Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
- CIFAR数据集
- NI-FGSM介绍
- 背景
- 算法流程
- NI-FGSM代码实现
- NI-FGSM算法实现
- 攻击效果
- 代码汇总
- nifgsm.py
- train.py
- advtest.py
之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类
本篇文章我们使用Pytorch实现NI-FGSM对CIFAR10上的ResNet分类器进行攻击.
CIFAR数据集
CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:
- 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
- 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
- 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。
下面是一些示例样本:
NI-FGSM介绍
NI-FGSM(Nesterov Iterative Fast Gradient Sign Method)即涅斯捷罗夫迭代快速梯度符号法,是一种在对抗攻击领域中对FGSM进行改进的迭代攻击算法,以下是其详细介绍:
背景
- 传统的FGSM及其一些迭代改进版本如I-FGSM等,在生成对抗样本时存在一些局限性,例如可能会在迭代过程中陷入局部最优,导致攻击效果不够理想或生成的对抗样本转移性较差。NI-FGSM借鉴了优化算法中的Nesterov加速梯度法的思想,旨在更有效地利用梯度信息,提高攻击的效率和效果。
算法流程
- 初始化
- 设定参数:确定最大扰动幅度 ϵ \epsilon ϵ、迭代次数 T T T、步长 α = ϵ / T \alpha = \epsilon / T α=ϵ/T、衰减因子 μ \mu μ。
- 初始化变量:令初始累积梯度 g 0 = 0 g_0 = 0 g0=0,初始对抗样本 x 0 a d v = x x_0^{adv}=x x0adv=x( x x x 为原始图像)。
- 迭代过程
- 对于每次迭代 t = 0 t = 0 t=0到 T − 1 T - 1 T−1:
- 计算跳跃点 x t n e s = x t a d v + α ⋅ μ ⋅ g t x_t^{nes}=x_t^{adv}+\alpha \cdot \mu \cdot g_t xtnes=xtadv+α⋅μ⋅gt。
- 计算跳跃点 x t n e s x_t^{nes} xtnes 在模型中的梯度 ∇ x J ( x t n e s , y t r u e ) \nabla_{x} J\left(x_t^{nes }, y^{true }\right) ∇xJ(xtnes,ytrue)。
- 累积梯度更新: g t + 1 = μ ⋅ g t + ∇ x J ( x t n e s , y t r u e ) ∥ ∇ x J ( x t n e s , y t r u e ) ∥ 1 g_{t + 1}=\mu \cdot g_t+\frac{\nabla_{x} J\left(x_t^{nes }, y^{true }\right)}{\left\| \nabla_{x} J\left(x_t^{nes}, y^{true }\right)\right\| _{1}} gt+1=μ⋅gt+∥∇xJ(xtnes,ytrue)∥1∇xJ(xtnes,ytrue)。
- 更新对抗样本: x t + 1 a d v = C l i p x ϵ { x t a d v + α ⋅ s i g n ( g t + 1 ) } x_{t + 1}^{adv}=Clip_{x}^{\epsilon}\left\{x_t^{adv}+\alpha \cdot sign\left(g_{t + 1}\right)\right\} xt+1adv=Clipxϵ{xtadv+α⋅sign(gt+1)},其中 C l i p x ϵ Clip_{x}^{\epsilon} Clipxϵ 函数将生成的对抗样本限制在原始图像 x x x 的 ϵ \epsilon ϵ 邻域内。
- 对于每次迭代 t = 0 t = 0 t=0到 T − 1 T - 1 T−1:
- 输出结果:返回最终生成的对抗样本 x T a d v x_T^{adv} xTadv。
在整个算法流程中,通过引入Nesterov加速梯度的思想,在每次迭代计算梯度之前先进行跳跃操作,从而利用先前累积梯度的信息来更有效地更新对抗样本,使得生成的对抗样本具有更好的转移性,能够在不同模型上保持较高的攻击成功率。
NI-FGSM代码实现
NI-FGSM算法实现
import torch
import torch.nn as nndef NI_FGSM(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1):"""NI-FGSM (Nesterov Iterative Fast Gradient Sign Method)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 迭代次数- decay: 动量衰减因子"""# alpha 每次迭代步长alpha = epsilon / num_iterations# 复制原始图像作为初始的对抗样本perturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for _ in range(num_iterations):# 先沿先前累积梯度的方向进行跳跃nes_images = perturbed_images + alpha * decay * momentumnes_images = nes_images.clone().detach().requires_grad_(True)outputs = model(nes_images)loss = criterion(outputs, labels)model.zero_grad()loss.backward()data_grad = nes_images.grad.data# 更新动量 (batch_size, channels, height, width)momentum = decay * momentum + data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)# 计算带动量的符号梯度sign_data_grad = momentum.sign()# 更新对抗样本perturbed_images = perturbed_images + alpha * sign_data_gradperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images
攻击效果
代码汇总
nifgsm.py
import torch
