DriveGenVLM:基于视觉-语言模型的自动驾驶真实世界视频生成
《DriveGenVLM: Real-world Video Generation for Vision Language Model based Autonomous Driving》2024年8月发表,来自哥伦比亚大学的论文。
自动驾驶技术的进步需要越来越复杂的方法来理解和预测现实世界的场景。视觉语言模型(VLM)正在成为革命性的工具,具有影响自动驾驶的巨大潜力。本文提出了DriveGenVLM框架来生成驾驶视频,并使用VLM来理解它们。为了实现这一目标,我们采用了一种基于去噪扩散概率模型(DDPM)的视频生成框架,旨在预测真实世界的视频序列。然后,我们通过使用一种称为“自我中心视频高效情境学习”(EILEV)的预训练模型,探索我们生成的视频在VLM中使用的充分性。扩散模型使用Waymo开放数据集进行训练,并使用Frechet Video’Distance(FVD)评分进行评估,以确保生成视频的质量和真实性。EILEV为这些生成的视频提供了相应的叙述,这在自动驾驶领域可能是有益的。这些叙述可以增强对交通场景的理解,有助于导航,提高规划能力。DriveGenVLM框架中视频生成与VLM的集成代表了利用先进的人工智能模型解决自动驾驶复杂挑战的重要一步。
1. 研究背景与目标
自动驾驶技术需要动态环境理解和预测能力,传统视频生成模型(如GANs、VAEs)在长视频生成中存在连贯性不足的问题。本文提出 DriveGenVLM 框架,结合 去噪扩散概率模型(DDPM) 生成驾驶视频,并利用 视觉语言模型(VLMs) 验证视频的可解释性,以提升自动驾驶的场景理解、导航与规划能力。
2. 核心方法
-
视频生成模型(DDPM)
-
架构:基于U-Net的扩散模型,通过前向(加噪)和反向(去噪)过程生成视频。
-
条件扩展:通过条件输入(如初始帧)生成未来帧,支持长视频生成。
-
采样策略:
-
Autoreg:逐帧生成,依赖前序帧。
-
Hierarchy-2:分层采样,先粗粒度后细粒度。
-
Adaptive Hierarchy-2:动态调整条件帧,优化多样性(基于LPIPS距离)。
-
-
-
视觉语言模型(EILEV)
-
基于BLIP-2的预训练模型,通过上下文学习生成视频的文字描述。
-
验证生成视频的可解释性,例如识别场景(高速公路、夜间驾驶)和关键事件(行人、车辆)。
-
3. 实验与结果
-
数据集:Waymo开放数据集(包含多摄像头视角的驾驶视频,分辨率128×128)。
-
评估指标:
-
FVD(Frechet Video Distance):衡量生成视频与真实视频的分布相似性,数值越低质量越高。
-
-
关键结果:
-
Adaptive Hierarchy-2采样策略在三个摄像头视角(Front、Front-left、Front-right)中均取得最低FVD分数(如Front Camera: 1174.56)。
-
EILEV模型成功为生成视频生成准确文字描述(如“车辆在夜间行驶”),验证其可解释性。
-
4. 贡献与创新
-
首次将DDPM应用于驾驶视频生成,解决传统模型在长视频生成中的连贯性问题。
-
提出自适应采样策略(Adaptive Hierarchy-2),显著提升生成视频的多样性与质量。
-
集成VLMs(EILEV)验证生成视频的实用性,为自动驾驶提供可解释的场景描述。
5. 局限性与未来方向
-
局限性:
-
复杂交通场景(如行人动态、多车交互)的细节捕捉不足。
-
生成视频分辨率较低(128×128),可能影响实际部署效果。
-
-
未来方向:
-
优化模型以处理更高分辨率视频。
-
结合强化学习,将生成视频直接应用于自动驾驶决策系统。
-
6. 实际意义
DriveGenVLM框架为自动驾驶提供了一种新的数据增强和场景模拟工具:
-
训练数据扩展:生成多样化驾驶场景,缓解真实数据不足问题。
-
安全测试:模拟极端场景(如恶劣天气、突发事故),测试系统鲁棒性。
-
人机交互:通过VLMs生成自然语言指令,增强用户对自动驾驶决策的理解。
总结
本文通过DDPM与VLMs的结合,提出了一种创新的驾驶视频生成与验证框架,实验表明其在视频质量和可解释性上的优势。尽管存在对复杂场景建模的挑战,DriveGenVLM为自动驾驶的动态环境理解和决策优化提供了重要技术支撑。
如果此文章对您有所帮助,那就请点个赞吧,收藏+关注 那就更棒啦,十分感谢!!!
