当前位置: 首页 > news >正文

【笔记】深度学习模型评估指标

推荐链接:
(0)多分类器的评价指标

(1)泛化误差的评价方法:【机器学习】模型评估与选择(留出法、交叉验证法、查全率、查准率、偏差、方差)

(2)机器学习:数据分布的漂移问题及应对方案

(3)机器学习:准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线

0.背景+名词解释

在这里插入图片描述名词解释:
(1)过拟合:是指学习模型对训练样本预测得很好,但对新样本预测很差的现象。这通常是由于学习模型能力过于强大,以至于把训练样本自身的一些特点当做了一般性质。过拟合是无法彻底避免的,只能缓解。模型选择就是要旨在避免过拟合并提高模型的预测能力。
(2) 准确性:模型在训练数据集上的性能。
(3)泛化能力:模型在新数据集上的性能。
(4)过拟合:模型在训练数据集上表现良好,但在新数据集上表现差。
(5)欠拟合:模型在训练数据集和新数据集上表现差。
(6)验证集:用于评估模型性能的数据集,与训练集和测试集不同。
(7)交叉验证:在多个子集上进行验证,以减少验证集的随机性。

1.训练效果(泛化能力)评价指标

在这里插入图片描述

机器学习模型评估指标(有大量错误,需核对)

1.1.名词解释

  • 损失函数(Loss Function):深度学习模型在训练过程中使用损失函数来衡量预测值与真实值之间的差异。通常,通过优化算法(如梯度下降)最小化损失函数来调整模型的权重和参数。较低的损失值通常表示模型在训练数据上的拟合程度较好。
  • 准确率(Accuracy):准确率是评估深度学习模型分类性能的常见指标。它衡量模型在所有样本中正确分类的比例。准确率可以通过在测试集上计算正确分类的样本数除以总样本数得到。
  • 验证集(Validation Set):在训练过程中,可以将一部分数据集分离出来作为验证集,用于评估模型在未见过的数据上的性能。通过在验证集上计算损失和准确率等指标,可以判断模型的泛化能力。
  • 混淆矩阵(Confusion Matrix):混淆矩阵是用于评估分类模型性能的工具。它展示了模型在不同类别上的分类结果,包括真正例(True Positive,TP)、真负例(True Negative,TN)、假正例(False Positive,FP)和假负例(False Negative,FN)。基于混淆矩阵,可以计算出精确度(Precision)、召回率(Recall)和F1值等指标。
  • ROC曲线和AUC值:ROC曲线和AUC是用于评估二分类模型性能的指标。ROC曲线是以不同阈值下真正例率(True Positive Rate,TPR)和假正例率(False Positive Rate,FPR)为横纵轴绘制的曲线。AUC(Area Under Curve)是ROC曲线下的面积,用于衡量模型在所有可能阈值下的平均性能。
  • 平均精确度(Average Precision):平均精确度是用于评估目标检测和图像分割等任务的指标。它基于不同阈值下的精确度-召回率曲线,计算出曲线下的平均精确度。特定任务的指标:对于特定任务,可以选择适合的指标来评估模型的性能。例如,对于语言生成任务,可以使用BLEU(Bilingual Evaluation Understudy)指标来衡量生成文本的质量。

1.2.名词解释

  • 准确性(Accuracy):准确性是最常用的性能指标之一,用于衡量模型在整体数据集上的预测准确率。它可以通过计算正确预测的样本数量与总样本数量的比例来得到。

  • 损失函数(Loss Function):损失函数衡量了模型的预测输出与实际标签之间的差异。常见的损失函数包括均方误差(Mean Squared Error,MSE)、交叉熵损失(Cross-Entropy Loss)等。较低的损失函数值表示模型的预测与真实标签之间的差异较小。

  • 精确率(Precision)和召回率(Recall):精确率和召回率是用于评价二分类问题的性能指标。精确率表示被正确预测为正类的样本数量占所有被预测为正类的样本数量的比例,而召回率表示被正确预测为正类的样本数量占真实正类样本数量的比例。

