Elasticsearch与数据库数据一致性:最佳实践与解决方案
在现代应用程序中,Elasticsearch(ES)作为一个高效的分布式搜索引擎,常常与数据库一同使用,以提供强大的搜索、分析和数据可视化功能。然而,数据库和Elasticsearch之间的同步与一致性常常成为一个挑战。如何确保在数据库中进行的每一次操作(如插入、更新和删除)都能正确地反映到Elasticsearch中?如何处理两者之间的数据一致性问题?
本文将介绍如何保持Elasticsearch与数据库之间的数据一致性,探讨几种常见的解决方案,并给出实际的实现方式。
Elasticsearch与数据库数据一致性问题
1. 数据同步的挑战
在多数据源架构中,数据库通常用于存储持久化数据,而Elasticsearch用于为大规模的数据提供快速查询和分析功能。当数据库中的数据发生变化时,必须确保Elasticsearch中的索引也随之更新。否则,用户在进行搜索时可能会获得过时或不准确的结果。
常见的数据一致性问题包括:
- 延迟更新:数据库更新后,Elasticsearch的索引没有及时更新,导致搜索结果不准确。
- 数据丢失:由于网络故障或系统崩溃,部分数据未能正确同步到Elasticsearch中。
- 操作冲突:在高并发环境下,数据库与Elasticsearch之间的同步可能出现竞争条件,导致数据不一致。
2. 常见的解决方案
为了保证数据的一致性,通常会采用以下几种策略:
- 同步更新:每当数据库更新时,立即更新Elasticsearch索引。
- 异步更新:通过消息队列等异步机制,在数据库更新后异步更新Elasticsearch索引。
- 批量同步:定期从数据库中提取数据,批量同步到Elasticsearch。
下面将详细介绍每种策略,并给出实际实现的例子。
方案一:同步更新数据库与Elasticsearch
同步更新意味着当数据库发生插入、更新或删除操作时,必须立即在Elasticsearch中进行相应的更新。这种方式确保了数据库和Elasticsearch数据的一致性,但可能会对性能产生一定影响,特别是在高负载的情况下。
实现方法
- 使用Spring Data Elasticsearch
Spring Data Elasticsearch可以非常方便地实现同步更新。假设我们有一个User
实体,需要将用户信息同步到Elasticsearch中。
首先,创建一个User
实体并映射到Elasticsearch索引:
@Document(indexName = "user")
public class User {@Idprivate String id;@Field(type = FieldType.Text)private String name;@Field(type = FieldType.Integer)private Integer age;@Field(type = FieldType.Text)private String email;// getters and setters
}
然后,在服务层中,我们可以通过事务机制确保数据一致性:
@Service
public class UserService {@Autowiredprivate UserRepository userRepository;@Autowiredprivate UserJpaRepository userJpaRepository;@Transactionalpublic User addOrUpdateUser(User user) {// 保存到数据库User savedUser = userJpaRepository.save(user);// 同步到ElasticsearchuserRepository.save(savedUser);return savedUser;}@Transactionalpublic void deleteUser(String userId) {// 从数据库删除userJpaRepository.deleteById(userId);// 从Elasticsearch删除userRepository.deleteById(userId);}
}
展开
在上面的代码中,addOrUpdateUser
方法将数据先保存到数据库中,再同步到Elasticsearch中。这样,确保了数据的一致性。
方案二:异步更新数据库与Elasticsearch
异步更新是另一种常见的策略,它通过消息队列(如Kafka、RabbitMQ等)将更新操作异步地传递到Elasticsearch。这种方法可以减轻数据库的负担,避免同步更新可能带来的性能瓶颈,但也带来了可能的数据延迟和丢失问题。
实现方法
- 使用消息队列异步更新
首先,当数据库发生更新时,触发消息队列的生产者将更新操作发送到队列:
@Service