相关文章:
DriveGenVLM:基于视觉-语言模型的自动驾驶真实世界视频生成
《DriveGenVLM: Real-world Video Generation for Vision Language Model based Autonomous Driving》2024年8月发表,来自哥伦比亚大学的论文。 自动驾驶技术的进步需要越来越复杂的方法来理解和预测现实世界的场景。视觉语言模型(VLM)正在成…...
【达梦数据库】过程、函数、包头和包体详解零基础
目录 背景参考链接解释包头包体 背景 最近遇到关于包头和包体的问题,学习并记录 参考链接 参考链接: oracle的过程、函数、包头和包体详解零基础 解释 包头主要用于定义接口,包体主要用以实现包体中声明的存储过程、函数等。 包头 包体...
HarmonyOS开发样式布局
个人简介 👨💻个人主页: 魔术师 📖学习方向: 主攻前端方向,正逐渐往全栈发展 🚴个人状态: 研发工程师,现效力于政务服务网事业 🇨🇳人生格言&…...
SpringCloud——EureKa
目录 1.前言 1.微服务拆分及远程调用 3.EureKa注册中心 远程调用的问题 eureka原理 搭建EureKaServer 服务注册 服务发现 1.前言 分布式架构:根据业务功能对系统进行拆分,每个业务模块作为独立项目开发,称为服务。 优点: 降…...
【力扣刷题】LeetCode763-划分字母区间
文章目录 1. LeetCode763_划分字母区间 1. LeetCode763_划分字母区间 题目链接🔗 🐧解题思路: 区间合并 题目中这句话很关键“我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。” 你这句话你可以理解为 把…...
使用for循环和字典功能,统计字符出现在一个英文句子中的次数(python)
本题目要求写出一段代码实现输入一个英文句子后,统计句子中各个字符(不区分大小写,包含空格和标点符号)出现的次数。 输入格式: 请例如:输入 Life is short,we need Python. 。 输出格式: 对每一个字符输出对应的出现次数&…...
带你搞懂@Valid和@Validated的区别
前言 有参数传递的地方都少不了参数校验。在实际开发过程中,参数校验是保证程序健壮性的重要环节,前端的参数校验是为了用户体验,后端的参数校验是为了安全。试想一下,如果在 Controller 层中没有经过任何校验的参数通过 Service层…...
大数据hadoop小文件处理方案
Hadoop处理小文件问题的解决方案可分为存储优化、处理优化和架构优化三个维度,以下是综合技术方案及实施要点: 一、存储层优化方案 1.文件合并技术 离线合并:使用hadoop fs -getmerge命令将多个小文件合并为大文件并重新上传; MapReduce合并:开发专用MR…...
安装NASM
安装NASM 注意:这篇文章在librdkafka安装系列,不需要参考,仅为了记录而写,请不要参考,后续编译openssl的时候,可以使用参数no-asm,不影响整个的编译步骤。这里主要作为记录帖子。 本篇是Windows系统编译Qt使用的kafka(librdkafka)系列可以不参考的一篇,编译librdkaf…...
RabbitMQ-高级
RabbitMQ-高级 文章目录 RabbitMQ-高级前言:消息可靠性问题1.生产者可靠性1.生产者重连2.生产者确认机制3.生产者代码实现原理 2.MQ的可靠性1.数据持久化2.LazyQueue 3.消费者可靠性1.消费者确认机制1.确认机制2.确认功能 2.失败重试机制1.开启失败重试机制2.多次失…...
深入解析Spring Boot与Kafka集成:构建高效消息驱动微服务
深入解析Spring Boot与Kafka集成:构建高效消息驱动微服务 引言 在现代微服务架构中,消息队列扮演着至关重要的角色,而Apache Kafka凭借其高吞吐量、低延迟和可扩展性,成为了许多企业的首选。本文将详细介绍如何在Spring Boot应用…...
Unreal Engine: Windows 下打包 AirSim项目 为 Linux 平台项目
环境: Windows: win10, UE4.27, Visual Studio 2022 Community.Linux: 22.04 windows环境安装教程: 链接遇到的问题(问题:解决方案) 点击Linux打包按钮,跳转至网页而不是执行打包流程:用VS打开项…...
