址&#xff1a;gitgithub.com:Liucc-123/python_learn.git 函数介绍 函数是组织好的、可重复使用的&#xff0c;用来实现单一、或相关功能的代码段。 函数可以提高应用的模块性和代码的可重复性。python 有许多内置的函数比如 print 打印函数&#xff0c;python 也…...

Python异步爬虫编程技巧:从入门到高级实战指南

Python异步爬虫编程技巧&#xff1a;从入门到高级实战指南 &#x1f680; &#x1f4da; 目录 前言&#xff1a;为什么要学异步爬虫异步编程基础概念异步爬虫核心技术栈入门实战&#xff1a;第一个异步爬虫进阶技巧&#xff1a;并发控制与资源管理高级实战&#xff1a;分布式…...

Redis哨兵模式深度解析与实战部署

Redis哨兵模式深度解析与实战部署 文章目录 Redis哨兵模式深度解析与实战部署一、Redis哨兵模式理论架构详解1.1 哨兵模式的核心架构组成基础架构拓扑图 1.2 哨兵节点的核心功能模块1.2.1 监控模块&#xff08;Monitoring&#xff09;1.2.2 决策模块&#xff08;Decision Makin…...

【软考高级系统架构论文】论边缘计算及其应用

论文真题 边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台(架构),就近提供边缘智能服务。边缘计算与云计算各有所长,云计算擅长全局性、非实时、长周期的大数据处理与分析,能够在长周期维护、业务决策支撑等领域发挥优势;…...

触摸屏(典型 I2C + Input 子系统设备)从设备树解析到触摸事件上报

触摸屏&#xff08;典型 I2C Input 子系统设备&#xff09;从设备树解析到触摸事件上报 以下是架构图&#xff0c;对触摸屏&#xff08;典型I2C Input子系统设备&#xff09;从设备树解析到触摸事件上报的全流程详细拆解&#xff0c;包含文字讲解和配套流程图&#xff1a; 注…...

Java中==与equals()方法的深度解析

作为Java后端开发者&#xff0c;我们经常会遇到需要比较两个对象是否相等的情况。在Java中&#xff0c;运算符和equals()方法都可以用于比较&#xff0c;但它们之间存在着本质的区别。 1. 运算符 是一个比较运算符&#xff0c;它的行为取决于比较的类型&#xff1a; 1.1 比较…...

qt常用控件--02

文章目录 qt常用控件--02toolTip属性focusPolicy属性styleSheet属性补充知识点按钮类控件QPushButton 结语 很高兴和大家见面&#xff0c;给生活加点impetus&#xff01;&#xff01;开启今天的编程之路&#xff01;&#xff01; 今天我们进一步c11中常见的新增表达 作者&…...

AI-Sphere-Butler之如何将豆包桌面版对接到AI全能管家~新玩法(一)

环境&#xff1a; AI-Sphere-Butler VBCABLE2.1.58 Win10专业版 豆包桌面版1.47.4 ubuntu22.04 英伟达4070ti 12G python3.10 问题描述&#xff1a; AI-Sphere-Butler之如何将豆包桌面版对接到AI全能管家~新玩法&#xff08;一&#xff09; 聊天视频&#xff1a; AI真…...

为什么android要使用Binder机制

1.linux中大多数标准 IPC 场景&#xff08;如管道、消息队列、ioctl 等&#xff09;的进程间通信机制 ------------------ ------------------ ------------------ | 用户进程 A | | 内核空间 | | 用户进程 B | | (User Spa…...

Apache SeaTunnel Flink引擎执行流程源码分析

目录 1. 任务启动入口 2. 任务执行命令类:FlinkTaskExecuteCommand 3. FlinkExecution的创建与初始化 3.1 核心组件初始化 3.2 关键对象说明 4. 任务执行:FlinkExecution.execute() 5. Source处理流程 5.1 插件初始化 5.2 数据流生成 6. Transform处理流程 6.1 插…...

XML读取和设置例子

在Qt C中&#xff0c;可以使用Qt的 QDomDocument类来读取、更新和保存XML文件。这个类提供了对XML文档的强大操作能力&#xff0c;支持通过DOM&#xff08;文档对象模型&#xff09;对XML进行读取、修改、添加和删除节点等操作。 下面是一个详细的例子&#xff0c;演示如何在Qt…...

数据标注师学习内容

目录 文本标注词性标注实体标注 图像标注语音标注 文本标注 词性标注 第一篇 第二篇 实体标注 点击这里 关系标注 事件标注 意图标注 关键词标注 分类标注 问答标注 对话标注 图像标注 拉框标注 关键点标注 2D标注 3D标注 线标注 目标跟踪标注 OCR标注 图像分类标注 语音…...