public class UserService {@Autowiredprivate KafkaTemplate<String, User> kafkaTemplate;public void sendUpdateToQueue(User user) {kafkaTemplate.send("user-update-topic", user);}
}
然后,消费者接收消息,并将数据更新到Elasticsearch:
@Service
public class UserConsumer {@Autowiredprivate UserRepository userRepository;@KafkaListener(topics = "user-update-topic", groupId = "user-group")public void listen(User user) {// 接收到消息后,更新Elasticsearch索引userRepository.save(user);}
}
在上面的例子中,我们通过Kafka将用户更新操作异步地发送到消息队列,然后通过消费者监听队列并将数据同步到Elasticsearch中。
异步更新的优势
- 性能提升:异步更新将更新操作从主业务流程中解耦,减少了数据库与Elasticsearch的直接交互,从而提升了性能。
- 可扩展性:通过使用消息队列,可以非常方便地扩展消费者来处理大量的同步任务。
异步更新的挑战
- 数据延迟:由于是异步操作,Elasticsearch中的数据可能会有一定的延迟,导致用户在搜索时看到的是过时的结果。
- 数据丢失:如果消息队列出现问题(如消费者崩溃、消息丢失等),可能会导致部分数据未能同步到Elasticsearch。
方案三:批量同步数据
在某些情况下,您可能不需要实时同步数据,而是通过定期的批量同步来保持数据库和Elasticsearch的一致性。这种方法适用于数据变化不频繁或者要求较低实时性的场景。
实现方法
- 定时任务批量同步
通过Spring的@Scheduled
注解可以实现定期任务,定期从数据库查询数据,并将其批量同步到Elasticsearch:
@Service
public class DataSyncService {@Autowiredprivate UserJpaRepository userJpaRepository;@Autowiredprivate UserRepository userRepository;@Scheduled(cron = "0 0 * * * ?") // 每小时同步一次public void syncData() {List<User> users = userJpaRepository.findAll();userRepository.saveAll(users);}
}
在这个例子中,我们使用了@Scheduled
注解来定时执行批量同步操作,每小时从数据库中查询所有用户并更新到Elasticsearch中。
批量同步的优势
- 性能友好:通过批量处理,避免了每次操作都需要实时同步到Elasticsearch,减轻了系统的负担。
- 实现简单:只需要定期从数据库查询数据,并通过批量操作更新Elasticsearch即可。
批量同步的挑战
- 延迟较高:批量同步可能导致数据延迟,不适合需要实时数据更新的应用场景。
- 可能导致数据不一致:如果数据库和Elasticsearch之间的同步时间较长,可能会在同步过程中出现数据不一致的情况。
总结
在实际项目中,选择何种数据同步策略需要根据具体的业务需求和系统架构来决定。每种方案都有其优点和缺点:
- 同步更新:适用于需要严格一致性的场景,但可能会影响性能。
- 异步更新:通过消息队列提高性能,适用于对实时性要求较低的场景,但可能存在数据延迟和丢失的风险。
- 批量同步:适用于数据更新不频繁的场景,简化了实现,但延迟较高。
根据您的应用需求和架构特点,选择合适的同步方案,并结合Elasticsearch的强大搜索能力和数据库的持久化特性,构建高效、可靠的系统。
相关文章:
Elasticsearch与数据库数据一致性:最佳实践与解决方案
在现代应用程序中,Elasticsearch(ES)作为一个高效的分布式搜索引擎,常常与数据库一同使用,以提供强大的搜索、分析和数据可视化功能。然而,数据库和Elasticsearch之间的同步与一致性常常成为一个挑战。如何…...
C# 基本语法
C# 基本语法 介绍 C#(读作 "C sharp")是一种现代的、面向对象的编程语言,由微软开发,并在2000年首次发布。它是.NET框架的一部分,被广泛用于开发各种类型的应用程序,包括桌面应用、Web应用、移…...
CDGA|浅析自动化对数据治理的深远影响
在数字化时代,数据治理已成为企业管理的核心议题之一。随着数据量的快速增长和复杂性的不断提升,传统的手工数据管理方式已难以满足企业的需求。而自动化技术的引入,为数据治理带来了新的动力,正在逐步改变数据治理的面貌。 自动化…...