【图像大模型】FLUX.1-dev:深度解析与实战指南
FLUX.1-dev:深度解析与实战指南 一、引言二、模型架构与技术原理(一)模型架构(二)Rectified Flow 技术(三)指导蒸馏(Guidance Distillation) 三、项目运行方式与执行步骤…...
mariadb 升级 (通过yum)
* 注意下 服务名, 有的服务器上是mysql,有的叫mariadb,mysqld的 #停止 systemctl stop mysql #修改源 vi /etc/yum.repos.d/MariaDB.repo baseurl http://yum.mariadb.org/11.4/centos7-amd64 #卸载 yum remove mysql #安装 yum install MariaDB-server galera-4 MariaDB-…...
Flink 非确定有限自动机NFA
Flink 是一个用于状态化计算的分布式流处理框架,而非确定有限自动机(NFA, Non-deterministic Finite Automaton)是一种在计算机科学中广泛使用的抽象计算模型,常用于正则表达式匹配、模式识别等领域。 Apache Flink 提供了对 NFA…...
Profinet转Ethernet IP主站网关:点燃氢醌生产线的智慧之光!
案例分享:转角指示器和Profinet转EthernetIP网关的应用 在现代工业自动化中,设备和系统之间的高效通信至关重要。最近,我们在某大型化工企业的生产线上实施了一个项目,旨在通过先进的设备和通信技术提高生产效率和安全性。该项目…...
动态IP技术在跨境电商中的创新应用与战略价值解析
在全球化4.0时代,跨境电商正经历从"流量红利"向"技术红利"的深度转型。动态IP技术作为网络基础设施的关键组件,正在重塑跨境贸易的运营逻辑。本文将从技术架构、应用场景、创新实践三个维度,揭示动态IP如何成为跨境电商突…...
WEB安全--SQL注入--Oracle注入
一、Oracle知识点了解 1.1、系统变量与表 版本号:SELECT * FROM V$VERSION 用户名:USER、SYS_CONTEXT(USERENV,SESSION_USER) 库名:ALL_USERS、USER_USERS、DBA_USERS 表名:ALL_TABLES、DBA_TABLES、USER_TABLES 字段名&…...
Unity预制体变体(Prefab Variants)、接口(Interface)、抽象类(Abstract Class)、枚举(Enumeration)
一、预制体变体(Prefab Variants) 预制体变体是什么? 预制体变体是指从同一个基础预制体派生出来的不同版本的预制体。这些变体可以包含不同的组件配置、属性值、子对象或者行为,但它们共享一些共同的基础结构和特性。通过创建预…...
pymol包安装和使用
PyMOL 是一款分子可视化软件,而pymol则是其对应的 Python 包,借助它能够实现对 PyMOL 的编程控制。 主要功能 分子结构可视化:支持展示蛋白质、核酸、小分子等多种分子的 3D 结构。自定义渲染:可对分子的表示方式、颜色以及光照…...
【学习笔记】机器学习(Machine Learning) | 第七章|神经网络(2)
机器学习(Machine Learning) 简要声明 基于吴恩达教授(Andrew Ng)课程视频 BiliBili课程资源 文章目录 机器学习(Machine Learning)简要声明 神经网络在图像识别及手写数字识别中的应用一、神经网络在图像识别中的应用࿰…...
【神经网络与深度学习】model.eval() 模式
引言 在深度学习模型的训练和推理过程中,不同的模式设置对模型的行为和性能有着重要影响。model.eval() 是 PyTorch 等深度学习框架中的关键操作,它用于将模型切换到评估模式(evaluation mode),确保模型在测试和推理阶…...
ASIC和FPGA,到底应该选择哪个?
ASIC和FPGA各有优缺点。 ASIC针对特定需求,具有高性能、低功耗和低成本(在大规模量产时);但设计周期长、成本高、风险大。FPGA则适合快速原型验证和中小批量应用,开发周期短,灵活性高,适合初创企…...
JavaScript 性能优化实战指南
JavaScript 性能优化实战指南 前言 随着前端应用复杂度提升,JavaScript 性能瓶颈日益突出。高效的性能优化不仅能提升用户体验,还能增强系统稳定性和可维护性。本文系统梳理了 JavaScript 性能优化的核心思路、常见场景和实战案例,结合代码…...
Unity3D HUD UI性能优化方案
前言 在Unity3D中实现高性能的HUD UI需要综合考虑渲染效率、CPU开销和内存管理。以下是分步的优化方案: 对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀! 1. 降低Draw Call:合批与图集 …...