  • F1分数(F1 Score):F1分数综合考虑了精确率和召回率,是一个综合评价指标。它是精确率和召回率的调和平均值,可以帮助综合评估模型的性能。

  • ROC曲线(Receiver Operating Characteristic Curve)和AUC(Area Under the Curve):ROC曲线是以真阳性率(True Positive Rate)为纵轴,假阳性率(False Positive Rate)为横轴绘制的曲线。AUC表示ROC曲线下的面积,用于衡量模型在不同阈值下的分类性能。

  • 交叉验证(Cross-Validation):交叉验证是一种用于评估模型性能的技术。它将数据集分成多个子集,每次使用其中一个子集作为验证集,其余子集作为训练集,多次重复训练和验证,计算模型在不同子集上的性能指标的平均值。

  • 超参数调优(Hyperparameter Tuning):深度学习模型通常有许多超参数,例如学习率、批量大小、正则化参数等。通过尝试不同的超参数组合,并使用评估指标来比较它们的性能,可以找到最佳的超参数配置。

1.3.多分类器训练效果示例

在这里插入图片描述在这里插入图片描述

kappa一致性评价

链接

p0被称为观测精确性或一致性单元的比例;pc被称为偶然性一致或期望的偶然一致的单元的比例。kappa计算结果为-1到1,但通常kappa是落在 0到1 间,可分为五组来表示不同级别的一致性:0.0到0.20极低的一致性(slight)、0.21到0.40一般的一致性(fair)、0.41到0.60 中等的一致性(moderate)、0.61到0.80 高度的一致性(substantial)和0.81到1几乎完全一致(almost perfect)。

例子:

混淆矩阵
在这里插入图片描述在这里插入图片描述k即kappa值,为0.8228,说明一致性良好

2.训练数据评价指标

目标类别分布是指训练数据中不同目标类别的比例。均衡的目标类别分布可以促进模型的泛化能力,使其能够有效地检测各种目标。不均衡的目标类别分布可能会导致模型对某些类别目标的检测精度较低。

相关文章:

【笔记】深度学习模型评估指标

推荐链接: (0)多分类器的评价指标 (1)泛化误差的评价方法:【机器学习】模型评估与选择(留出法、交叉验证法、查全率、查准率、偏差、方差) (2)机器学习&…...

Python语法之列表(包含检测练习)

看完后有没有学会呢?主页有一个列表知识小检测^V^ 关注我更新更多初学实例 主页还有字典的,这个系列会持续更新 列表 列表中的查找数据(index,count,len) 一 列表的格式 【数据1,数据2, 】 index():返回指定数据…...

气象与旅游之间的关系,如果借助高精度预测提高旅游的质量

气象与旅游之间存在密切的关系,天气条件直接影响旅游者的出行决策、旅游体验和安全保障。通过高精度气象预测技术,可以有效提升旅游质量,为游客和旅游行业带来显著的优势。 1. 提高游客出行决策效率 个性化天气服务:基于高精度气象预测,旅游平台可以提供个性化的天气预报服…...

JVM(Java虚拟机)分区详情

JVM(Java虚拟机)运行时数据区是Java虚拟机的内存管理模型,它包括了多个关键的内存区域,这些区域各自承担着不同的职责,共同支持着Java程序的运行。以下是JVM运行时数据区的详细介绍: 一、整体概述 JVM运行时数据区按照线程占用的情况可以分为两类:线程共享和线程独享。…...

计算机组成原理的学习笔记(2)--数据表示与运算·其二 逻辑门和加减乘

学习笔记 前言 本文主要是对于b站尚硅谷的计算机组成原理的学习笔记,仅用于学习交流。 1. 逻辑门 逻辑门是数字电路中用于执行基本逻辑运算的组件。每种逻辑门都有独特的功能和特性: 与门(AND Gate): 符号&#xff1…...

数据科学与SQL:如何利用本福特法则识别财务数据造假?

目录 0 本福特法则介绍 1 数据准备 2 问题分析 步骤1:提取首位数: 步骤2:计算首位数字的实际频率分布 <...

Mapbox-GL 的源码解读的一般步骤

Mapbox-GL 是一个非常优秀的二三维地理引擎&#xff0c;随着智能驾驶时代的到来&#xff0c;应用也会越来越广泛&#xff0c;关于mapbox-gl和其他地理引擎的详细对比&#xff08;比如CesiumJS&#xff09;&#xff0c;后续有时间会加更。地理首先理解 Mapbox-GL 的源码是一项复…...