【机器学习】【朴素贝叶斯分类器】从理论到实践:朴素贝叶斯分类器在垃圾短信过滤中的应用
🌟 关于我 🌟 大家好呀!👋 我是一名大三在读学生,目前对人工智能领域充满了浓厚的兴趣,尤其是机器学习、深度学习和自然语言处理这些酷炫的技术!🤖💻 平时我喜欢动手做实…...
小程序租赁系统的优势与应用探索
内容概要 小程序租赁系统,听起来很高大上,但实际上它比你想象的要实用得多!设想一下,几乎所有的租赁需求都能通过手机轻松解决。这种系统的便捷性体现在让用户随时随地都能发起租赁请求,而不再受制于传统繁琐的手续。…...
汇编环境搭建
学习视频 将MASM所在目录 指定为C盘...
ubuntu24.04使用open-vm-tools无法在主机和虚拟机之间拖拽文件夹
最近安装了vmware用ubuntu24.04作为虚拟机 然后发现无法在主机和虚拟机之间复制粘贴 然后安装了 sudo apt-get install open-vm-tools-desktop重启虚拟机,发现可以复制粘贴文字,但是文件和文件夹仍然不行 搜索发现是Ubuntu(22.04࿰…...
C++软件设计模式之模板方法模式
模板方法模式是面向对象软件设计模式之一,其主要意图是在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的情况下重新定义算法的某些特定步骤。 动机 在软件开发中,常常会遇到这样的情…...
20241231 机器学习ML -(2)KNN(scikitlearn)
1. build DKTree 递推创建Tree;当前维度找中位数分割 数据集 left set,Node(mid), right set. * 循环维度(当log(Nsample)>featureSize) 2. DKTree KNN search * 理论部分向量几何有介绍。 每个维度列中,中位数对应的数据点…...
Prometheus之终极指南(The Ultimate Guide to Prometheus)
Prometheus之终极指南 Prometheus 彻底改变了我们在现代 DevOps 生态系统中监控基础设施、应用程序和服务的方式。它不仅仅是一个工具;它是一个由指标收集、告警和实时监控组成的生态系统,受到 Uber、Google 和 SoundCloud 等组织的信任。在本文中&…...
如何使用Python调用淘宝api接口获取商品详情信息?
使用 Python 调用淘宝 API 接口获取商品详情信息,可按照以下步骤进行: 注册并获取 API 密钥 访问淘宝api文档,点击 “立即测试” 按钮,按照提示完成注册流程。注册成功后,登录测试平台,进入 “控制台” 页面…...
ubuntu 22下解决Unment dependencies问题
问题现象 在使用apt安装包的时候,出现如下错误: 解决方案 第一步 sudo apt-get -f install sudo apt-get update sudo apt-get upgrade第二步 sudo apt-get update sudo apt-get clean sudo apt-get autoremove第三步 sudo apt --fix-broken inst…...
leetcode 热题100(155. 最小栈)multiset c++
链接:155. 最小栈 - 力扣(LeetCode) 设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。 实现 MinStack 类: MinStack() 初始化堆栈对象。void push(int val) 将元素val推入堆栈。…...
某小程序sign签名参数逆向分析
文章目录 1. 写在前面2. 接口分析3. 分析还原 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python…...
阿里云redis内存优化——PCP数据清理
在阿里云安装了一个redis节点,今天使用时忽然想着点击了一下分析内存。好家伙,居然崩出了一个30多M的块出来。问题是我本地安装的redis没有这个啊,怎么奇怪冒出这个来了。 本着把系统用干榨尽的态度,研究了下这个问题的来源。网上…...