import torch.nn as nndef NI_FGSM(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1):"""NI-FGSM (Nesterov Iterative Fast Gradient Sign Method)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 迭代次数- decay: 动量衰减因子"""# alpha 每次迭代步长alpha = epsilon / num_iterations# 复制原始图像作为初始的对抗样本perturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for _ in range(num_iterations):# 先沿先前累积梯度的方向进行跳跃nes_images = perturbed_images + alpha * decay * momentumnes_images = nes_images.clone().detach().requires_grad_(True)outputs = model(nes_images)loss = criterion(outputs, labels)model.zero_grad()loss.backward()data_grad = nes_images.grad.data# 更新动量 (batch_size, channels, height, width)momentum = decay * momentum + data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)# 计算带动量的符号梯度sign_data_grad = momentum.sign()# 更新对抗样本perturbed_images = perturbed_images + alpha * sign_data_gradperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images
train.py
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18# 数据预处理
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)if __name__ == "__main__":# 训练模型for epoch in range(10): # 可以根据实际情况调整训练轮数running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')running_loss = 0.0torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')print('Finished Training')
advtest.py
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as pltssl._create_default_https_context = ssl._create_unverified_context# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,shuffle=False, num_workers=2)# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = ResNet18(num_classes=10).to(device)criterion = nn.CrossEntropyLoss()# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))if __name__ == "__main__":# 在测试集上进行FGSM攻击并评估准确率model.eval() # 设置为评估模式correct = 0total = 0epsilon = 16 / 255 # 可以调整扰动强度for data in testloader:original_images, labels = data[0].to(device), data[1].to(device)original_images.requires_grad = Trueattack_name = 'NI-FGSM'if attack_name == 'FGSM':perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'BIM':perturbed_images = BIM(model, criterion, original_images, labels, epsilon)elif attack_name == 'MI-FGSM':perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'NI-FGSM':perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)perturbed_outputs = model(perturbed_images)_, predicted = torch.max(perturbed_outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / total# Attack Success RateASR = 100 - accuracyprint(f'Load ResNet Model Weight from {weights_path}')print(f'epsilon: {epsilon}')print(f'ASR of {attack_name} : {ASR}%')
相关文章:
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击 CIFAR数据集NI-FGSM介绍背景算法流程 NI-FGSM代码实现NI-FGSM算法实现攻击效果 代码汇总nifgsm.pytrain.pyadvtest.py 之前已经针对CIFAR10训练了多种分类器: Pytorch | 从零构建AlexNet对CIFAR10进行…...
【Matlab】绘制混淆矩阵示意图+colormap调整方法
主代码 %https://blog.csdn.net/weixin_42943114/article/details/81811556 %https://blog.csdn.net/Mark711/article/details/141144280 clc clear close all warning off %% 原始数据 % 假设groundTruth和predictions是已经定义好的向量 TrueLabels [1 2 1 3 2 3 1 3 2 1 4…...
计算机视觉目标检测——DETR(End-to-End Object Detection with Transformers)
计算机视觉目标检测——DETR(End-to-End Object Detection with Transformers) 文章目录 计算机视觉目标检测——DETR(End-to-End Object Detection with Transformers)摘要Abstract一、DETR算法1. 摘要(Abstract)2. 引言(Introduction&#…...
资源型数字化平台该如何顺利运营?
