【Elasticsearch】DSL查询文档
目录
1.DSL查询文档
1.1.DSL查询分类
1.2.全文检索查询
1.2.1.使用场景
1.2.2.基本语法
1.2.3.示例
1.2.4.总结
1.3.精准查询
1.3.1.term查询
1.3.2.range查询
1.3.3.总结
1.4.地理坐标查询
1.4.1.矩形范围查询
1.4.2.附近查询
1.5.复合查询
1.5.1.相关性算分
1.5.2.算分函数查询
1)语法说明
2)示例
3)小结
1.5.3.布尔查询
1)语法示例:
2)示例
3)小结
1.DSL查询文档
elasticsearch的查询依然是基于JSON风格的DSL来实现的。
1.1.DSL查询分类
Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:
-
查询所有:查询出所有数据,一般测试用。例如:match_all
-
全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
-
match_query
-
multi_match_query
-
-
精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
-
ids
-
range
-
term
-
-
地理(geo)查询:根据经纬度查询。例如:
-
geo_distance
-
geo_bounding_box
-
-
复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
-
bool
-
function_score
-
查询的语法基本一致:
GET /indexName/_search {"query": {"查询类型": {"查询条件": "条件值"}} }
我们以查询所有为例,其中:
-
查询类型为match_all
-
没有查询条件
// 查询所有 GET /indexName/_search {"query": {"match_all": {}} }
其它查询无非就是查询类型、查询条件的变化。
1.2.全文检索查询
1.2.1.使用场景
全文检索查询的基本流程如下:
-
对用户搜索的内容做分词,得到词条
-
根据词条去倒排索引库中匹配,得到文档id
-
根据文档id找到文档,返回给用户
比较常用的场景包括:
-
商城的输入框搜索
-
百度输入框搜索
例如京东:
因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。
1.2.2.基本语法
常见的全文检索查询包括:
-
match查询:单字段查询
-
multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件
match查询语法如下:
GET /indexName/_search {"query": {"match": {"FIELD": "TEXT"}} }
mulit_match语法如下:
GET /indexName/_search {"query": {"multi_match": {"query": "TEXT","fields": ["FIELD1", " FIELD12"]}} }
1.2.3.示例
match查询示例:
multi_match查询示例:
可以看到,两种查询结果是一样的,为什么?
因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。
但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。
1.2.4.总结
match和multi_match的区别是什么?
-
match:根据一个字段查询
-
multi_match:根据多个字段查询,参与查询字段越多,查询性能越差
1.3.精准查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
-
term:根据词条精确值查询
-
range:根据值的范围查询
1.3.1.term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
// term查询 GET /indexName/_search {"query": {"term": {"FIELD": {"value": "VALUE"}}} }
示例:
当我搜索的是精确词条时,能正确查询出结果:
但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:
1.3.2.range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
// range查询 GET /indexName/_search {"query": {"range": {"FIELD": {"gte": 10, // 这里的gte代表大于等于,gt则代表大于"lte": 20 // lte代表小于等于,lt则代表小于}}} }
示例:
1.3.3.总结
精确查询常见的有哪些?