YOLOv10-1.1部分代码阅读笔记-head.py
head.py ultralytics\nn\modules\head.py 目录 head.py 1.所需的库和模块 2.class Detect(nn.Module): 3.class Segment(Detect): 4.class OBB(Detect): 5.class Pose(Detect): 6.class Classify(nn.Module): 7.class WorldDetect(Detect): 8.class RTDETRDec…...
java开发中注解汇总
注解作用位置注意mybatis Data Getter Setter ToString EqualsAndHashCode AllArgsConstructor NoArgsConstructor Data 代替:无参构造,get,set,toString,hashCode,equals Getter Setter 可放在类和方法上&…...
Java开发 PDF文件生成方案
业务需求背景 业务端需要能够将考试答卷内容按指定格式呈现并导出为pdf格式进行存档,作为紧急需求插入。导出内容存在样式复杂性,包括特定的字体(中文)、字号、颜色,页面得有页眉、页码,数据需要进行表格聚…...
Python机器学习笔记(十七、分箱、离散化、线性模型与树)
数据表示的最佳方法:取决于数据的语义,所使用的模型种类。 线性模型与基于树的模型(决策树、梯度提升树和随机森林)是两种成员很多同时又非常常用的模 型,它们在处理不同的特征表示时就具有非常不同的性质。我们使用w…...
[极客大挑战 2019]Http 1
进入环境: 检查源码发现有一个链接,但是这里没有绑定,需要手动跳转,打开后,发现提示: 这里就是需要我们从https://Sycsecret.buuoj.cn来访问它 因此我们抓包,使用referer:服务器伪造…...
最近学习shader的一些总结
旨在总结最近学习shader过程中一些关键要素,强化下记忆,如果有错误也烦请指出。 1.Properties 可调节变量,用于定义从外部传入到内部的变量, 以及外部通过访问这些变量名, 可以获取这些变量的值 其中定义时指定的类型, 在后文中类型不一定相同(基本不…...
庐山派K230学习日记1 从点灯到吃灰
1 简介 庐山派以K230为主控芯片,支持三路摄像头同时输入,典型网络下的推理能力可达K210的13.7倍(算力约为6TOPS)。支持CanMV,可作为AI与边缘计算平台 K230简介 K230芯片集成了两颗RISC-V处理器核心,双核…...
在Swagger(现称为OpenAPI)中各类@api之间的区别
在Swagger(现称为OpenAPI)中,ApiOperation 是用来描述单个API操作的注解。除此之外,Swagger还提供了其他一些类似的注解,它们用于不同层次或目的来增强API文档的详细程度和可读性。以下是这些注解及其之间的区别&#…...
【网络协议】开放式最短路径优先协议OSPF详解(二)
前言 第一部分:【网络协议】开放式最短路径优先协议OSPF详解(一) 在第一部分中,我们了解了链路状态路由协议并讨论了 OSPF 的工作原理,同时学习了如何配置 OSPF。在本章的第二部分中,我们将进一步探讨 OS…...
windows文件夹自定义右键调用powershell完成7zip加密打包
准备powershell脚本 2. regedit的路径是:计算机\HKEY_CLASSES_ROOT\Directory\shell\,在此项目下新增子项目diy_command\command,command的数据值为powershell D:\windowsProjects\directory_diy.ps1 %1 效果,点击后进入和power…...
MySQL 入门教程
MySQL是最流行的关系型数据库管理系统,在WEB应用方面MySQL是最好的RDBMS(Relational Database Management System:关系数据库管理系统)应用软件之一。 在本教程中,会让大家快速掌握MySQL的基本知识,并轻松使用MySQL数据库。 什么…...
BOOST 库在机器视觉中的应用及示例代码分析
一、引言 机器视觉是一门让计算机模拟人类视觉功能,对图像或视频数据进行理解、分析和决策的学科领域。在机器视觉的开发过程中,常常需要高效处理各种数据结构、进行数值计算、实现多线程并行处理以及运用优秀的算法框架等。BOOST 库作为一个功能强大、…...
第二十六天 自然语言处理(NLP)词嵌入(Word2Vec、GloVe)
自然语言处理(NLP)中的词嵌入(Word2Vec、GloVe)技术,是NLP领域的重要组成部分,它们为词汇提供了高维空间到低维向量的映射,使得语义相似的词汇在向量空间中的距离更近。以下是对这些技术的详细解…...