一、引言 随着信息技术的迅猛发展,资源型数字化平台在各领域的重要性日益凸显。此类平台整合各类资源,以数字化手段提升资源利用效率与价值,但确保其顺利运营面临诸多挑战。 二、资源型数字化平台特点 资源型数字化平台具有资源整合性&…...
写SQL太麻烦?免费搭建 Text2SQL 应用,智能写 SQL | OceanBase AI 实践
自OceanBase 4.3.3版本推出以来,向量检索的能力受到了很多客户的关注,也纷纷表达希望OB能拓展更多 多模数据库大模型 的AI应用实践。 在上篇文章 👉 OceanBase LLM,免费构建你的专属 AI 助手 ,我们介绍了如何去搭建一…...
Linux系统编程——系统内核中的信号
目录 一、前言 二、系统内核中的信号 三、sigset_t 四、信号集操作 1、sigpending(); 2、sigemptyset(); 3、sigfillset(sigset_t *set); 4、int sigaddset ()和sigdelset() 编辑 5、sigismember() 6、sigprocmask() 五、信号集操作代码演示 六、深入理解进程的信…...
Mapbox-GL 中 `token` 的使用
Mapbox-GL 是一个开源的 JavaScript 库,允许开发者在网页上渲染交互式地图。token 在 Mapbox 中主要是指 access token,它用于身份验证和授权,确保应用程序能够访问 Mapbox 的地图服务。 下面详细解析 Mapbox GL 中 token 的使用,…...
PostgreSQL标识符长度限制不能超过63字节
文章目录 问题:标识符太长会被截断分析相关源码可以尝试以下案例 问题:标识符太长会被截断 在创建表时,发现表名太长会自动被截断,导致查询表时报错了。 分析 参考:https://www.postgresql.org/docs/current/limits…...
【Token】校验、会话技术、登录请求、拦截器【期末实训】实战项目学生和班级管理系统\Day15-后端Web实战(登录认证)\讲义
登录认证 在前面的课程中,我们已经实现了部门管理、员工管理的基本功能,但是大家会发现,我们并没有登录,就直接访问到了Tlias智能学习辅助系统的后台。 这是不安全的,所以我们今天的主题就是登录认证。 最终我们要实现…...
电机相关内容
文章目录 电枢电阻电动机电动势系数负载转矩直流电动机的角速度和速度关系 电枢电阻 电枢电阻的计算公式如下: 基于欧姆定律的公式: R a V a − V b I a R_a \frac{V_a - V_b}{I_a} RaIaVa−Vb 其中, ( V a ) (V_a) (Va…...
电商环境下的财务ERP系统架构
先介绍一下自己的工作经历,2002年开始进入ERP实施行业,专注于O记EBS系统,正好赶上中国经济和信息化高度发展的阶段,先后实施过很多大国企和民企的大型ERP项目,在实施过程中逐渐对ERP系统的架构、模块设计有更深入的认识…...
Gitlab 数据备份全攻略:命令、方法与注意事项
文章目录 1、备份命令2、备份目录名称说明3、手工备份配置文件3.1 备份配置文件3.2 备份ssh文件 4、备份注意事项4.1 停止puma和sicdekiq组件4.2 copy策略需要更多磁盘空间 5、数据备份方法5.1 docker命令备份5.2 kubectl命令备份5.3 参数说明5.4、选择性备份5.5、非tar备份5.6…...
基于单片机的视力保护及身姿矫正器设计(论文+源码)
1. 系统设计 在本次设计中,其系统整个框图如图2-1所示。其主要的核心控制模块由超声波模块,光敏电阻,按键模块,复位电路,红外模块,LCD显示等组成。其包括自动模式,手动模式。自动模式ÿ…...
设计模式之【观察者模式】
观察者模式: 应用于发布-订阅消息模型中,订阅者订阅一个主题后,当有新消息到达时,所有订阅者都会收到通知。 主要关注的是对象之间的通信。是一种对象之间的一对多关系,多个对象依赖于一个对象,当被依赖的…...