常见网络命令

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 常见网络命令 收录于专栏【计算机网络】 本专栏旨在分享学习计算机网络的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 Ping 命令 …...

Ubuntu上如何部署Nginx?

环境&#xff1a; Unbuntu 22.04 问题描述&#xff1a; Ubuntu上如何部署Nginx&#xff1f; 解决方案&#xff1a; 在Ubuntu上部署Nginx是一个相对简单的过程&#xff0c;以下是详细的步骤指南。我们将涵盖安装Nginx、启动服务、配置防火墙以及验证安装是否成功。 1. 更新…...

微店商品详情API:获取商品信息的高效途径

引言 在电商领域&#xff0c;获取商品详情是开发者和商家进行数据分析、精准营销和店铺管理的重要一环。微店作为知名的电商平台&#xff0c;提供了丰富的API接口供开发者使用&#xff0c;其中商品详情API接口尤为关键。本文将详细介绍如何使用微店API接口获取商品详情&#x…...

编程语言注释的方式

Python 单行注释 # 这是一个单行注释多行注释&#xff08;本质上是跨行字符串&#xff09; 这是一个多行注释的示例。它可以跨越多行。 """这是一个多行注释的示例。它可以跨越多行。 """ C 单行注释 // 这是一个单行注释 多行注释 /*这是…...

抓住节假日的机会调整ASO优化策略

节日季和全年的特殊活动为提高应用程序的知名度和下载量提供了独特的机会。忽略节假日意味着错过这些有限的扩大用户群的机会。相反&#xff0c;调整您的应用商店优化 (ASO) 策略以适应这些高流量时段至关重要。以下是如何在假期期间最大限度地提高应用程序的性能。 一、为什么…...

AOI外观缺陷检测机

主要功能&#xff1a; 快速检测产品装配缺陷&#xff0c;包括螺丝、元器件、端子排线、二维码、一维条码、识别读码、产品外观 Logo缺陷以及产品标签、字符缺陷检测等产品的缺陷检测。 设备优势&#xff1a;1.采用轻型可移动支架&#xff0c;可以快速对接产线工艺工序&am…...

BERT模型

目录 1.BERT介绍2.BERT框架2.1 Embedding2.2 Transformer Encoder 3.BERT可视化4.注意力六种模式4.1 模式1&#xff1a;注意下一个词4.2 模式2&#xff1a;注意前一个词4.3 模式3&#xff1a;注意相同或相关的单词4.4 模式4&#xff1a;注意“其他”句子中相同或相关词4.5 模式…...

Ubuntu22.04上安装esp-idf

一、安装准备# 建议使用Ubuntu 20.04 或 Ubuntu 22.04 操作系统 为了在 Ubuntu 22.04 中使用 esp-idf&#xff0c;需要安装一些依赖包 sudo apt-get install git wget flex bison gperf python3\python3-pip python3-venv cmake ninja-build ccache\libffi-dev libssl-dev dfu…...

Synchronous Serial Port 协议详解

1、简介 Synchronous Serial Port (SSP) &#xff0c;基于下图文档的设计标准 1.1、包含3种数据帧格式&#xff1a; a Motorola SPI-compatible interface&#xff08;以下简称SPI&#xff09;a Texas Instruments synchronous serial interface&#xff08;简写SSI&#xff…...

BSM和BMS什么区别?

BSM BSM&#xff08;Battery System Manager&#xff09;是指用于管理和控制电动车辆的电池系统的设备&#xff0c;其功能包括监测电池状态、控制充放电过程、保护电池安全等。 BMS BMS&#xff08;Battery Management System&#xff09;是指用于监测、控制和保护电池组的设…...

基于海思soc的智能产品开发(巧用mcu芯片)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 对于开发车规级嵌入式软件的同学来说&#xff0c;socmcu这样的组合&#xff0c;他们并不陌生。但是传统的工业领域&#xff0c;比如发动机、医疗或…...