Log4j2 详解(异步日志打印及CSV格式日志输出)
Log4j2 详解 Apache Log4j2 是一个功能强大的 Java 日志记录框架,提供高性能和灵活的配置。本文档涵盖了 Log4j2 的核心功能及其详细使用方式,包括基础配置、异步日志、CSV 格式日志的输出以及使用注意事项。 一 Log4j2 基础概念与配置 1.1 Log4j2 介绍…...
[网络安全] DVWA之Content Security Policy (CSP) Bypass 攻击姿势及解题详析合集
CSP概念 CSP 是 Content Security Policy(内容安全策略)的缩写,是一种用于增强 Web 应用程序安全性的安全机制。它通过允许网站管理员控制页面中加载内容的来源来减少跨站脚本攻击(XSS)等常见的安全风险。 CSP 的工作…...
linux shell脚本 【分支结构case...in 、循环结构、函数】内附练习
1.思维导图 2.练习 1.定义一个find函数,查找ubuntu和root的gid 2.定义一个数组,写一个函数完成对数组的冒泡排序 bubble() {n${#arr[*]}for((i0;i<n-1;i));dofor((j0;j<n-1-i;j));doif ((arr[j]>arr[j1]));thentemp${arr[j]}arr[j]${arr[j1]}a…...
C# 设计模式(结构型模式):桥接模式
C# 设计模式(结构型模式):桥接模式 在软件设计中,我们经常会遇到系统的变化频繁,或者需要灵活扩展功能的场景。这时,桥接模式(Bridge Pattern)便显得尤为重要。桥接模式是一个结构型…...
RC充电电路仿真与分析
RC充电原理 下图是一个常见的RC充电电路:(假设R10K,C100nF) SW断开时,这个电路处于断路状态,C既没有充电也没有放电;SW闭合时,直流电源5V为电容C充电; 充电时电容两端…...
在 SQL 中获取第m个开始的n条记录方法汇总
在 SQL 中,要获取第m个开始的n条记录,主要取决于你使用的数据库系统和支持的功能。以要获取第10个开始的20条记录为例说明几种常见的方法: 1. 使用 LIMIT 和 OFFSET 适用于 MySQL、PostgreSQL 等支持 LIMIT 的数据库。 SELECT * FROM table…...
Linux 35.6 + JetPack v5.1.4之编译 pytorch
Linux 35.6 JetPack v5.1.4之编译 pytorch 1. 源由2. 折腾3. 构建步骤3.1 下载代码3.2 编译选项3.3 CUDA选项3.4 CUDA路径3.5 版本控制3.6 编译whl 4. 总结5. 参考资料 1. 源由 目前,有很多科研性质的自动导航的开源代码,例如: Linux 35.5…...
docker 部署nginx
1、拉取阿里的nginx镜像: docker pull crpi-k5k93ldwfc7o75ip.cn-hangzhou.personal.cr.aliyuncs.com/list_su/nginx:stable-perl 2、官方nginx镜像: docker pull nginx:stable-perl 3、创建挂载文件目录 mkdir nginx && cd nginx mkdir c…...
深入刨析数据结构之排序(上)
目录 1.内部排序 1.1概述 1.2插入排序 1.2.1其他插入排序 1.2.1.1 折半插入排序 1.2.1.2 2-路插入排序 1.3希尔排序 1.4快速排序 1.4.1起泡排序 1.4.2快速排序 1.4.2.1hoare版本 1.4.2.2挖坑版本 1.4.2.3前后指针版本 1.4.2.4优化版本 1.4.2.4.1小区间插入排序优…...
Java - 日志体系_Apache Commons Logging(JCL)日志接口库_桥接Logback 及 源码分析
文章目录 PreApache CommonsApache Commons ProperLogging (Apache Commons Logging ) JCL 集成logbackPOM依赖配置文件 logback.xml使用 源码分析jcl-over-slf4j 的工作原理1. LogFactory 的实现2. SLF4JLogFactory 和 Log 的实例化过程3. SLF4JLog 和 …...