杂七杂八的网络安全知识
一、信息安全概述 1.信息与信息安全 信息与信息技术 信息奠基人:香农:信息是用来消除随机不确定性的东西 信息的定义:信息是有意义的数据,是一种要适当保护的资产。数据经过加工处理之后,就成为信息。而信息需要经…...
【落羽的落羽 C语言篇】数据存储简介
文章目录 一、整型提升1. 概念2. 规则 二、大小端字节序1. 概念2. 练习练习1练习2 三、浮点数在内存中的存储1. 规则2. 练习 一、整型提升 1. 概念 C语言中,整型算术运算至少是以“缺省整型类型”(int)的精度来进行的。为了达到这个精度&am…...
linux----文件访问(c语言)
linux文件访问相关函数 打开文件函数 - open 函数原型:int open(const char *pathname, int flags, mode_t mode);参数说明: pathname:这是要打开的文件的路径名,可以是绝对路径或者相对路径。例如,"/home/user/…...
垂起固定翼无人机大面积森林草原巡检技术详解
垂起固定翼无人机大面积森林草原巡检技术是一种高效、精准的监测手段,以下是对该技术的详细解析: 一、垂起固定翼无人机技术特点 垂起固定翼无人机结合了多旋翼和固定翼无人机的优点,具备垂直起降、飞行距离长、速度快、高度高等特点。这种无…...
汽车电子零部件(15):AVM全景影像系统
概述: 使用ADAS全景监控(AVM)精确停车和操纵。这项先进技术采用多个摄像头,提供车辆周围环境的鸟瞰图。 360度全景监控系统: 360 AVM系统可以帮助驾驶员360度查看车辆周围的情况,避免发生碰撞。360 AVM系统由一个电子控制单元(ECU)和四个摄像头组成。ECU将处理四个摄…...
G口带宽服务器与1G独享带宽服务器:深度剖析其差异
在数据洪流涌动的数字化时代,服务器作为数据处理的核心,其性能表现直接关系到业务的流畅度和用户体验的优劣。随着技术的飞速发展,G口带宽服务器与1G独享带宽服务器已成为众多企业的优选方案。然而,这两者之间究竟有何细微差别&am…...
鸿蒙项目云捐助第十一讲鸿蒙App应用的捐助成功自定义对话框组件实现
在生活中,用户做了一个好事后,很多场合都会收到一份感谢。在捐助的行业也是一样的,用户捐出了一片爱心,就会收获一份温情。这里的温情是通过自定义对话框实现的。 一、通过自定义对话框组件实现捐款成功的信息页 这里用户捐款成…...
Elasticsearch-分词器详解
什么是分词器 1、分词器介绍 对文本进行分析处理的一种手段,基本处理逻辑为按照预先制定的分词规则,把原始文档分割成若干更小粒度的词项,粒度大小取决于分词器规则。 常用的中文分词器有ik按照切词的粒度粗细又分为:ik_max_word和ik_smart&…...
Android笔试面试题AI答之Android基础(3)
文章目录 1.谈一谈 Android 的安全机制一、系统架构层面的安全设计二、核心安全机制三、其他安全机制与措施 2.Android 的四大组件是哪四大?3.Android 的四大组件都需要在清单文件中注册吗?4.介绍几个常用的Linux命令一、文件和目录管理二、用户和权限管…...
酷黑金色配色 影片素材不过时 色彩丰富 电影主题html
本套大作业共计8个HTML页面,网页中包含:DIVCSS、下拉菜单栏、banner轮播图、图片放大效果、鼠标滑过效果、视频、小图标及按钮设计、登录注册页等,同时设计了logo;本作品花费大量时间去整理素材,大部分素材均使用Photo…...
《Go 语言变量》
《Go 语言变量》 介绍 Go 语言是一种静态类型、编译型的编程语言,由 Google 开发。它以其简洁的语法、高效的并发处理和强大的标准库而闻名。在 Go 语言中,变量是存储数据的基本单位,它们可以是各种数据类型,如整数、浮点数、布…...