-
term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
-
range查询:根据数值范围查询,可以是数值、日期的范围
1.4.地理坐标查询
所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.8] | Elastic
常见的使用场景包括:
-
携程:搜索我附近的酒店
-
滴滴:搜索我附近的出租车
-
微信:搜索我附近的人
附近的酒店:
附近的车:
1.4.1.矩形范围查询
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
// geo_bounding_box查询 GET /indexName/_search {"query": {"geo_bounding_box": {"FIELD": {"top_left": { // 左上点"lat": 31.1,"lon": 121.5},"bottom_right": { // 右下点"lat": 30.9,"lon": 121.7}}}} }
这种并不符合“附近的人”这样的需求,所以我们就不做了。
1.4.2.附近查询
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
语法说明:
// geo_distance 查询 GET /indexName/_search {"query": {"geo_distance": {"distance": "15km", // 半径"FIELD": "31.21,121.5" // 圆心}} }
示例:
我们先搜索陆家嘴附近15km的酒店:
发现共有47家酒店。
然后把半径缩短到3公里:
可以发现,搜索到的酒店数量减少到了5家。
1.5.复合查询
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
-
fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
-
bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
1.5.1.相关性算分
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 "虹桥如家",结果如下:
[{"_score" : 17.850193,"_source" : {"name" : "虹桥如家酒店真不错",}},{"_score" : 12.259849,"_source" : {"name" : "外滩如家酒店真不错",}},{"_score" : 11.91091,"_source" : {"name" : "迪士尼如家酒店真不错",}} ]
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:
在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:
TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:
小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:
-
TF-IDF算法
-
BM25算法,elasticsearch5.1版本后采用的算法
1.5.2.算分函数查询
根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:
要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。
1)语法说明
function score 查询中包含四部分内容:
-
原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
-
过滤条件:filter部分,符合该条件的文档才会重新算分
-
算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
-
weight:函数结果是常量
-
field_value_factor:以文档中的某个字段值作为函数结果
-
random_score:以随机数作为函数结果
-
script_score:自定义算分函数算法
-
-
运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
-
multiply:相乘
-
replace:用function score替换query score
-
其它,例如:sum、avg、max、min
-
function score的运行流程如下:
-
1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
-
2)根据过滤条件,过滤文档
-
3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
-
4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
因此,其中的关键点是:
-
过滤条件:决定哪些文档的算分被修改
-
算分函数:决定函数算分的算法
-
运算模式:决定最终算分结果
2)示例
需求:给“如家”这个品牌的酒店排名靠前一些
翻译一下这个需求,转换为之前说的四个要点:
-
原始条件:不确定,可以任意变化
-
过滤条件:brand = "如家"
-
算分函数:可以简单粗暴,直接给固定的算分结果,weight
-
运算模式:比如求和
因此最终的DSL语句如下:
GET /hotel/_search {"query": {"function_score": {"query": { .... }, // 原始查询,可以是任意条件"functions": [ // 算分函数{"filter": { // 满足的条件,品牌必须是如家"term": {"brand": "如家"}},"weight": 2 // 算分权重为2}],"boost_mode": "sum" // 加权模式,求和}} }
测试,在未添加算分函数时,如家得分如下:
添加了算分函数后,如家得分就提升了:
3)小结
function score query定义的三要素是什么?
-
过滤条件:哪些文档要加分
-
算分函数:如何计算function score
-
加权方式:function score 与 query score如何运算
1.5.3.布尔查询
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
-
must:必须匹配每个子查询,类似“与”
-
should:选择性匹配子查询,类似“或”
-
must_not:必须不匹配,不参与算分,类似“非”
-
filter:必须匹配,不参与算分
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
-
搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
-
其它过滤条件,采用filter查询。不参与算分
1)语法示例:
GET /hotel/_search {"query": {"bool": {"must": [{"term": {"city": "上海" }}],"should": [{"term": {"brand": "皇冠假日" }},{"term": {"brand": "华美达" }}],"must_not": [{ "range": { "price": { "lte": 500 } }}],"filter": [{ "range": {"score": { "gte": 45 } }}]}} }
2)示例
需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。
分析:
-
名称搜索,属于全文检索查询,应该参与算分。放到must中
-
价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
-
周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中
3)小结
bool查询有几种逻辑关系?
-
must:必须匹配的条件,可以理解为“与”
-
should:选择性匹配的条件,可以理解为“或”
-
must_not:必须不匹配的条件,不参与打分
-
filter:必须匹配的条件,不参与打分
相关文章:
【Elasticsearch】DSL查询文档
目录 1.DSL查询文档 1.1.DSL查询分类 1.2.全文检索查询 1.2.1.使用场景 1.2.2.基本语法 1.2.3.示例 1.2.4.总结 1.3.精准查询 1.3.1.term查询 1.3.2.range查询 1.3.3.总结 1.4.地理坐标查询 1.4.1.矩形范围查询 1.4.2.附近查询 1.5.复合查询 1.5.1.相关性算分 …...
MySQL第三弹----函数
笔上得来终觉浅,绝知此事要躬行 🔥 个人主页:星云爱编程 🔥 所属专栏:MySQL 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 一、合计/统计函数 1.1count…...
