当前位置: 首页 > news >正文

目标检测DN-DETR(2022)详细解读

文章目录

    • gt labels 和gt boxes加噪
    • query的构造
    • attention mask
    • IS(InStability)指标

在DAB-Detr的基础上,进一步分析了Detr收敛速度慢的原因:二分图匹配的不稳定性(也就是说它的目标在频繁地切换,特别是在训练的早期),导致早期训练阶段的优化目标不一致(一个query通常在不同的时间段与不同的对象匹配,这使得优化变得模糊和不稳定)

解决方法:除了匈牙利损失外,提出了全新的去噪训练来解决二分图匹配不稳定的问题。从而有效降低了双方图匹配的难度,并加快了收敛速度。去噪任务仅在训练时需要,而推理时是去掉的,并不会给最终模型的实际应用带来负担,该方法具有通用性,只需添加几十行代码,就能轻松插入任何类似 DETR 的方法中,从而实现显著的改进。

先理解Decoder在做什么:

可以按照DAB-DETR把它看作一个四维的bounding box(检测框):$( x , y , w , h ) ,在每一层 d e c o d e r 中都会去预测相对偏移量 ( Δ x , Δ y , Δ w , Δ h ) 并去更新检测框,得到一个更加精确的检测框预测 ,在每一层decoder中都会去预测相对偏移量( Δ x , Δ y , Δ w , Δ h )并去更新检测框,得到一个更加精确的检测框预测 ,在每一层decoder中都会去预测相对偏移量(Δx,Δy,Δw,Δh)并去更新检测框,得到一个更加精确的检测框预测( x^, , y^, , w^, , h^, ) $ = $( x , y , w , h ) $ + ( Δ x , Δ y , Δ w , Δ h ),并传到下一层中。

我们可以把decoder看成在学习两个东西:

  • good anchors(anchor位置)$( x , y , w , h ) $
  • relative offset(相对偏移)(Δx,Δy,Δw,Δh)

decoder queries可以看成是anchor位置的学习,而不稳定的匹配会导致不稳定的anchor,从而使得相对偏移的学习变得困难。因此,直接在 DETR 训练时引入去噪任务作为训练捷径,使相对偏移学习起来更容易,因为去噪任务跳过了匹配过程直接进行学习。

如果我们把query像上述一样看作四维坐标,可以通过在真实框附近添加一个微小的扰动作为噪声,因此一个带噪声的查询query可以被看作是一个“good anchor”,它附近肯定有一个相应的gt Box。这样DN-DETR架构去噪训练有一个明确的优化目标——预测原始的box,这从本质上避免了匈牙利匹配带来的模糊性。总的来说DN任务就是:输入是通过对 gt 加噪而获得,输出是为了去重构原来的 gt。

除了上面对position位置加噪,DN作者同时对content任务部分进行了加噪,比如将原来的gt label(标签类别)替换为其他的label作为输入,输出则是为了去重构原来的 gt label。

gt labels 和gt boxes加噪

gt labels 加噪:

以一定概率随机把gt label翻转为其余的任何一个label。由于 gt label 是一个数字,因此当然不能是将这个数字改为另一个数字就完事了。我们可以参考 query 的 position 部分,它是一个 embedding 向量,所以在这里我们也可以把加噪的 label 编码为 embedding 向量。根据 1 个整型数值到 embedding 矩阵中去“查表”从而得到对应的向量。于是,需要在模型中设置一个 embedding matrix,来对加噪的 gt label 进行编码得到对应的 Class Label Embedding。

这么一来,原来做匈牙利匹配任务的那部分 query 的 content 部分也需要改造下,让它的值初始化为 ‘non-object’,这个值应当不小于类别数 num_classes,因为做去噪任务的 query 的 content 部分是由真实的 gt label 而来,其值域会是 [0,num_classes−1] 。当然了,要记得将这个 non-object class 也通过 embedding matrix 去编码,从而得到对应的 embedding 向量。

另外,考虑到对原始 DETR 的匈牙利匹配任务的友好性,作者还在 Class Label Embedding部分拼接(concat)了指示向量 indicator,用以区别 query 到底是做去噪任务还是匹配任务。果查询属于去噪部分,则指示器为 1,否则为 0。

gt boxes 加噪:

DN-DETR 承袭了 DAB-DETR,position 部分就是 4d anchor box:x、y、w、h (对于以下内容,默认这 4 个分量都归一化到 [0,1] )。自然地,要做的就是对这 4 个分量都加上细微的“扰动”。总的来说,这部分的加噪可以概括为:中心点位移 & 尺度缩放。

中心点位移:在中心点(x,y)处添加一个随机噪声(∆x ,∆y),并保证|∆x | < λ 1 w 2 \frac{λ_1w}{2} 2λ1w和|∆y | < λ 1 h 2 \frac{λ_1h}{2} 2λ1h,其中 λ 1 λ_1 λ1∈( 0 , 1),使得被噪声污染的box中心(x+∆x ,y+∆y)仍位于gt box之中。

尺度缩放:对宽度和高度在[(1 − λ 2 λ_2 λ2)w, (1 + λ 2 λ_2 λ2w] 和 [(1 − λ 2 λ_2 λ2)h, (1 + λ 2 λ_2 λ2)h]中进行随机抽样,其中 λ 2 λ_2 λ2∈( 0 , 1),宽高会缩放至原来的 0~2 倍。

对于以上两个扰动参数不同值所带来的效果,作者也做了实验进行探索

设置dn group加噪组的个数:

为了更充分地利用 DN 任务去提升模型的学习效率,我们可以让模型对于每个 gt 在不同程度的噪声下都拥有“纠错”能力,从而使模型更明确 query & gt 的对应关系,也就是更能知道什么样的 query 该负责预测哪个 gt。基于此,作者设置了 dn groups,即多个去噪组,每个 gt 在每组都会由一个噪声 query(noised label & noised box) 负责去预测。

query的构造

首先,将原本的Decoder Embeding变为了Class Label Embeding,这里的改变只是变个名字罢了,方便我们理解。

随后假设 batch size=3,image0中有9个target,image1中有1个target,image2中有2个target,总计12个target。设置加入噪声的group组为5组,设置类别噪声比例为0.2,x,y,w,h噪声比例为0.4。即12个target,5组,那么有12X5=60个真实框,0.2作为比例或阈值,比如取60X0.2=12个target加入类别噪声,即将其真实类别替换为其他类别,这个比例可以随便取。0.4则是box的xy偏移比例与wh的缩放比例。

接着我们取3个batch中最大的target的数量,在这里为9,由于group=5,所有5X9=45,构造噪声query的结构为【3,45,256】,这里注意256的最后一维为indicator标识,值为1,代表噪声。沿用DAB-DETR的匹配query构造方式为【3,300,256】,此时256最后一维indicator=0。

最后将其cat起来,得到class label embeding为【3,345,256】。

同理构造learnable Anchor为【3,345,4】随后送入Decoder进行计算。如上图所示。

attention mask

DN 任务的噪声 queries 是会和匈牙利匹配任务的 queries 拼接起来一起喂到 transformer 中的,在 transformer 中,它们会经过 attention 交互(你看看我,我看看你),这样问题就大了!因为噪声 queries 可是通过 gt “稍微”改造而来,那么它们其实是包含着大量 gt 信息的,如果匈牙利匹配任务的 queries 看到了它们,那就会“偷懒”,导致学习效果大打折扣,所以需要有针对性的进行mask处理。

如上所述,匈牙利匹配任务的 queries 肯定不能看到 DN 任务的 queries;其次,不同 dn group 的 queries 也不能相互看到,因为每个 gt 在每组都会由一个噪声 quer负责去预测,其他queries都不会有自己gt的信息。

总的来说,attention mask 的设计归纳为:

  • 匈牙利匹配任务的 queries 不能看到 DN任务的 queries
  • DN 任务中,不同组的 queries 不能相互看到
  • 其它情况均可见

假设一张训练图片中有M 个目标,施加P 个版本的噪声(p个group)后,就会得到P 组带噪目标,共M × P 个新的带噪目标。假设原始一张图片有N个查询,新的带噪目标会作为额外的查询与原始查询拼接到一起,于是形成M × P + N 个查询。原始查询就是DAB-DETR中的300个查询。

DN-DETR将与带噪目标相关的部分称为去噪部分,将与原始查询相关的部分称为匹配部分。

图中,P = 2 , M = 3 , N = 5 ;匹配部分表示N 个原始查询;灰色部分表示对应查询不可访问,彩色部分表示可以访问。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

noised labes, noised boxes & attention mask 做为 DN 大法的“三剑客”,作者对它们的 KPI 完成情况也进行了发布:

总结下来,DAB-DETR和DN-DETR仅训练时有差别,相较于DAB-DETR的差别是:
(1) 解码器嵌入被换成了类别标签嵌入+指示项。嵌入部分由nn.Embedding初始化,匹配部分按未知类取最后一个特征,去噪部分按噪声类别取对应索引的特征。指示项为0表示匹配部分,为1表示去噪部分。
(2) 输入查询的数量从N 变成了M × P + N 。M × P 是该图片中M 个真实目标被施加了P 个版本的噪声后得到的锚框和标签。
(3) 为了避免通信带来的问题,引入了注意力掩码。
(4) 与原始查询拼接在一起的去噪查询也会经解码器输出框和标签预测。为实现去噪,对于框使用l1 loss和GIOU loss,对于标签使用Focal loss,三个loss合并称为重构损失(reconstruction loss)。

IS(InStability)指标

设计了一个指标IS(Instability)通过比较相邻epoch之间匹配的不一致性来衡量匹配的不稳定性,如下图所示。这表明DN-DETR能有效提高匹配的稳定性。

相关文章:

目标检测DN-DETR(2022)详细解读

文章目录 gt labels 和gt boxes加噪query的构造attention maskIS&#xff08;InStability&#xff09;指标 在DAB-Detr的基础上&#xff0c;进一步分析了Detr收敛速度慢的原因&#xff1a;二分图匹配的不稳定性&#xff08;也就是说它的目标在频繁地切换&#xff0c;特别是在训…...

榕壹云上门家政系统:基于Spring Boot+MySQL+UniApp的全能解决方案

一、项目背景&#xff1a;家政服务行业的数字化升级需求 随着城市化进程加快&#xff0c;居民对上门家政服务的需求持续增长。传统家政行业存在服务效率低、信息不透明、管理成本高的问题&#xff0c;亟需通过数字化工具实现服务标准化、流程自动化。榕壹云上门家政系统应运而…...

目标检测DINO-DETR(2023)详细解读

文章目录 对比去噪训练混合查询选择look forward twice 论文全称为&#xff1a;DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection 提出了三个新的方法&#xff1a; 首先&#xff0c;为了改进一对一的匹配效果&#xff0c;提出了一种对比去噪训练方法…...

LLM笔记(十)vLLM(1)PagedAttention论文笔记

文章目录 PagedAttention论文笔记论文摘要概览1. 引言问题背景提出的解决方案主要贡献和成果 2. 背景2.1 基于Transformer的大语言模型2.2 LLM服务与自回归生成2.3 LLM的批处理技术 3. LLM服务中的内存挑战3.1 现有系统中的内存管理 4. 方法: PagedAttention 和 vLLMvLLM 系统概…...

5.20 note

不用if else实现递归 原代码 class Solution { public: int mechanicalAccumulator(int target) { if (target 0) return 0; // 终止条件&#xff1a;基准情况 return target mechanicalAccumulator(target - 1); // 递归累加 } }; 变形 class Solution { public: int…...

vuejs处理后端返回数字类型精度丢失问题

标题问题描述 后端返回数据有5.00和3.30这种数据&#xff0c;但是前端展示的时候返回对应分别为5和3.0&#xff0c;小数点后0都丢失了。 接口返回数据展示network-Response&#xff1a; 接口返回数据展示network-Preview&#xff1a; 错误数据效果展示 发现问题 浏览器接口…...

指令烧录ORIN NANO操作系统

1 概述 模组为ORIN NANO 4GB版本 Ubuntu系统为18.04虚拟机 说明&#xff1a;刷机过程会有重新连接USB的操作&#xff0c;烧写过程需要注意虚拟机提示&#xff0c;官方不建议使用虚拟机&#xff0c;建议直接使用ubuntu操作系统的机器。 2 下载烧录所需文件 进入到下载网址&am…...

每日算法刷题Day11 5.20:leetcode不定长滑动窗口求最长/最大6道题,结束不定长滑动窗口求最长/最大,用时1h20min

6. 1695.删除子数组的最大得分(中等) 1695. 删除子数组的最大得分 - 力扣&#xff08;LeetCode&#xff09; 思想 1.给你一个正整数数组 nums &#xff0c;请你从中删除一个含有 若干不同元素 的子数组**。**删除子数组的 得分 就是子数组各元素之 和 。 返回 只删除一个 子…...