Tool之Excalidraw:Excalidraw(开源的虚拟手绘风格白板)的简介、安装和使用方法、艾米莉应用之详细攻略
Tool之Excalidraw:Excalidraw(开源的虚拟手绘风格白板)的简介、安装和使用方法、艾米莉应用之详细攻略 目录 Excalidraw 简介 1、Excalidraw 的主要特点: Excalidraw 安装和使用方法 1、Excalidraw的安装 T1、使用 npm 安装: T2、使用 …...
Llama 3 模型系列解析(一)
目录 1. 引言 1.1 Llama 3 的简介 1.2 性能评估 1.3 开源计划 1.4 多模态扩展 ps 1. 缩放法则 2. 超额训练(Over-training) 3. 计算训练预算 4. 如何逐步估算和确定最优模型? 2. 概述 2.1 Llama 3 语言模型开发两个主要阶段 2.2…...
重拾设计模式--观察者模式
文章目录 观察者模式(Observer Pattern)概述观察者模式UML图作用:实现对象间的解耦支持一对多的依赖关系易于维护和扩展 观察者模式的结构抽象主题(Subject):具体主题(Concrete Subject…...
3-Gin 渲染 --[Gin 框架入门精讲与实战案例]
在 Gin 框架中,渲染指的是将数据传递给模板,并生成 HTML 或其他格式的响应内容。Gin 支持多种类型的渲染,包括 String HTML、JSON、XML 等。 String 渲染 在 Gin 框架中,String 渲染方法允许你直接返回一个字符串作为 HTTP 响应…...
回溯---java---黑马
回溯 概念 程序在运行过程中分成了多个阶段 通过某些手段,将数据恢复到某一阶段,称之为回溯 手段包括:方法栈、自定义栈 使用基本数据类型n public class Backtracking{public static void main(String[] args) {rec(1);}public void r…...
【数据结构】排序(附测试源码)
【数据结构】排序(附测试源码) 本节是数据结构排序版(不完整版,没有C语言版的哈希表) 1.排序概念: 1.1所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增…...
【翻译】大型 Transformer 模型推理优化
翻译原文:Large Transformer Model Inference Optimization | LilLog 原文作者:Lilian Weng 目录 方法概述蒸馏 Distillation量化 Quantization Transformer 量化的挑战训练后量化 (PTQ) 混合精度量化 Mixed-precision quantization细粒度量化量化的二…...
RabbitMQ概述
目录 RabbitMQ概述 前言 MQ MQ的作用 为什么选择RabbitMQ RabbitMQ的介绍 RabbitMQ概述 前言 Rabbit, 兔⼦的意思 互联⽹⾏业很多公司, 都喜欢⽤动物命名产品, 或者作为公司的logo, 吉祥物. ⽐如: 腾讯的企鹅, 京东的狗, 美团的袋⿏, 携程的海豚,阿⾥就更多了, 蚂蚁, ⻜…...
《PCI密码卡技术规范》题目
单选1 在《PCI密码卡技术规范》中,下列哪项不属于PCI密码卡的功能()。 A.密码运算功能 B.密钥管理功能 C.物理随机数产生功能 D.随主计算机可信检测功能 正确答案:D. <font style="color:#DF2A3F;">解析:</font> 单选 2 在《PCI密码卡技术规…...
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
支持向量机是AI开发中最常见的一种算法。之前我们已经一起初步了解了它的概念和应用,今天我们用它来进行一次文本情感分析训练。 一、概念温习 支持向量机(SVM)是一种监督学习算法,广泛用于分类和回归问题。 它的核心思想是通过…...
ECharts柱状图-柱图42,附视频讲解与代码下载
引言: 在数据可视化的世界里,ECharts凭借其丰富的图表类型和强大的配置能力,成为了众多开发者的首选。今天,我将带大家一起实现一个柱状图图表,通过该图表我们可以直观地展示和分析数据。此外,我还将提供…...
呼入机器人:24小时客户服务的未来趋势
呼入机器人:24小时客户服务的未来趋势 作者:开源大模型智能呼叫中心系统FreeAICC,Github:https://github.com/FreeIPCC/FreeAICC 在当今快节奏的商业环境中,客户服务已成为企业竞争的核心要素之一。随着人工智能技术…...