R语言混合模型回归GBTM群组轨迹模型绘图可视化研究

全文链接&#xff1a;https://tecdat.cn/?p38581 在回归分析的广袤领域中&#xff0c;面对具有多条未知函数线的复杂数据时&#xff0c;传统方法常常捉襟见肘。混合模型作为一种强有力的分析手段应运而生&#xff0c;其在处理此类复杂情境时展现出独特的优势与潜力&#xff08…...

Flink2.0未来趋势中需要注意的一些问题

手机打字&#xff0c;篇幅不长&#xff0c;主要讲一下FFA中关于Flink2.0的未来趋势&#xff0c;直接看重点。 Flink Forward Asia 2024主会场有一场关于Flink2.0的演讲&#xff0c;很精彩&#xff0c;官方也发布了一些关于Flink2.0的展望和要解决的问题。 1.0时代和2.0时代避免…...

android recycleview 中倒计时数据错乱

原因 recyceleview 当页面划出屏幕外后&#xff0c;默认会有两条进入缓存区&#xff0c;这些item的结构会被保存&#xff0c;数据被清除&#xff0c;方便其他新进入屏幕的数据复用item&#xff0c;超过两条外的item会进入缓存池被完全销毁重用。 如果我们的页面上有editText 或…...

康冠科技嵌入式面试题及参考答案

LCD 驱动你自己做了哪些内容? 在 LCD 驱动开发中,首先是硬件层面的理解。需要仔细研究 LCD 的数据手册,明确其引脚定义,包括电源引脚、数据引脚、控制引脚等。比如,对于常见的 RGB 接口 LCD,要清楚哪几个引脚是用于传输红、绿、蓝三种颜色的数据,以及像 VSYNC(垂直同步…...

FreeRTOS的任务调度

1.启动任务调度器 vTaskStartScheduler void vTaskStartScheduler( void ) { BaseType_t xReturn;/* Add the idle task at the lowest priority. */#if ( INCLUDE_xTaskGetIdleTaskHandle 1 ){/* Create the idle task, storing its handle in xIdleTaskHandle so it canbe …...

scala中模式匹配的应用

package test34object test6 {case class Person(name:String)case class Student(name:String, className:String)// match case 能根据 类名和属性的信息&#xff0c;匹配到对应的类// 注意&#xff1a;// 1 匹配的时候&#xff0c;case class的属性个数要对上// 2 属性名不需…...

基于Springboot人口老龄化社区服务与管理平台【附源码】

基于Springboot人口老龄化社区服务与管理平台 效果如下&#xff1a; 系统登陆页面 系统主页面 社区信息页面 社区文件页面 活动报名页面 走访任务管理页面 社区资讯页面 老人信息管理页面 研究背景 随着社会老龄化的加剧&#xff0c;老年人口比例逐渐增加&#xff0c;对老年…...

前端生成docx文档、excel表格、图片、pdf文件

一、前端将页面某区域内容下载为word文档&#xff1a;html-to-docx、file-saver插件组合使用 import HTMLtoDOCX from html-to-docx; import { saveAs } from file-saver;const exportTest async () > {const fileBuffer await HTMLtoDOCX(<h2>文件标题</h2>&…...

Ubantu22系统安装Miniconda3

1、Anaconda和Miniconda异同 清华源镜像的Miniconda3和Anaconda都是用于管理Python环境和软件包的工具&#xff0c;但它们之间存在一些关键的不同之处。下面将分别介绍它们的特点以及使用清华源镜像的差异。 相同点&#xff1a; &#xff08;1&#xff09;功能相似&#xff1a…...

详细解读TISAX认证的意义

详细解读TISAX认证的意义&#xff0c;犹如揭开信息安全领域的一颗璀璨明珠&#xff0c;它不仅代表了企业在信息安全管理方面的卓越成就&#xff0c;更是通往全球汽车供应链信任桥梁的关键一环。TISAX&#xff0c;即“Trusted Information Security Assessment Exchange”&#…...

kubeadm_k8s_v1.31高可用部署教程

kubeadm_k8s_v1.31高可用部署教程 实验环境部署拓扑图**部署署架构****Load Balance****Control plane node****Worker node****资源分配&#xff08;8台虚拟机&#xff09;**集群列表 前置准备关闭swap开启ipv4转发更多设置 1、Verify the MAC address and product_uuid are u…...