晶圆Map图芯片选择显示示例
效果 列表中有四个Mark点,需求是选择某一个点时在Map图中区别显示出来。 实现思路: 根据DataGrid 的行选择 SelectionChanged事件,先循环所有Mark点清除Rectangle的边框大小,再获取选择的芯片,设置Rectangle的边框大小和颜色。 示例代码 1.UI代码 <DataGrid Grid.…...
HarmonyOS实战:自定义时间选择器
前言 最近在日常鸿蒙开发过程中,经常会使用一些时间选择器,鸿蒙官方提供的时间选择器满足不了需求,所以自己动手自定义一些经常会使用到的时间选择器,希望能帮到你,建议点赞收藏! 实现效果 需求分析 默认…...
汽车零部件的EMI抗扰性测试
写在前面 本系列文章主要讲解汽车零部件的EMI抗扰性测试的相关知识,希望能帮助更多的同学认识和了解汽车零部件的EMI抗扰性测试。 若有相关问题,欢迎评论沟通,共同进步。(*^▽^*) 1. 背景介绍 多年以来,电磁干扰(EMI)效应一直是现代电子控制系统中备受关注的一个问题。…...
新能源汽车充电桩管理平台如何利用智慧技术优化资源配置问题?
在“双碳”目标的推动下,我国新能源汽车市场迅猛发展,但充电基础设施的供需失衡问题日益突出。部分区域充电桩利用率低下,而核心城区、高速服务区等场景却面临“一桩难求”的困境。智慧技术的引入为解决这一难题提供了新思路。通过物联网&…...
【zookeeper】--部署3.6.3
文章目录 下载解压创建data和logs配置文件1)创建目录并且编辑 zoo.cfg2)接下来将 node01 的 ZooKeeper 所有文件拷贝至 node02 和 node03。推荐从 node02 和 node03 拷贝4)最后 vim /etc/profile 配置环境变量,环境搭建结束。配完环境变量后 source /etc…...
[低代码] 明道云调用本地部署 Dify 的进阶方法
在低代码开发平台明道云中,集成外部智能服务(如 Dify)可以极大地提升自动化和智能化能力。之前我们介绍了使用“发送自定义 API”节点直接调用本地部署的 Dify 服务的方法,虽然简单直观,但该方式存在一些限制,比如无法设置 Timeout、逻辑复用性差等问题。 为了构建更稳定…...
ICU库交叉编译
交叉编译步骤 Step 1: 先进行本机编译 ./runConfigureICU Linux/gccmake Step 2: 执行交叉编译 source /opt/fsl-imx-fb/4.14-sumo/environment-setup-cortexa9hf-neon-poky-linux-gnueabimkdir cross_install./configure --disable-samples --disable-tests --prefix/medi…...
永磁同步电机高性能控制算法(22)——基于神经网络的转矩脉动抑制算法为什么低速时的转速波动大?
0. 前言 在之前的知乎上发过一些转矩脉动抑制/谐波电流抑制的算法。例如: https://zhuanlan.zhihu.com/p/24723996895https://zhuanlan.zhihu.com/p/24723996895 这些算法基本上都需要先知道谐波的频率。 重复控制这个算法虽然可以抑制掉某个频率及其所有整数倍的…...
Java大厂面试实战:Spring Boot与微服务场景中的技术点解析
Java大厂面试实战:Spring Boot与微服务场景中的技术点解析 第一轮:基础技术了解 面试官:谢飞机,你好。从简历上看,你熟悉Spring Boot,那我们来聊聊它的核心功能吧。Spring Boot有哪些主要的特性ÿ…...
Pycharm 选择Python Interpreter
你的系统可能有多个 Python 环境,比如: macOS 自带的 /usr/bin/python3 你用 brew install python 安装的 /opt/homebrew/bin/python3 你可能还用了虚拟环境(venv 或 conda) PyCharm 默认配置可能用的是一个虚拟环境ÿ…...
文件夹如何打包成jar包
应用场景 主要是:比如 maven 引入一个依赖(其实就是下载了一个 jar 包),然后需要修改 jar 包里面的某个文件,然后再重新打包成 jar 包,如下图: 使用方法 使用压缩工具打开这个 jar 包…...
sqli-labs第九关—‘时间盲注
一:判断闭合类型 先按照之前的判断方式判断,发现无论输入什么都显示You are in.......... 可以考虑使用时间盲注: 二:时间盲注Time-based Blind: 1.解释: 通过时间延迟判断结果 2.核心原理:…...
