当前位置: 首页 > news >正文

【LeetCode 热题 100】动态规划 系列

📁 70. 爬楼梯

        状态标识:爬到第i层楼梯时,有多少种方法。

        状态转移方程:dp[i] = dp[i-1] + dp[i-2],表示从走一步和走两步的方式。

        初始化:dp[1] = 1 , dp[2] = 2。

        返回值:dp[n],即走到第n层可以有多少种爬法。

class Solution {
public:int climbStairs(int n) {int dp[50] = { 0  , 1 , 2};for(int i = 3 ; i <= n ; ++i){dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

📁 118. 杨辉三角

        就是一道找规律的题目,每一列第一个和每一行最后一个初始化为1,其余的为左上方和右上方数之和。

        状态转移方程:dp[i][j] = dp[i-1][j] + dp[i-1][j-1]。

vector<vector<int>> generate(int numRows) {vector<vector<int>> dp(numRows);for(int i = 0 ; i < numRows ; ++i)dp[i].resize(i + 1) , dp[i][i] = 1 , dp[i][0] = 1;for(int i = 2 ; i < numRows ; ++i)for(int j = 1 ; j < i ; ++j)dp[i][j] = dp[i-1][j] + dp[i-1][j-1];return dp;}

📁 198. 打家劫舍

        状态表示:dp[i]表示偷窃到第 i 加时,此时偷取到的最大金额。

        转移方程:dp[i] = max(dp[i-1] , dp[i-2] + num[i-1])

        初始化:dp[0] = nums[1],第一家是可以直接偷取到的。

        返回值:返回dp[n],即偷取到最后一家是此时的最大金额。

class Solution {
public:int rob(vector<int>& nums) {int n = nums.size();vector<int> dp(n + 1 , 0);dp[1] = nums[0];for(int i = 2 ; i <= n ; ++i)dp[i] = max(dp[i-1] , dp[i-2] + nums[i-1]);return dp[n];}
};

📁 279. 完全平方数

        状态标识:dp[i]表示和为 i 的完全平方数的最小数量。 

        转移方程:dp[i] = min(dp[i] , dp[i - j * j] + 1)。j * j 表示小于i的完全平方数 

        初始化:dp[i] = i,将当前数字更新为最大结果,即最坏结果,表示 i 可以由 i 个 1 组成

        返回值:返回dp[n]。

        动态规划本身就是一个递推的过程,我们从前往后枚举,当枚举到第i个数的时候,意味着i-1都被枚举完了。因此,当一个数减去一个完全平方数时剩余和一定能在dp数组中找到,并且剩余和已经知道最小完全平方数的最小数量,因此,我们结果只需要在此基础上+1即可。

class Solution {
public:int numSquares(int n) {vector<int> dp(n + 1 , 0);for(int i = 1 ; i <= n ; ++i){dp[i] = i;for(int j = 2 ; j * j <= i ; ++j){dp[i] = min(dp[i] , dp[i-j*j] + 1);}}return dp[n];}
};

📁 322. 零钱兑换

        这道题可以看做是上一题的一种变形。

        状态标识:dp[i]表示金额为 i 的时,需要的最少硬币数量。 

        转移方程:dp[i] = min(dp[i] , dp[i - coin] + 1)。

        初始化:dp[0] = 0,其余将当前数字更新0x3f3f3f3f,表示目前不能通过硬币各个金额组成选择不能组成(方便返回值的处理)

        返回值:返回dp[amoun]。需要注意的是,如果dp[amoun] = 0x3f3f3f3f,需要返回-1。

class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, 0x3f3f3f3f);dp[0] = 0;for(int i = 1 ; i <= amount ; ++i){for(auto coin : coins)if(coin <= i)dp[i] = min(dp[i] , dp[i-coin] + 1);}return dp[amount]==0x3f3f3f3f ? -1 : dp[amount];}
};

📁 139. 单词拆分

        状态表示:以某个字符为结尾的字符串,能否由wordDict中的word拼接形成。为了快速查找字典里面的单词,我们是用哈希系列容器存储单词。

        转移方程:dp[i] = str(j , i)是字典里面的单词 &&  dp[j - 1]。

        初始化:dp[0] = true,表示只有一个字符,并且成功在哈希表中找到。

        返回值:dp[n],以n为结尾的字符串,能否由wordDict中的word拼接形成。

class Solution {
public:bool wordBreak(string s, vector<string>& wordDict) {int n = s.size();vector<int> dp(n + 1 , false);dp[0] = true;unordered_set<string> hash;for(auto word : wordDict)hash.insert(word);for(int i = 1 ; i <= n ; ++i){for(int j = i; j > 0 ; --j){string tmp = s.substr(j - 1, i - j + 1);if(hash.find(tmp) != hash.end())dp[i] = dp[j - 1];if(dp[i] == true)break;}}return dp[n];}
};