MyBatis写法汇总

Mybatis写法汇总 1. 批量操作 1.1 批量插入 <insert id"batchInsert" parameterType"java.util.List">INSERT INTO user (username, password, create_time) VALUES<foreach collection"list" item"item" separator"…...

【C++】优先级队列以及仿函数

本篇我们来介绍一下优先级队列 priority_queue 。优先级队列的底层是数据结构中的堆&#xff0c;在C中它是一个容器适配器&#xff0c;这个容器适配器比之前的栈和队列更复杂。 1.priority_queue的介绍 1.1 优先级队列的底层 因为优先级队列就是堆&#xff0c;堆的底层是数组…...

【VUE】13、安装nrm管理多个npm源

nrm&#xff08;npm registry manager&#xff09;是一个 npm 源管理器&#xff0c;它允许用户快速地在不同的 npm 源之间进行切换&#xff0c;以提高包管理的速度和效率。以下是对 nrm 使用的详细介绍&#xff1a; 1、安装nrm 在使用 nrm 之前&#xff0c;需要先确保已经安装…...

selenium工作原理

原文链接&#xff1a;https://blog.csdn.net/weixin_67603503/article/details/143226557 启动浏览器和绑定端口 当你创建一个 WebDriver 实例&#xff08;如 webdriver.Chrome()&#xff09;时&#xff0c;Selenium 会启动一个新的浏览器实例&#xff0c;并为其分配一个特定的…...

Reactor 响应式编程(第三篇:R2DBC)

系列文章目录 Reactor 响应式编程&#xff08;第一篇&#xff1a;Reactor核心&#xff09; Reactor 响应式编程&#xff08;第二篇&#xff1a;Spring Webflux&#xff09; Reactor 响应式编程&#xff08;第三篇&#xff1a;R2DBC&#xff09; Reactor 响应式编程&#xff08…...

从零开始掌握 React 前端框架:入门指南与实战案例

&#x1f680; 从零开始掌握 React 前端框架&#xff1a;入门指南与实战案例 &#x1f4d6; 前言 React 是由 Facebook 推出的前端框架&#xff0c;用于构建高效、可复用的用户界面&#xff08;UI&#xff09;。本文将手把手教你如何从零开始掌握 React&#xff0c;内容覆盖 …...

【日常笔记】Spring boot:编写 Content type = ‘text/plain‘ 接口

一、项目场景&#xff1a; 接口&#xff1a;Context-Type&#xff1a;text/plain 方式&#xff1a;POST 项目场景&#xff1a;硬件回调接口 二、实战 PostMapping(value "/xx/xxx", consumes "text/plain" ) 2.1、接口 /*** return String* time 202…...

探索 Seaborn Palette 的奥秘:为数据可视化增色添彩

一、引言 在数据科学的世界里&#xff0c;视觉传达是不可或缺的一环。一个好的数据可视化不仅能传递信息&#xff0c;还能引发共鸣。Seaborn 是 Python 中一款广受欢迎的可视化库&#xff0c;而它的调色板&#xff08;palette&#xff09;功能&#xff0c;则为我们提供了调配绚…...

多智能体/多机器人网络中的图论法

一、引言 1、网络科学至今受到广泛关注的原因&#xff1a; &#xff08;1&#xff09;大量的学科&#xff08;尤其生物及材料科学&#xff09;需要对元素间相互作用在多层级系统中所扮演的角色有更深层次的理解&#xff1b; &#xff08;2&#xff09;科技的发展促进了综合网…...

【中标麒麟服务器操作系统实例分享】java应用DNS解析异常分析及处理

了解更多银河麒麟操作系统全新产品&#xff0c;请点击访问 麒麟软件产品专区&#xff1a;https://product.kylinos.cn 开发者专区&#xff1a;https://developer.kylinos.cn 文档中心&#xff1a;https://documentkylinos.cn 情况描述 中标麒麟服务器操作系统V7运行在 ARM虚…...