路由器刷机TP-Link tp-link-WDR5660 路由器升级宽带速度
何在路由器上设置代理服务器? 如何在路由器上设置代理服务器? 让所有连接到该路由器的设备都能够享受代理服务器的好处是一个不错的选择,特别是当需要访问特定的网站或加速网络连接的时候。下面是一些您可以跟随的步骤,使用路由器…...
Qml 中实现水印工具
【写在前面】 在 Qt 的 Quick 模块中,QQuickPaintedItem 是一个非常有用的类,它允许我们在 Qml 中自定义绘制逻辑。 我们可以通过这种方式实现水印工具,包括在文本、图片或整个窗口上添加水印。 本文将介绍如何在 Qml 中实现一个简单但功能…...
2024年数字政府服务能力优秀创新案例汇编(附下载)
12月19日,由中国电子信息产业发展研究院指导、中国软件评测中心主办的“2024数字政府评估大会”在北京召开,大会主题是:为公众带来更好服务体验。 会上,中国软件评测中心副主任吴志刚发布了2024年数字政府服务能力评估结果&#…...
数据链路层知识要点
这里写目录标题 数据链路层的功能1.封装成帧2.差错控制2.1循环冗余校验(CRC)2.2奇偶校验法 3.可靠传输3.1停止等待协议(SW)3.2后退N帧协议(GBN)3.3选择重传协议(SR) 4.使用广播信道的数据链路层5.以太网(局域网)5.1以太网与网卡5.2以太网的MAC地址 6.VLA…...
Linux实验报告6-用户管理
目录 一:实验目的 二:实验内容 (1)查看 Linux 系统的相关文件,回答以下问题 ①root 用户的 UID为多少?他的主目录在哪里? ②请举出一个普通用户,指出他的主目录及其所使用的 shell 是什么? (2)新建用户abc1(abc代表你的姓名拼音字母,下同),为其…...
微信小程序打印生产环境日志
微信小程序打印生产环境日志 新建一个log.js文件,写入以下代码: let log wx.getRealtimeLogManager ? wx.getRealtimeLogManager() : nullmodule.exports {debug() {if (!log) returnlog.debug.apply(log, arguments)},info() {if (!log) returnlog.i…...
Edge如何获得纯净的启动界面
启动Edge会出现快速链接,推广链接,网站导航,显示小组件,显示信息提要,背景 ●复杂页面 ●精简页面 点击页面设置按钮 关闭快速链接 关闭网站导航 关闭小组件 关闭信息提要 关闭背景 关闭天气提示 精简页面看起来十分舒…...
探索开源项目 kernel:技术的基石与无限可能
在开源的广袤世界中,有一颗璀璨的明星——kernel(https://gitee.com/openeuler/kernel),它宛如一座技术的宝藏,蕴含着无数的智慧与创新,为众多开发者所瞩目和敬仰。 一、初窥 kernel 项目 当我第一次接触…...
使用PHP函数 “setcookie“ 设置cookie
在网站开发中,cookie是一种非常常用的技术,它用于在用户的浏览器中存储少量的数据,以便在不同页面之间传递信息。PHP提供了一个名为 "setcookie" 的函数,用于设置cookie的值和属性。在本文中,我们将学习如何…...
LUA基础语法
目录 变量篇 算数运算符 条件分支语句与循环语句 函数 表 Table 全局变量与本地变量 协程 元表 面向对象(封装,继承,多态) 常用自带库 垃圾回收 变量篇 print("hello") print("lua") --注释 --[[…...
链路聚合
链路聚合 目的:备份链路以及提高链路带宽。 链路聚合技术(Eth-Trunk):将多个物理接口捆绑成一个逻辑接口,将N条物理链路逻辑上聚合为一条逻辑链路。 正常情况下,想要配置链路聚合 1、A设备通过多条链路连接…...
OpenCV-Python实战(4)——图像处理基础知识
一、坐标 在 OpenCV 中图像左上角坐标为(0,0),竖直向下为 Y(height) ;水平向右为 X(width)。 二、生成图像 2.1 灰度图像 img np.zeros((h,w), dtype np.uint8) i…...