力扣刷题:栈和队列OJ篇(下)
大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 目录 1.括号匹配问题(1)题目…...
QT:控件属性及常用控件(1)------核心控件及属性
一个图形化界面上的内容,不需要我们直接从零去实现 QT中已经提供了很多的内置控件: 按钮,文本框,单选按钮,复选按钮,下拉框等等。。。。。 文章目录 1.常用控件属性1.1 enabled1.2 geometry1.2.1 geometry…...
【juc】Lock锁和AQS的继承关系
目录 1. 说明2. Lock接口与AQS的关系2.1 Lock接口2.2 AQS(AbstractQueuedSynchronizer) 3. ReentrantLock与AQS的具体联系3.1 ReentrantLock的实现3.2 AQS在ReentrantLock中的作用 1. 说明 1.Lock锁和AQS(AbstractQueuedSynchronizer&#x…...
自学记录鸿蒙API 13:实现多目标识别Object Detection
起步:什么叫多目标识别? 无论是生活中的动物识别、智能相册中的场景分类,还是工业领域的检测任务,都能看到多目标识别的身影。这次,我决定通过学习HarmonyOS最新的Object Detection API(API 13)…...
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2022a 3.部分核心程序 (完整版代码包含详细中文注释和操作步骤视频)…...
C# 事件机制
C# 事件机制详解:从概念到实践 在 C# 中,事件机制是处理对象间通信的重要方式,尤其是在 GUI 应用程序(如 WPF、WinForms)中,事件用于响应用户交互(如按钮点击、鼠标移动等)。本文将…...
使用 Python 实现随机中点位移法生成逼真的裂隙面
使用 Python 实现随机中点位移法生成逼真的裂隙面 一、随机中点位移法简介 1. 什么是随机中点位移法?2. 应用领域 二、 Python 代码实现 1. 导入必要的库2. 函数定义:随机中点位移法核心逻辑3. 设置随机数种子4. 初始化二维裂隙面5. 初始化网格的四个顶点…...
GPT分区 使用parted标准分区划分,以及相邻分区扩容
parted 是一个功能强大的命令行工具,用于创建和管理磁盘分区表和分区。它支持多种分区表类型,如 MBR(msdos)、GPT(GUID Partition Table)等,并且可以处理大容量磁盘。parted 提供了一个交互式界…...
【Triton-ONNX】如何使用 ONNX 模型服务与 Triton 通信执行推理任务上-Triton快速开始
模型部署系列文章 前置-docker 理解:【 0 基础 Docker 极速入门】镜像、容器、常用命令总结前置-http/gRPC 的理解: 【HTTP和gRPC的区别】协议类型/传输效率 /性能等对比【保姆级教程附代码】Pytorch (.pth) 到 TensorRT (.plan) 模型转化全流程【保姆级教程附代码(二)】Pytor…...
问题记录:[FATAL] [1735822984.951119148]: Group ‘manipulator‘ was not found.
前言:最近仿照UR5手眼标定的例程,在新的机械臂上进行手眼标定,还准备用easy_hand手眼标定包。将机器人功能包导入到工作空间后进行编译运行,启动launch文件: roslaunch easy_handeye eye_to_hand_CR7_calibration.lau…...
SpringCloudAlibaba实战入门之Sentinel服务降级和服务熔断(十五)
一、Sentinel概述 1、Sentinel是什么 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。 一句话概括:sentinel即Hystrix的替代品,官网: https://sentinelguard.io/zh…...
Scrum中敏捷项目经理(Scrum Master)扮演什么角色?
敏捷开发模式已经逐渐被主流的软件研发团队所接受,其中Scrum是最具代表性的敏捷方法之一。Scrum框架中有三个核心角色:Product Owner(PO)、Scrum Master(SM)和Development Team(DT)。…...