如何实现财务自由

如果有人告诉你&#xff0c;普通人也可以在5到10年内&#xff0c;而不是40到50年后实现财务自由、彻底退休&#xff0c;你会不会觉得对方在开玩笑&#xff1f;但这并非天方夜谭&#xff0c;《百万富翁快车道》的作者MJ德马科就是成功案例。他曾和多数人一样做底层工作&#xff…...

一些想法。。。

1.for里面的局部变量这种还是在for里面定义比较好 比如 for(int i 0;i<n;i){ int num; cin>>num; } 实不相瞒&#xff0c;有一次直接cin了i怎么都没看出来哪里错了。。。 2.关于long long 如果发现中间结果大约是10^9&#xff0c;就要考虑int 溢出 即用 long …...

基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架

基于分布式部分可观测马尔可夫决策过程与联邦强化学习的低空经济智能协同决策框架 摘要: 低空经济作为新兴战略产业,其核心场景(如无人机物流、城市空中交通、低空监测)普遍面临环境动态性强、个体观测受限、数据隐私敏感及多智能体协同复杂等挑战。本文创新性地提出一种深…...

github常用插件

一&#xff0c;文档辅助阅读系列&#xff1a;自动化wiki处理 1&#xff0c;deepwiki https://deepwiki.com/ 将我们看不懂的官方code文档转换为wiki&#xff0c;更加便于理解。 其实能够翻阅的仓库很有限&#xff0c;比如说&#xff1a; 但是有很多仓库并没有index&#xff…...

python3字典

1 字典简介 字典是一种可变容器模型&#xff0c;且可存储任意类型对象。字典每个基本元素都包括两个部分&#xff1a; 键&#xff08;key&#xff09;和键对应的值&#xff08;value&#xff09; 每个键值 key>value 对用冒号: 分割&#xff0c;每个对之间用逗号(,)分割&am…...

华为云 Flexus+DeepSeek 征文|增值税发票智能提取小工具:基于大模型的自动化信息解析实践

华为云 FlexusDeepSeek 征文&#xff5c;增值税发票智能提取小工具&#xff1a;基于大模型的自动化信息解析实践 前言背景 企业财务处理中&#xff0c;增值税发票信息手动提取存在效率低、易出错等痛点&#xff0c;华为云 Flexus 弹性算力联合 DeepSeek 大模型&#xff0c;通过…...

[特殊字符] OpenCV opencv_world 模块作用及编译实践完整指南

&#x1f4cc; 什么是 opencv_world 模块&#xff1f; opencv_world 是 OpenCV 官方提供的一个 大型集成动态库。它将 OpenCV 所有启用的模块&#xff08;例如 core, imgproc, highgui, videoio, dnn, photo 等&#xff09;打包到一个单一的动态库文件&#xff08;如 Linux 的…...

目标检测之YOLOv5到YOLOv11——从架构设计和损失函数的变化分析

YOLO&#xff08;You Only Look Once&#xff09;系列作为实时目标检测领域的标杆性框架&#xff0c;自2016年YOLOv1问世以来&#xff0c;已历经十余年迭代。本文将聚焦YOLOv5&#xff08;2020年发布&#xff09;到YOLOv11&#xff08;2024年前后&#xff09;的核心技术演进&am…...

Java的SpringAI+Deepseek大模型实战【二】

文章目录 背景交互方式1、等待式问答2、流式问答 设置角色环绕增强1&#xff09;修改controller2&#xff09;修改配置日志级别 处理跨域 背景 上篇【Java的SpringAIDeepseek大模型实战【一】】搭建起浏览器交互的环境&#xff0c;如何进行流式问答&#xff0c;控制台打印日志…...

OpenCV——霍夫变换

霍夫变换 一、霍夫变换原理二、霍夫线检测2.1、标准霍夫变换2.2、概率霍夫变换 三、霍夫圆检测3.1、霍夫圆检测的原理3.2、霍夫梯度法 一、霍夫变换原理 霍夫变换&#xff08;Hough TRansform&#xff09;是从图像中识别几何图形的基本方法&#xff0c;由Paul Hough于1962年提…...

线程池 JMM 内存模型

线程池 & JMM 内存模型 文章目录 线程池 & JMM 内存模型线程池线程池的创建ThreadPoolExecutor 七大参数饱和策略ExecutorService 提交线程任务对象执行的方法&#xff1a;ExecutorService 关闭线程池的方法&#xff1a;线程池最大线程数如何确定&#xff1f; volatile…...