📁 300. 最长递增子序列

        如果想要有一个子序列尽可能的多,那么就要使得子序列中元素相较于前一个元素上升趋势尽可能小,与后一个元素上升趋势尽可能大。通过一个数组dp来维护递增子序列。

        1. 当新来一个元素时,如果大于尾部元素,直接插入;

        2. 如果小于尾部元素,那么之前就一定存在比他的的一个或者多个元素,因此我们将这个新的较小值更新到子序列中第一个比它的的元素中,使得子序列上升趋势变得更小。

        使用二分查找算法,查找子序列中第一个比新来较小值大的的元素,然后更新。

class Solution {
public:int lengthOfLIS(vector<int>& nums) {int n = nums.size();vector<int> ret;ret.push_back(nums[0]);for(int i = 1 ; i < n ; ++i){if(nums[i] > ret.back())ret.push_back(nums[i]);else{int left = 0 , right = ret.size() - 1;while(left < right){int mid = (left + right) >> 1;if(ret[mid] < nums[i])left = mid + 1;    elseright = mid;}ret[left] = nums[i];}}return ret.size();}
};

📁 152. 乘积最大子数组

        遍历数组,每次遍历时,记录乘积最大值,更新结果。问题是乘积最大值怎么更新?

        当一个新元素x到来时,与之前连续子数组乘积最大值maxS进行比较 max( x , maxS)。

        1. 如果 x 是正数,且maxS也是正数,那么会得到一个更大的正数。

        2. 如果 x 是正数,maxS是负数,那么会得到一个更小的数值。

        3. 如果 x 是负数,maxS是正数,那么会得到一个更小的数值。

         4. 如果 x 是负数,maxS是负数,那么会得到一个更大的数值。

        但如果我们记录一个较小值minS,那么 x 如果负数,minS也是负数,就会得到一个更大的值。

        即,如果x是正数,必须有一个最大值相乘才能得到更大值;如果x是负数,必须和一个最小值相乘才能得到一个更大值。

        核心:负数 x 大=小;负数 x 小=大;正数 x 大=大;正数 x 小=小

class Solution {
public:int maxProduct(vector<int>& nums) {int ans = nums[0] , maxI = nums[0] , minI = nums[0];int n = nums.size();for(int i = 1 ; i < n ; ++i){int tmp = maxI;/*nums[i] * tmp: 如果nums[i]是正数, 得到更大值nums[i] * minI: 如果nums[i]是负数, 得到更大值*/maxI = max(max(nums[i] , nums[i] * tmp) , nums[i] * minI);/*nums[i] * minI: 如果nums[i]是正数, 得到更小值nums[i] * tmp: 如果nums[i]是负数, 得到更小值*/minI = min(min(nums[i] , nums[i] * minI) , nums[i] * tmp);ans = max(ans , maxI);}return ans;}
};

📁 416. 分割等和子集

        就是一道简单的01背包问题。首先判断个数组总和是否为偶数,如果是奇数直接返回false,因为不可能将数组分割成元素和相等的两个子集;如果sum是偶数,令target = sum / 2。需要判断从数组中能否选出一些数,使得这些数之和=target。

        状态标识:dp[i][j]: 前i个元素中能否恰好选出 总和为 j 的子集

        转移方程:dp[i][j] = (不选第i件,dp[i-1][j]) or (选第i件 dp[i-1][j-nums[i]])

        返回值:dp[n][target]。

        此外,采用滚动数组进行优化,使得只能一维数组就可以完成上述操作,只不是从前往后遍历改成往后往前遍历。

class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;for(auto e : nums)sum += e;if(sum % 2 != 0)return false;int n = nums.size();int target = sum / 2;vector<bool> dp(target + 1 , false);dp[0] = true;for(int i = 1 ; i <= n ; ++i){for(int j = target ; j >= nums[i-1] ; --j)dp[j] = dp[j] || dp[j- nums[i-1]];}return dp[target];}
};

📁 32. 最长有效括号

    状态表示: dp[i]表示 以s[i]为结尾并且包含s[i]的最长有效括号。

    状态转移方程:

        1. s[i] =='(' 无法组成有效括号 dp[i] = 0;

        2. s[i] ==')' 取决于之前的有效括号

         情况1: s[i-1] == '('

            dp[i] = dp[i-2] + 2;

         情况2:  s[i-1] == ')'

            这里如果想要包含s[i]组成有效括号的字符串

            必须满足 ((...)) 这种形式 , 其中...是未知个数的有效括号子串。

                    |

                    v

            即 s[i - dp[i-1] - 1] == '('

            所以, dp[i] = dp[i-1] + dp[i - dp[i-1] - 2 ] + 2;