List介绍

什么是List 在集合框架中&#xff0c;List是一个接口&#xff0c;继承自Collection Collection也是一个接口&#xff0c;该接口中规范了后序容器中常用的一些方法 Iterable也是一个接口&#xff0c;表示实现该接口的类是可以逐个元素进行遍历的&#xff0c;具体如下&#xff1…...

List更简洁的编码构建

List的链式构建需求 jdk1.8&#xff0c;编码时需要手动构建一个List 传统List构建方式 - 声明列表&#xff0c;依次添加元素&#xff1b; - 利用Arrays.asList方法声明并添加元素 //1 先声明创建 List<String> createList new ArrayList<>();//2 逐个添加元素 c…...

Java 单元测试框架比较:JUnit、TestNG 哪个更适合你?

Java 单元测试框架比较&#xff1a;JUnit、TestNG 哪个更适合你&#xff1f; 在 Java 开发领域&#xff0c;单元测试是保证代码质量的重要环节。而选择一个合适的单元测试框架&#xff0c;对于提升测试效率和代码可靠性至关重要。本文将深入比较 JUnit 和 TestNG 这两个主流的…...

变频器如何通过Profibus DP主站转Modbus RTU/TCP接入到上位机

变频器如何通过Profibus DP主站转Modbus RTU/TCP接入到上位机 在工业自动化领域&#xff0c;Profibus DP和Modbus RTU是两种常见的通信协议。Profibus DP广泛应用于工厂自动化&#xff0c;而Modbus RTU则常用于串行通信。当需要将支持Profibus DP的设备&#xff08;如变频器&a…...

ElasticSearch性能优化

ES基础概念介绍&#xff1a; 索引&#xff1a;类似于MySQL中的表&#xff0c;它是具有相同特征的一个数据集。文档&#xff1a;格式为JSON格式&#xff0c;类似于MySQL中的一条数据&#xff0c;它是数据存储的基本数据单元&#xff0c;每一条文档都有一个唯一的ID。查询&#x…...

pom.xml中的runtime

在 Maven 的 pom.xml 文件中&#xff0c;<scope> 元素可以指定依赖项的作用范围&#xff0c;而 runtime 是其中的一个作用范围值。以下是 runtime 作用范围的含义&#xff1a; 定义&#xff1a;runtime 作用范围表示该依赖项在编译时不需要&#xff0c;但在运行时需要。…...

第一章走进java世界

第一章 走进 java 世界 1.1 java 语言的特点(小面经) 使用简单、高效 去掉了 C 和 C++中的指针和多重继承技术通过垃圾自动回收机制简化了程序内存管理对于数据类型在不同字长的计算机上实现统一字节数占用完全面向对象 抽象、封装、继承、多态自动内存管理(Auto Garbage C…...

tigase源码学习笔记-事件总线EventBus

前言 最近看到了一些tigase关于异步事件解耦的地方的设计&#xff0c;做一个笔记记录一下。什么是事件总线&#xff0c;我自己对于事件总线的理解是&#xff0c;事件总线是一个对事件&#xff08;Event&#xff09;进行集中处理的基于发布订阅模式的一种处理机制。个人拙见&am…...

GO语言学习(六)

GO语言学习(六) 各位支持我的友友们我们现在不知不觉的已经进入第六期了&#xff0c;在上一期我们学习了一些简单的HTTP相关知识&#xff0c;还带大家基本的了解了web的深层原理及实现过程&#xff0c;相信大家应该都有自己的收获了&#xff0c;现在我就带领大家学习一下本期的…...

25.5.20学习总结

做题思路 数列分段 Section IIhttps://www.luogu.com.cn/problem/P1182正如题目所说&#xff0c;我们需要得到一个最小的最大段的值&#xff0c;可能有人将注意力放在分段上&#xff0c;事实上&#xff0c;我们更多的应该关注结果。这是一道二分答案的题&#xff0c;你可以先确…...