PillarNet: Real-Time and High-PerformancePillar-based 3D Object Detection

​ECCV 2022 paper&#xff1a;[2205.07403] PillarNet: Real-Time and High-Performance Pillar-based 3D Object Detection&#xfeff; code&#xff1a;https://github.com/VISION-SJTU/PillarNet-LTS&#xfeff; 纯点云基于pillar3D检测模型 网络比较 SECOND 基于vo…...

配电抢修场景案例

以配电抢修场景为例来展示关键业务活动。配电抢修愿景分成业务逻辑、业务活动、业务特征、技术支撑、KPI五个层次&#xff0c;分别从策略、执行、评价、资源、协同5个方面描述配电抢修愿景的关键业务活动。...

H5新增属性

✅ 一、表单相关新增属性&#xff08;Form Attributes&#xff09; 这些属性增强了表单功能&#xff0c;提升用户体验和前端验证能力。 1. placeholder 描述&#xff1a;在输入框为空时显示提示文本。示例&#xff1a; <input type"text" placeholder"请输…...

C# Task 模式实现 Demo(含运行、暂停、结束状态)

下面是一个完整的 C# Task 实现示例&#xff0c;包含运行(Running)、暂停(Paused)和结束(Completed)状态控制&#xff1a; 1. 基本实现&#xff08;使用 CancellationToken 控制&#xff09; using System; using System.Threading; using System.Threading.Tasks;public cla…...

Docker健康检查

目录 1.命令 2.验证 1.命令 docker run -itd --name nginx -v data:/etc/nginx/ -v log:/var/log/ -p 8080:80 \ --health-cmd"curl http://127.0.0.1:80" \ --health-interval30s \ --health-timeout5s \ --health-retries3 \ --health-start-period18s \ nginx:…...

Linux笔记---线程控制

1. 线程创建&#xff1a;pthread_create() pthread_create() 是 POSIX 线程库&#xff08;pthread&#xff09;中用于创建新线程的函数。调用该函数后系统就会启动一个与主线程并发的线程&#xff0c;并使其跳转到入口函数处执行。 #include <pthread.h>int pthread_cr…...

【AI论文】扩展大型语言模型(LLM)智能体在测试时的计算量

摘要&#xff1a;扩展测试时的计算量在提升大型语言模型&#xff08;LLMs&#xff09;的推理能力方面已展现出显著成效。在本研究中&#xff0c;我们首次系统地探索了将测试时扩展方法应用于语言智能体&#xff0c;并研究了该方法在多大程度上能提高其有效性。具体而言&#xf…...

Spring--IOC容器的一些扩展属性

一、BeanFactoryPostProcessor和BeanPostProcessor BeanFactoryPostProcessor的作用是在实例化前修改BeanDefinition的属性 BeanPostProcessor的作用是在bean完成创建实例、填充属性之后&#xff0c;初始化阶段的前后都会对bean进行操作&#xff0c;使用postProcessBeforeIni…...

WebClient 功能介绍,使用场景,完整使用示例演示

WebClient 功能介绍 WebClient 是 Spring 5 中引入的响应式 HTTP 客户端&#xff0c;用于替代已弃用的 RestTemplate&#xff0c;专为异步非阻塞编程设计&#xff0c;基于 Reactor 框架实现。其核心功能包括&#xff1a; 异步与非阻塞 通过 Mono 和 Flux 处理请求与响应&#…...

[Java 基础]ArrayList

ArrayList 类是一个可以动态修改的数组&#xff0c;与普通数组的区别就是它是没有固定大小的限制。 ArrayList 的示意可以看 VCR&#xff1a;https://visualgo.net/en/array 创建 ArrayList 对象 final ArrayList<String> strings new ArrayList<>();这里创建 …...

用无人机和AI守护高原净土:高海拔自然保护区的垃圾检测新方法

这篇题为《Automatic Detection of Scattered Garbage Regions Using Small Unmanned Aerial Vehicle Low-Altitude Remote Sensing Images for High-Altitude Natural Reserve Environmental Protection》的论文&#xff0c;发表于 Environmental Science & Technology&am…...

《Redis高并发优化策略与规范清单:从开发到运维的全流程指南》

Redis高并发优化策略与规范清单&#xff1a;从开发到运维的全流程指南 在互联网应用的后端架构中&#xff0c;Redis凭借其高性能、高并发的特性&#xff0c;成为缓存和数据存储的首选方案。无论是电商抢购、社交平台的点赞计数&#xff0c;还是在线旅游平台的实时数据查询&…...