爬虫案例-爬取网页图片
爬虫案例-爬取网页图片 1、安装依赖库2、爬取图片的代码3、效果图 1、安装依赖库 #以下是安装http请求的第三方库 pip install requests urllib3 #以下是安装处理图片的第三方库 pip install image pillow #以下是安装python解析html的第三方库 pip install beautifulsoup4 …...
KAN网络最新优化改进——基于小波变换的KAN网络
KAN网络概念 KAN网络(Kolmogorov-Arnold Networks)是一种革命性的神经网络架构,源于Kolmogorov-Arnold表示定理。 该定理表明,多变量连续函数可通过有限数量的单变量连续函数的嵌套加法表示 。KAN的核心创新在于将传统神经网络中的固定激活函数替换为可学习的单变量函数,…...
【潜意识Java】深入理解Java中的方法重写,理解重写的意义,知道其使用场景,以及重写的访问权限限制等的完整笔记详细总结。
目录 一、方法重写是啥玩意儿 (一)定义和概念 (二)为啥要方法重写 二、方法重写的规则 (一)方法签名必须相同 (二)返回类型的要求 (三)访问权限的限制…...
Android Thread优先级和调度算法
Thread优先级设置方式: java: Process.setThreadPriority: android.os.Process.setThreadPriority(Process.THREAD_PRIORITY_LOWEST、Process.THREAD_PRIORITY_URGENT_AUDIO、-20) c: #include <sched.h> setpriority( https://blo…...
OpenCV-Python实战(6)——图相运算
一、加法运算 1.1 cv2.add() res cv2.add(img1,img2,dstNone,maskNone,dtypeNone) img1、img2:要 add 的图像对象。(shape必须相同) mask:图像掩膜。灰度图(维度为2)。 dtype:图像数据类型…...
2、C#基于.net framework的应用开发实战编程 - 设计(二、四) - 编程手把手系列文章...
二、设计; 二.四、制定设计规范; 编码规范在软件编程里起到了非常重要的作用,主要是让代码更加的规范化,更加的简洁,更加的漂亮,更加的能够面向对象显示。 以前那个系列就有发布C#的编码规范的文…...
DVWA靶场Brute Force (暴力破解) 漏洞low(低),medium(中等),high(高),impossible(不可能的)所有级别通关教程
目录 暴力破解low方法1方法2 mediumhighimpossible 暴力破解 暴力破解是一种尝试通过穷尽所有可能的选项来获取密码、密钥或其他安全凭证的攻击方法。它是一种简单但通常无效率的破解技术,适用于密码强度较弱的环境或当攻击者没有其他信息可供利用时。暴力破解的基…...
sql字段值转字段
表alertlabel中记录变字段 如何用alertlabel表得到下面数据 实现的sql语句 select a.AlertID, (select Value from alertlabel where AlertIDa.AlertID and Labelhost) as host, (select Value from alertlabel where AlertIDa.AlertID and Labeljob) as job from (select …...
lua和C API库一些记录
相关头文件解释 lua.h:声明lua提供的基础函数,所有内容都有个前缀lua_; luaxlib.h:声明辅助库提供的函数,所有内容都有个前缀luaL_; lualib.h:声明了打开标准库的函数; 辅助库对…...
游戏引擎学习第68天
关于碰撞和交互的进展回顾 在进行引擎架构设计时,我们决定开始探讨如何处理游戏中的碰撞问题。举个例子,比如一把被投掷的剑碰到了敌人。我们希望能够响应这些事件,开始构建游戏中的互动机制。这些互动是游戏设计的核心部分,游戏…...
LeetCode430周赛T3
题目描述 给定一个只包含正整数的数组 nums,我们需要找到其中的特殊子序列。特殊子序列是一个长度为4的子序列,用下标 (p, q, r, s) 表示,它们满足以下条件: 索引顺序:p < q < r < s,且相邻坐标…...