    初始化:

        dp[0] = 0 一个字符不能构成有效括号

class Solution {
public:int longestValidParentheses(string s) {int n = s.size();int ans = 0;vector<int> dp(n + 1 , 0);for(int i = 1 ; i <= n ; ++i){if(s[i] == ')'){if(s[i-1] == '(')dp[i] = (i - 2 >= 0 ? dp[i-2] : 0) + 2;else if(i - dp[i-1] - 1 >= 0 && s[i - dp[i-1] - 1] == '(')dp[i] = dp[i - 1] + 2 + (i - dp[i-1] - 2 >= 0 ? dp[i - dp[i-1] - 2] : 0);}ans = max(ans , dp[i]);}return ans;}
};

相关文章:

【LeetCode 热题 100】动态规划 系列

&#x1f4c1; 70. 爬楼梯 状态标识&#xff1a;爬到第i层楼梯时&#xff0c;有多少种方法。 状态转移方程&#xff1a;dp[i] dp[i-1] dp[i-2]&#xff0c;表示从走一步和走两步的方式。 初始化&#xff1a;dp[1] 1 , dp[2] 2。 返回值&#xff1a;dp[n]&#xff0c;即走到…...

刷leetcodehot100返航版--双指针5/16

for (int i 0, j 0; i < n; i ) { while (j < i && check(i, j)) j ; // 具体问题的逻辑 } 常见问题分类&#xff1a; (1) 对于一个序列&#xff0c;用两个指针维护一段区间 (2) 对于两个序列&#xff0c;维护某种次序&#xff0c;比如归并排序中…...

DAY24元组和OS模块

元组 元组的特点&#xff1a; 有序&#xff0c;可以重复&#xff0c;这一点和列表一样元组中的元素不能修改&#xff0c;这一点非常重要&#xff0c;深度学习场景中很多参数、形状定义好了确保后续不能被修改。 很多流行的 ML/DL 库&#xff08;如 TensorFlow, PyTorch, Num…...

CSS:三大特性

文章目录 一、层叠性二、继承性三、优先级 一、层叠性 二、继承性 可以在MDN网站上查看属性是否可以被继承 例如color 三、优先级...

Cross-Site Scripting(XSS)

1. XSS介绍 跨站脚本攻击&#xff08;Cross-Site Scripting&#xff09;简称XSS&#xff0c;人们经常将跨站脚本攻击&#xff08;Cross Site Scripting&#xff09;缩写为CSS&#xff0c;但这会与层叠样式表&#xff08;Cascading Style Sheets&#xff0c;CSS&#xff09;的缩…...

掌握HTML文件上传:从基础到高级技巧

HTML中input标签的上传文件功能详解 一、基础概念 1. 文件上传的基本原理 在Web开发中&#xff0c;文件上传是指将本地计算机中的文件&#xff08;如图片、文档、视频等&#xff09;传输到服务器的过程。HTML中的<input type"file">标签是实现这一功能的基础…...

WebRTC中的几个Channel

一、我指的是谁&#xff1f; 以视频为例&#xff0c;常见的有&#xff1a;MediaChannel、VideoMediaChannel、WebRtcVideoChannel、BaseChannel、VideoChannel&#xff0c;那么&#xff0c;为什么要这么多Channel&#xff0c;只写一个叫做SuperChannel行不行&#xff08;很多程…...

【设计模式】- 行为型模式1

模板方法模式 定义了一个操作中的算法骨架&#xff0c;将算法的一些步骤推迟到子类&#xff0c;使得子类可以不改变该算法结构的情况下重定义该算法的某些步骤 【主要角色】&#xff1a; 抽象类&#xff1a;给出一个算法的轮廓和骨架&#xff08;包括一个模板方法 和 若干基…...

容器化-k8s-使用和部署

一、K8s 使用 1、基本概念 集群: 由 master 节点和多个 slaver 节点组成,是 K8s 的运行基础。节点: 可以是物理机或虚拟机,是 K8s 集群的工作单元,运行容器化应用。Pod: K8s 中最小的部署单元,一个 Pod 可以包含一个或多个紧密相关的容器,这些容器共享网络和存储资源。…...

黑马k8s(九)

1.Pod-生命周期概述 2.Pod生命周期-创建和终止 3.Pod生命周期-初始化容器...

Android trace中CPU的RenderThread与GPU

Android trace中CPU的RenderThread与GPU RenderThread是系统的GPU绘制线程&#xff0c;GPU渲染就是通常所谓的硬件加速&#xff0c;如果应用关闭硬件加速&#xff0c;就没有了RenderThread&#xff0c;只有UI Thread&#xff0c;即Android主线程。 Android GPU渲染SurfaceFlin…...