山东大学软件学院项目实训-基于大模型的模拟面试系统-Vditor编辑器上传图片

Vditor编辑器图片上传功能 使用Vditor进行图片上传时&#xff0c;会返回图片在后端的相对路径&#xff0c;这在前端是无法进行显示的&#xff08;如下图&#xff09; 于是为了将图片正常显示&#xff0c;我采取了和头像上传一样的解决方案&#xff0c;使用阿里云图床进行存储…...

在 Kotlin 中,什么是内联函数?有什么作用?

在 Kotlin 中&#xff0c;内联函数是一种通过 inline 关键字声明的函数&#xff0c;其主要目的是优化高阶函数&#xff08;即以函数作为参数或返回值的函数&#xff09;的性能。 内联函数的函数体会在编译时直接插入到调用处&#xff0c;从而避免函数调用的开销&#xff0c;并…...

leetcode hot100:四、解题思路大全:滑动窗口(无重复字符的最长子串、找到字符串中所有字母异位词)、子串(和为k的子数组、)

滑动窗口 无重复字符的最长子串 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长 子串 的长度。 思路 滑动窗口哈希表。 从左到右遍历字符串&#xff0c;以当前字符的下标为右边界&#xff0c;并不断试图往左扩宽左边界。滑动窗口内维护的就是当前字符下标…...

JAVA EE(进阶)_HTML

思如云烟&#xff0c;行若磐石。 ——陳長生. ❀主页&#xff1a;陳長生.-CSDN博客❀ &#x1f4d5;上一篇&#xff1a;JAVA EE&#xff08;进阶&#xff09;_进阶的开端-CSDN博客 1.HTML HTML&#xff08;HyperText Mark…...

【[特殊字符] Vue 3 实现动态加载子组件并缓存状态完整指南】

文章目录 &#x1f9e9; Vue 3 实现动态加载子组件并缓存状态完整指南&#x1f4a1; 需求背景&#x1f3af; 最终实现效果效果图 &#x1f6e0;️ 技术栈&#x1f9f1; 文件结构示例&#x1f527; 实现流程详解1. 定义组件映射关系2. 子组件定义并暴露方法3. 父组件逻辑处理✅ …...

从零开始的抽奖系统创作(2)

我们接着进行抽奖系统的完善。 前面我们完成了 1.结构初始化&#xff08;统一结果返回之类的&#xff0c;还有包的分类&#xff09; 2.加密&#xff08;基于Hutool进行的对称与非对称加密&#xff09; 3.用户注册 接下来我们先完善一下结构&#xff08;统一异常处理&#…...

【计算机方向海外优质会议推荐】第二届图像处理、机器学习与模式识别国际学术会议(IPMLP 2025)

重要信息 大会官网&#xff1a;www.ipmlp.net 会议主页【点击参会/投稿/了解会议详情】&#xff1a;第二届图像处理、机器学习与模式识别国际学术会议&#xff08;IPMLP 2025)_艾思科蓝_学术一站式服务平台 截稿时间&#xff1a;详见官网 接受/拒稿通知&#xff1a;投稿后1…...

进程之IPC通信二

4.共享内存 共享内存是进程间通信一种方式&#xff0c;多个进程共享一段内存&#xff0c;“ 共享内存 ”。由于多个进程共享了同一段内 存&#xff0c;这个段内存既是你的也是我的。也就是你往这个内存里面写入数据&#xff0c;实际上就相当于往我的内存里 面写入数据。比起其…...

打造高效数据处理利器:用Python实现Excel文件智能合并工具

有时候&#xff0c;我们需要将多个Excel文件按照特定顺序合并成一个文件&#xff0c;这样可以更方便地进行后续的数据处理和分析。今天&#xff0c;我想分享一个使用Python开发的小工具&#xff0c;它可以帮助我们轻松实现Excel文件的智能合并。C:\pythoncode\new\xlsx_merger.…...

使用注解动态映射:根据实体List列表动态生成Excel文件

我们一般通过POI来生成对应的Excel文件&#xff0c;绝大多数情况是需要手动编写单元格内容&#xff0c;然后顺序填充值&#xff0c;今天我们将动态根据实体来生成Excel表头&#xff0c;同时自动填充内容。 文章目录 1. 定义注解2. 实体类应用注解3. 动态导出工具类 1. 定义注解…...

【ISP算法精粹】什么是global tone mapping和local tone mapping?