网络:常用的以太网PHY芯片
常用的以太网PHY芯片(物理层芯片)主要负责将数字信号转换为适合在物理介质上传输的模拟信号。它们是网络设备(如交换机、路由器、网卡等)中的关键组件,通常工作在OSI模型中的物理层和数据链路层之间。 以下是一些常见…...
前端项目 node_modules依赖报错解决记录
1.首先尝试解决思路 npm报错就切换yarn , yarn报错就先切换npm删除 node_modules 跟 package-lock.json文件重新下载依 2. 报错信息: Module build failed: Error: Missing binding D:\vue-element-admin\node_modules\node-sass\vendor\win32-x64-8…...
小猫可以吃面包吗?
在宠物饲养日益普及的当下,小猫的饮食健康成为众多铲屎官关注的焦点。其中,小猫是否可以吃面包这一问题引发了不少讨论。 从面包的成分来看,其主要原料是面粉、水、酵母和盐,部分还会添加糖、油脂、鸡蛋、牛奶等。面粉富含碳水化…...
ACPI PM Timer
ACPI PM Timer 概述: ACPI PM Timer是一个非常简单的计时器,它以 3.579545 MHz 运行,在计数器溢出时生成系统控制中断(SCI)。它精度较低,建议使用其他定时器,如HPET或APIC定时器。 检测ACPI P…...
算法学习(19)—— 队列与 BFS
关于bfs bfs又称宽搜,全称是“宽度优先遍历”,然后就是关于bfs的三个说法:“宽度优先搜索”,“宽度优先遍历”,“层序遍历”,这三个都是同一个东西,前面我们介绍了大量的深度优先遍历的题目已经…...
python|利用ffmpeg按顺序合并指定目录内的ts文件
前言: 有的时候我们利用爬虫爬取到的ts文件很多,但ts文件只是视频片段,并且这些视频片段是需要按照一定的顺序合并的,通常ts文件合并输出格式为mp4格式 因此,本文介绍利用python,调用ffmpeg来批量的按自己…...
腾讯音乐:说说Redis脑裂问题?
Redis 脑裂问题是指,在 Redis 哨兵模式或集群模式中,由于网络原因,导致主节点(Master)与哨兵(Sentinel)和从节点(Slave)的通讯中断,此时哨兵就会误以为主节点…...
jmeter并发用户逐步递增压测找性能拐点
jmeter并发用户逐步递增压测找性能拐点 目的: 使用逐层递增的并发压力进行测试,找到单功能的性能拐点(一般需要包含四组测试结果,拐点前一组,拐点一组,拐点后两组),统计响应时间、…...
跟着问题学3.2——Fast R-CNN详解及代码实战
R-CNN的不足 2014年,Ross Girshick提出RCNN,成为目标检测领域的开山之作。一年后,借鉴空间金字塔池化思想,Ross Girshick推出设计更为巧妙的Fast RCNN(https://github.com/rbgirshick/fast-rcnn)ÿ…...
【yolov5】实现FPS游戏人物检测,并定位到矩形框上中部分,实现自瞄
介绍 本人机器学习小白,通过语言大模型百度进行搜索,磕磕绊绊的实现了初步效果,能有一些锁头效果,但识别速度不是非常快,且没有做敌友区分,效果不是非常的理想,但在4399小游戏中爽一下还是可以…...
软考高级:磁盘阵列(RAID)
** 概念讲解 ** 磁盘阵列是由多个磁盘组合成的一个大容量存储设备。它主要有以下几个作用: 提高存储容量:通过将多个磁盘组合在一起,可以获得比单个磁盘更大的存储容量。比如,一个磁盘的容量是 1TB,使用四个磁盘组成…...
梳理你的思路(从OOP到架构设计)_介绍Android的Java层应用框架05
1、认识ContentProvider...
torch.nn.LSTM介绍
torch.nn.LSTM 是 PyTorch 提供的一个高级封装,用于构建长短时记忆网络(LSTM)。相比手动实现,torch.nn.LSTM 更高效且支持批量处理、双向 LSTM、多层 LSTM 等功能,适合大多数实际应用。 LSTM基本原理 门控机制(Gating Mechanism)是深度学习中常见的一种设计,用于控制信…...