设计模式12:状态模式

系列总链接&#xff1a;《大话设计模式》学习记录_net 大话设计-CSDN博客 参考&#xff1a;设计模式之状态模式 (C 实现)_设计模式的状态模式实现-CSDN博客 1.概述 状态模式允许一个对象在其内部状态改变时改变其行为。对象看起来像是改变了其类。使用状态模式可以将状态的相…...

AI @国际象棋世界冠军赛: 从棋盘到科研创新之路

点击屏末 | 阅读原文 | 在小红书和 Google 谷歌回顾 WCC...

LeetCode刷题day29——动态规划(完全背包)

LeetCode刷题day29——动态规划&#xff08;完全背包&#xff09; 377. 组合总和 Ⅳ分析&#xff1a; 57. 爬楼梯&#xff08;第八期模拟笔试&#xff09;题目描述输入描述输出描述输入示例输出示例提示信息 分析&#xff1a; 322. 零钱兑换分析&#xff1a; 279. 完全平方数分…...

C++对象数组对象指针对象指针数组

一、对象数组 对象数组中的每一个元素都是同类的对象&#xff1b; 例1 对象数组成员的初始化 #include<iostream> using namespace std;class Student { public:Student( ){ };Student(int n,string nam,char s):num(n),name(nam),sex(s){};void display(){cout<&l…...

主曲率为常数时曲面分类

主曲率为常数 ⇔ K , H \Leftrightarrow K,H ⇔K,H 为常数&#xff0c;曲面分类&#xff1a; 1.若 k 1 k 2 0 k_1k_20 k1​k2​0,则 S S S为全脐点曲面——平面的一部分&#xff1b; 2.若 k 1 k 2 ≠ 0 k_1k_2\neq0 k1​k2​0,则 S S S为全脐点曲面——球面的一部分&…...

单片机:实现HC-SR04超声波测距(附带源码)

使用单片机实现 HC-SR04 超声波测距模块 的功能&#xff0c;通常用于测量物体与超声波传感器之间的距离。HC-SR04 模块通过发射超声波信号并测量其返回时间来计算距离。单片机&#xff08;如 STM32、51 系列、Arduino 等&#xff09;可用来控制该模块的工作&#xff0c;并处理返…...

分布式全文检索引擎ElasticSearch-数据的写入存储底层原理

一、数据写入的核心流程 当向 ES 索引写入数据时&#xff0c;整体流程如下&#xff1a; 1、客户端发送写入请求 客户端向 ES 集群的任意节点&#xff08;称为协调节点&#xff0c;Coordinating Node&#xff09;发送一个写入请求&#xff0c;比如 index&#xff08;插入或更…...

mfc140u.dll是什么文件?如何解决mfc140u.dll丢失的相关问题

遇到“mfc140u.dll文件丢失”的错误通常影响应用程序的运行&#xff0c;这个问题主要出现在使用Microsoft Visual C环境开发的软件中。mfc140u.dll是一个重要的系统文件&#xff0c;如果它丢失或损坏&#xff0c;会导致相关程序无法启动。本文将简要介绍几种快速有效的方法来恢…...

ChatGPT生成接口测试用例(一)

用ChatGPT做软件测试 接口测试在软件开发生命周期中扮演着至关重要的角色&#xff0c;有助于验证不同模块之间的交互是否正确。若协议消息被恶意修改&#xff0c;系统是否能够恰当处理&#xff0c;以确保系统的功能正常运行&#xff0c;不会出现宕机或者安全问题。 5.1 ChatGP…...

Jenkins 中 写 shell 命令执行失败,检测失败问题

由于项目的 依赖复杂&#xff0c;随着版本的增多&#xff0c;人工操作&#xff0c;手误几率太大&#xff0c;我们选取kenins 来自动化发布、更新。 这里主要解决&#xff0c;发布 的 每个阶段&#xff0c;确保每个阶段执行成功。 比如&#xff1a; js 运行&#xff0c;…...

Dot Foods EDI 需求分析及对接流程

Dot Foods 是一家美国领先的食品和非食品产品的中间批发分销商&#xff0c;主要为食品服务、零售和分销行业的客户提供服务&#xff0c;是北美大型食品中间分销商之一。Dot Foods &#xff08;以下简称 Dot&#xff09;的业务模式是通过整合多个供应商的产品&#xff0c;为客户…...