1. 简介 全局色调映射&#xff08;Global Tone Mapping&#xff09;和局部色调映射&#xff08;Local Tone Mapping&#xff09;是高动态范围&#xff08;HDR&#xff09;图像处理中的两种关键技术&#xff0c;用于将高动态范围图像的亮度值映射到标准动态范围&#xff08;LDR…...

uniapp生成的app,关于跟其他设备通信的支持和限制

以下内容通过AI生成&#xff0c;这里做一下记录。 蓝牙 移动应用&#xff08;App&#xff09;通过蓝牙与其他设备通信&#xff0c;是通过分层协作实现的。 一、通信架构分层 应用层&#xff08;App&#xff09; 调用操作系统提供的蓝牙API&#xff08;如Android的BluetoothA…...

C++ Pimpl(Pointer to Implementation)设计思想

一、C Pimpl&#xff08;Pointer to Implementation&#xff09;设计思想 1. 核心思想 Pimpl&#xff08;Pointer to Implementation&#xff09;是一种通过将类的实现细节隐藏在一个私有指针背后的设计模式&#xff0c;旨在实现接口与实现的解耦。其核心思想是&#xff1a; …...

便捷的Office批量转PDF工具

软件介绍 本文介绍的软件是一款能实现Office批量转换的工具&#xff0c;名为五五Excel word批量转PDF。 软件小巧 这款五五Excel word批量转PDF软件大小不到2M。 操作步骤一 使用该软件时&#xff0c;只需把软件和需要转换的Word或Excel文件放在同一个文件夹里。 操作步骤…...

2025年渗透测试面试题总结-华顺信安[实习]安全服务工程师(题目+回答)

网络安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 华顺信安[实习]安全服务工程师 1. 自我介绍 2. 红蓝队经验 3. Shiro漏洞知识体系 4. APP渗透测试方法…...

Mermaid 使用快速入门

使用AI 生成Mermaid 代码&#xff0c;导入Vscode, 安装Mermaid Preview 插件 --- title: config:theme: forest --- graph TDA[开始] --> B{条件判断}B -->|是| C[执行操作1]B -->|否| D[执行操作2] theme可改变主题&#xff0c;可选主题&#xff1a; default - 这是…...

Windows系统下MySQL 8.4.5压缩包安装详细教程

一、MySQL 8.4.5新特性概览 相较于旧版本&#xff0c;MySQL 8.4.5在性能与功能上实现了显著提升&#xff1a; 性能优化&#xff1a;官方测试显示&#xff0c;在高并发场景下&#xff0c;其读写性能较5.7版本提升近2倍&#xff0c;尤其在处理热点数据竞争问题时表现更为出色。…...

机器学习10-随机森林

随机森林学习笔记 一、随机森林简介 随机森林&#xff08;Random Forest&#xff09;是一种集成学习算法&#xff0c;基于决策树构建模型。它通过组合多个决策树的结果来提高模型的准确性和稳定性。随机森林的核心思想是利用“集成”的方式&#xff0c;将多个弱学习器组合成一…...

【缺陷】GaN和AlN中的掺杂特性

1997 年 5 月 9 日,北卡罗来纳州立大学的 P. Bogusławski 和 J. Bernholc 等人在《Physical Review B》期刊发表了题为《Doping properties of C, Si, and Ge impurities in GaN and AlN》的文章,基于量子分子动力学方法,研究了碳(C)、硅(Si)和锗(Ge)杂质在氮化镓(G…...

游戏引擎学习第298天:改进排序键 - 第1部分

关于向玩家展示多个房间层所需的两种 Z 值 我们在前一天基本完成了为渲染系统引入分层 Z 值的工作&#xff0c;但还没有完全完成所有细节。我们开始引入图形渲染中的分层概念&#xff0c;即在 Z 轴方向上拥有多个独立图层&#xff0c;每个图层内部再使用一个单独的 Z 值来实现…...

AI大模型从0到1记录学习 大模型技术之数学基础 day26

高等数学 导数 导数的概念 导数&#xff08;derivative&#xff09;是微积分中的一个概念。函数在某一点的导数是指这个函数在这一点附近的变化率&#xff08;即函数在这一点的切线斜率&#xff09;。导数的本质是通过极限的概念对函数进行局部的线性逼近。 当函数f的自变量在…...