React 组件的通信方式
在 React 应用开发中,组件之间的通信是构建复杂用户界面和交互逻辑的关键。正确地实现组件通信能够让我们的应用更加灵活和易于维护。以下是几种常见的 React组件通信方式。 一、父子组件通信 1. 通过 props 传递数据(父组件向子组件传递数据࿰…...
关于 覆铜与导线之间间距较小需要增加间距 的解决方法
若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/144776995 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...
使用seata实现分布式事务管理
配置 版本说明:springCloud Alibaba组件版本关系 我用的是spring cloud Alibaba 2.2.1.RELEASE 、springboot 2.2.1.RELEASE、nacos 2.0.1、seata1.2.0,jdk1.8 seata 主要用于在分布式系统中对数据库进行事务回滚,保证全局事务的一致性。 seata的使用…...
【机器学习】深度学习(DNN)
文章目录 1. 神经网络结构2. 训练步骤3. 反向传播4. 为什么深,而不是宽(模块化)5. 初始化参数能否全为0? 1. 神经网络结构 输入层隐藏层:用于特征转换输出层:用于分类技巧:将网络中的参数写成矩…...
C++ 设计模式:门面模式(Facade Pattern)
链接:C 设计模式 链接:C 设计模式 - 代理模式 链接:C 设计模式 - 中介者 链接:C 设计模式 - 适配器 门面模式(Facade Pattern)是一种结构型设计模式,它为子系统中的一组接口提供一个一致&#…...
自动化测试之Pytest框架(万字详解)
Pytest测试框架 一、前言二、安装2.1 命令行安装2.2 验证安装 三、pytest设计测试用例注意点3.1 命名规范3.2 断言清晰3.3 fixture3.4 参数化设置3.5 测试隔离3.6 异常处理3.7 跳过或者预期失败3.8 mocking3.9 标记测试 四、以案例初入pytest4.1 第一个pytest测试4.2 多个测试分…...
YOLOv10-1.1部分代码阅读笔记-conv.py
conv.py ultralytics\nn\modules\conv.py 目录 conv.py 1.所需的库和模块 2.def autopad(k, pNone, d1): 3.class Conv(nn.Module): 4.class Conv2(Conv): 5.class LightConv(nn.Module): 6.class DWConv(Conv): 7.class DWConvTranspose2d(nn.ConvTranspose2d)…...
大模型-Ollama使用相关的笔记
大模型-Ollama使用相关的笔记 解决Ollama外网访问问题(配置ollama跨域访问)Postman请求样例 解决Ollama外网访问问题(配置ollama跨域访问) 安装Ollama完毕后, /etc/systemd/system/ollama.service进行如下修改&#…...
【机器学习】概述
文章目录 1. 机器学习三步骤2. 机器学习图谱2.1 任务类型 (Task)2.2 模型选择 (Methods)2.3 学习场景 (Scenario) 1. 机器学习三步骤 定义一个模型 (Define a set of function) 选择一组合适的函数来表示模型。 评估模型好坏 (Goodness of function) 找到一个损失函数…...
什么是网络安全(Cybersecurity)?
不同组织机构对网络安全(Cybersecurity或Cyber Security)的定义不尽相同。从目标上来说,网络安全主要用于保护网络、计算机、移动设备、应用程序及数据等资产免受网络攻击,避免造成数据泄露、业务中断等安全问题。 网络钓鱼、勒索…...
3_TCP/IP连接三次握手与断开四次挥手
TCP/IP 通信是网络通信的基础协议,分为以下主要步骤: 1、建立连接(三次握手) 目的:保证双方建立可靠的通信连接。 过程: 1>客户端发送 SYN:客户端向服务器发送一个 SYN(同步&…...
基于单片机的电梯模拟控制系统
摘要: 文章主要针对基于单片机的电梯模拟控制系统进行研究,指出基于单片机的电梯模拟控制系统应用优点,并在此基础上介绍单片机控制技术,分析单片机在电梯模拟控制系统中的具体应用。 关键词: 单片机;电梯;模拟控制系统 1 基于单片机的电梯模拟控制系统应用优点概述 1…...