FFmpeg 安装教程(Windows 系统)
1. 前言 FFmpeg 是一个用于处理视频、音频等多媒体文件的开源工具包。它支持几乎所有的多媒体格式转换、剪辑和编辑,是开发者和多媒体工作者必备的工具。本文详细讲解如何在 Windows 系统上安装 FFmpeg 并进行基本配置。 2. 下载 FFmpeg 安装包 打开 Dpwnload FFmp…...
左神算法基础巩固--1
文章目录 时间复杂度常数时间的操作时间复杂度的定义时间复杂度的作用剖析递归行为和递归行为时间复杂度的估算 排序选择排序冒泡排序插入排序归并排序小和问题问题描述解题思路 快速排序荷兰国旗问题问题描述 堆排序堆结构大根堆小根堆 桶排序 二分二分搜索 ^的运用不用额外空…...
基于鲲鹏服务器的打砖块小游戏部署
案例介绍 鲲鹏服务器是基于鲲鹏处理器的新一代数据中心服务器,适用于大数据、分布式存储、高性能计算和数据库等应用。鲲鹏服务器具有高性能、低功耗、灵活的扩展能力,适合大数据分析、软件定义存储、Web等应用场景。 本案例将指导开发者如何在鲲鹏服务…...
STM32F407寄存器点灯
背景描述: 最近用32开发遇到问题不得不看寄存器了,就回顾了一下寄存器手册的查看方式和寄存器的使用方法; 上一次这么细致的记录还是在刚学习STM32的时候,之前觉得看寄存器手册以及配置寄存器是有点难度的事情,现在回头…...
电子电气架构 --- 队列刷写场景及刷写上位机浅析
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源,以现象替代逻辑,以情绪代替思考,把消极接受现实的懦弱,伪装成乐观面对不幸的…...
kubernates实战
使用k8s来部署tomcat 1、创建一个部署,并指定镜像地址 kubectl create deployment tomcat6 --imagetomcat:6.0.53-jre82、查看部署pod状态 kubectl get pods # 获取default名称空间下的pods kubectl get pods --all-namespaces # 获取所有名称空间下的pods kubect…...
换工作,如何退出微软账户???(删除注册表数据)
1.Winr 进入 输入. 2.删除 注意路径. 3.删除 注意路径. 4.效果如下,清空成功...
vscode+编程AI配置、使用说明
文章目录 [toc]1、概述2、github copilot2.1 配置2.2 使用文档2.3 使用说明 3、文心快码(Baidu Comate)3.1 配置3.2 使用文档3.3 使用说明 4、豆包(MarsCode)4.1 配置4.2 使用文档4.3 使用说明 5、通义灵码(TONGYI Lin…...
60.基于SSM的个人网站的设计与实现(项目 + 论文)
项目介绍 本站是一个B/S模式系统,个人网站是在MySQL中建立数据表保存信息,运用SSMVue框架和Java语言编写。并按照软件设计开发流程进行设计实现充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得基于SSM的网…...
myexcel的使用
参考: (1)api文档:https://www.bookstack.cn/read/MyExcel-2.x/624d8ce73162300b.md (2)源代码: https://github.com/liaochong/myexcel/issues 我: (1)m…...
CSDN外链失效3:
参考我之前的博客: 外链失效博客1:随想笔记1:CSDN写博客经常崩溃,遇到外链图片转存失败怎么办_csdn外链图片转存失败-CSDN博客 外链失效博客2:网络随想2:转语雀_md格式转语雀lake格式-CSDN博客 markdown…...
SSM 医院预约挂号系统:Vue 技术驱动下的设计与实现飞跃
3系统分析 3.1可行性分析 通过对本医院预约挂号系统实行的目的初步调查和分析,提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本医院预约挂号系统采用SSM框架,JAVA作为开发语…...
如何在centos系统上挂载U盘
在CentOS上挂载NTFS格式的U盘,需要执行一系列步骤,包括识别U盘设备、安装必要的软件、创建挂载点,并最终挂载U盘。以下是在CentOS上挂载NTFS格式U盘的详细步骤: 一、准备工作 确认CentOS版本: 确保你的CentOS系统已经安装并正常运行。不同版本的CentOS在命令和工具方面可能…...