计算机视觉与深度学习 | matlab实现ARIMA-WOA-CNN-LSTM时间序列预测(完整源码和数据)

以下是一个基于MATLAB的ARIMA-WOA-CNN-LSTM时间序列预测框架。由于完整代码较长,此处提供核心模块和实现思路,完整源码和数据可通过文末方式获取。 1. 数据准备(示例数据) 使用MATLAB内置的航空乘客数据集: % 加载数据 data = readtable(airline-passengers.csv); data …...

基于pycharm,python,flask,tensorflow,keras,orm,mysql,在线深度学习sql语句检测系统

详细视频:...

【C++】vector模拟实现

实现以下功能&#xff1a; 构造函数&#xff1a;a.无参默认构造 b.n个val构造 c.迭代器区间构造 d.initializer_list构造&#xff0c;类似于数组 e.拷贝构造 赋值重载 [ ]重载 实现reserve接口 实现size()&#xff0c;capacity()接口 实现push_bakc接口&#…...

门店管理五大痛点解析:如何用数字化系统实现高效运营

实体店竞争白热化&#xff0c;五大管理痛点正悄悄吞噬利润&#xff1a;客户资源流失、数据决策滞后、员工效率模糊、合同风险暗藏、利润核算混乱。本文直击核心问题&#xff0c;拆解数字化系统如何精准破局。​ 一、传统管理模式的五大核心痛点​ 1. 客户资源管理粗放化​ 老…...

双指针法高效解决「移除元素」问题

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 双指针法高效解决「移除元素」问题 双指针法高效解决「移除元素」问题一、问题描述二、解法解析&#xff1a;双指针法1. 核心思想2. 算法步骤3. 执行过程示例 三、关键点分析…...

【Linux笔记】——线程同步信号量与环形队列生产者消费者模型的实现(PV操作)

&#x1f525;个人主页&#x1f525;&#xff1a;孤寂大仙V &#x1f308;收录专栏&#x1f308;&#xff1a;Linux &#x1f339;往期回顾&#x1f339;&#xff1a;【Linux笔记】——线程同步条件变量与生产者消费者模型的实现 &#x1f516;流水不争&#xff0c;争的是滔滔不…...

武汉科技大学人工智能与演化计算实验室许志伟课题组参加第八届智能优化与调度学术会议

武汉科技大学人工智能与演化计算实验室许志伟课题组参加第八届智能优化与调度学术会议 2025年5月15日至18日&#xff0c;第八届智能优化与调度学术会议在青岛金沙滩希尔顿酒店隆重召开。本次会议由青岛科技大学、湖南省系统仿真学会联合主办&#xff0c;中国仿真学会智能仿真优…...

SparkContext介绍

目录 1. 集群管理接口2. RDD操作中枢3. 任务分发引擎4. 执行环境配置5. 性能监控枢纽 SparkContext是Apache Spark的核心组件&#xff0c;其作用可概括为以下五个关键维度&#xff1a; 1. 集群管理接口 作为与集群管理器&#xff08;YARN/Mesos/Standalone&#xff09;通信的唯…...

海外盲盒系统开发:重构全球消费体验的科技引擎

当盲盒文化席卷全球&#xff0c;海外盲盒系统开发已成为重构消费体验的核心赛道。数据显示&#xff0c;2025年全球盲盒市场规模突破120亿&#xff0c;东南亚市场年增长率达4540。我们开发的海外盲盒系统&#xff0c;以技术创新为驱动&#xff0c;打造覆盖全链路的全球化解决方案…...

IP风险画像技术:如何用20+维度数据构建网络安全护城河?

IP风险画像技术作为一种先进的网络安全手段&#xff0c;正逐步成为构建网络安全护城河的重要工具。通过多维度数据的分析和挖掘&#xff0c;IP风险画像技术能够精准识别网络中的潜在威胁&#xff0c;为企业和组织提供更加全面的安全保障。 IP风险画像技术基于IP地址的行为分析…...

Vitest下一代前端单元测试框架

什么是Vitest&#xff1f; Vitest是有vue官方主导开发的下一代测试框架&#xff0c;一个原生支持Vite的测试框架。非常快速。 Vitest 与 Jest 兼容&#xff0c;具有开箱即用的 ESM、Typescript 和 JSX 支持&#xff0c;并且由 esbuild 提供支持。它在测试过程中使用 Vite 开发…...