10.15 LangChain v0.3重磅升级:Tool Calling技术颠覆大模型工具调用,效率飙升300%!
LangChain v0.3 技术生态与未来发展:支持 Tool Calling 的大模型 关键词:LangChain Tool Calling, 大模型工具调用, @tool 装饰器, ToolMessage 管理, Few-shot Prompting 1. Tool Calling 的技术革新 LangChain v0.3 的工具调用(Tool Calling)功能标志着大模型应用开发进…...
【C++】哈希的概念与实现
1.哈希概念 通过某种函数使元素的存储位置与它的关键码之间能够建立一一映射的关系,可以不经过任何比较,一次直接从表中得到要搜索的元素。 当向该结构中: 插入元素: 根据待插入元素的关键码,以此函数计算出该元素的…...
Spring 代理与 Redis 分布式锁冲突:一次锁释放异常的分析与解决
Spring 代理与 Redis 分布式锁冲突:一次锁释放异常的分析与解决 Spring 代理与 Redis 分布式锁冲突:一次锁释放异常的分析与解决1. 问题现象与初步分析2 . 原因探究:代理机制对分布式锁生命周期的干扰3. 问题复现伪代码4. 解决方案࿱…...
vue Element-ui对图片上传和选用时的比例控制
vue Element-ui对图片上传和选用时的比例控制 在后台上传图片和选用已经上传的图片时,往往会因为图片的比例控制不到位导致在客户端渲染时效果差强人意,虽然可以在操作时选择合适的比例上传,但必要的控制还是能完成渲染时良好的体验…...
UE5在C++项目中判断不同平台
在Unreal Engine 5的C代码中,可以通过以下方法判断当前运行的平台(如Android、Windows、iOS),并根据平台执行不同的逻辑: 方法1:使用预处理器宏(编译时判断) Unreal Engine提供了一…...
用 CodeBuddy 实现「IdeaSpark 每日灵感卡」:一场 UI 与灵感的极简之旅
项目起点:一次随手的灵感 有时候,灵感稍纵即逝,尤其是面对屏幕发呆的时候。那天我忽然想到——要是能有一个每天弹出一句创意提示、灵感金句的应用就好了,最好配上简洁但有氛围感的 UI,像抽一张卡片一样,轻…...
std::ranges::views::as_const 和 std::ranges::as_const_view
std::ranges::views::as_const 和 std::ranges::as_const_view 是 C23 引入的视图适配器,用于生成一个不可变的视图,确保通过该视图访问元素时,元素被视为常量。以下是详细说明和示例: 基本概念 功能: 将输入范围的元素…...
3D 数据交换格式(.3DXML)简介
3DXML 是一种基于 XML 的 3D 数据交换格式,由达索系统(Dassault Systmes)开发,主要用于其 CATIA、SOLIDWORKS 和 3DEXPERIENCE 等产品中。 基本概述 全称:3D XML开发者:达索系统主要用途:3D…...
深度解析3D模型生成器:基于StyleGAN3与PyTorch3D的多风格生成工具开发实战
引言:跨模态生成的革命性突破 在元宇宙与数字孪生技术蓬勃发展的今天,3D内容生成已成为制约产业发展的关键瓶颈。传统建模方式依赖专业软件和人工操作,而基于深度学习的生成模型正颠覆这一范式。本文将深入解析如何构建支持多风格生成的3D模…...
DTAS 3D多约束装配助力悬架公差分析尺寸链计算:麦弗逊/双叉臂/多连杆/H臂一网打尽
摘要:汽车四轮定位参数与悬架密切相关。汽车悬架对于车辆的行驶性能、安全性和舒适性至关重要。DTAS 3D提供了各类型悬架的公差仿真分析方法。 关键字:DTAS 3D、前后悬架、公差仿真分析、 运动耦合 一、悬架公差分析综述 悬架是车身(或车架…...
CRMEB多商户预约服务上门师傅端
随着科技的不断发展,人们对于生活品质的要求也在不断提高。在这个过程中,各种便捷的上门服务应运而生,为我们的生活带来了极大的便利。而CRMEB多商户预约服务上门师傅端正是这样一款致力于为用户提供专业、高效、便捷的上门服务的应用。 一、…...
labview硬件开发板——LED流水灯
函数 : int DoSetV12( unsigned char chan, unsigned char state); 功能 :设置 OUT0—3 的输出状态,输入参数为 8 位字符型, Chan:4 位要设置的通道,0 对应 OUT1……3 对应 OUT4 ( 注意:开…...
linux——mysql故障排查与生产环境优化
目录 一,mysql数据库常见的故障 1,故障现象1 2,故障现象2 3,故障现象3 4,故障现象4 5,故障现象5 6,故障现象6 二&…...