测试工程师如何学会Kubernetes(k8s)容器知识

Kubernetes(K8s)作为云原生时代的关键技术之一&#xff0c;对于运维工程师、开发工程师以及测试工程师来说&#xff0c;都是一门需要掌握的重要技术。作为一名软件测试工程师&#xff0c;学习Kubernetes是一个有助于提升自动化测试、容器化测试以及云原生应用测试能力的重要过程…...

接触感知 钳位电路分析

以下是NG板接触感知电路的原理图。两极分别为P3和P4S&#xff0c;电压值P4S < P3。 电路结构分两部分&#xff0c;第一部分对输入电压进行分压钳位。后级电路使用LM113比较器芯片进行电压比较&#xff0c;输出ST接触感知信号。 钳位电路输出特性分析 输出电压变化趋势&a…...

码蹄集——圆包含

MT1181 圆包含 输入2个圆的圆心的坐标值&#xff08;x&#xff0c;y&#xff09;和半径&#xff0c;判断断一个圆是否完全包含另一个圆&#xff0c;输出YES或者NO。另&#xff1a;内切不算做完全包含。 格式 输入格式&#xff1a;输入整型&#xff0c;空格分隔。 每行输入一组…...

ConcurrentSkipListMap的深入学习

目录 1、介绍 1.1、线程安全 1.2、有序性 1.3、跳表数据结构 1.4、API 提供的功能 1.5、高效性 1.6、应用场景 2、数据结构 2.1、跳表&#xff08;Skip List&#xff09; 2.2、节点类型&#xff1a; 1.Node 2.Index 3.HeadIndex 2.3、特点 3、选择层级 3.1、随…...

ProfibusDP主站转modbusTCP网关接DP从站网关通讯案例

ProfibusDP主站转modbusTCP网关接DP从站网关通讯案例 在工业自动化领域&#xff0c;Profibus DP和Modbus TCP是两种常见的通信协议。Profibus DP广泛应用于过程自动化、工厂自动化等场景&#xff0c;而Modbus TCP则常见于楼宇自动化、能源管理等领域。由于设备和系统之间往往存…...

第一次做逆向

题目来源&#xff1a;ctf.show 1、下载附件&#xff0c;发现一个exe和一个txt文件 看看病毒加没加壳&#xff0c;发现没加那就直接放IDA 放到IDA找到main主函数&#xff0c;按F5反编译工具就把他还原成类似C语言的代码 然后我们看逻辑&#xff0c;将flag.txt文件的内容进行加…...

【项目】自主实现HTTP服务器:从Socket到CGI全流程解析

00 引言 ​ 在构建高效、可扩展的网络应用时&#xff0c;理解HTTP服务器的底层原理是一项必不可少的技能。现代浏览器与移动应用大量依赖HTTP协议完成前后端通信&#xff0c;而这一过程的背后&#xff0c;是由网络套接字驱动的请求解析、响应构建、数据传输等一系列机制所支撑…...

AI最新资讯,GPT4.1加入网页端、Claude 3.7 Sonnet携“极限推理”发布在即

目录 一、GPT4.1加入网页端二、Claude 3.7 Sonnet携“极限推理”发布在即三、这项功能的关键特点1、双模式操作2、可视化思考过程3、可控的思考预算4、性能提升 四、Claude制作SVG图像1、Prompt提示词模板2、demo&#xff1a;技术路线图**Prompt提示词&#xff1a;**3、甘特图4…...

Android 中使用通知(Kotlin 版)

1. 前置条件 Android Studio&#xff1a;确保使用最新版本&#xff08;2023.3.1&#xff09;目标 API&#xff1a;最低 API 21&#xff0c;兼容 Android 8.0&#xff08;渠道&#xff09;和 13&#xff08;权限&#xff09;依赖库&#xff1a;使用 WorkManager 和 Notificatio…...

在 Kotlin 中,什么是解构,如何使用?

在 Kotlin 中&#xff0c;解构是一种语法糖&#xff0c;允许将一个对象分解为多个独立的变量。 这种特性可以让代码更简洁、易读&#xff0c;尤其适用于处理数据类、集合&#xff08;如 Pair、Map&#xff09;或其他结构化数据。 1 解构的核心概念 解构通过定义 componentN()…...

apisix透传客户端真实IP(real-ip插件)

文章目录 apisix透传客户端真实IP需求和背景apisix real-ip插件为什么需要 trusted_addresses&#xff1f;安全架构的最佳实践 示例场景apisix界面配置 apisix透传客户端真实IP 需求和背景 当 APISIX 前端有其他反向代理&#xff08;如 Nginx、HAProxy、云厂商的 LB&#xff…...

初学者如何用 Python 写第一个爬虫?

初学者如何用 Python 写第一个爬虫&#xff1f; 一、爬虫的基本概念 &#xff08;一&#xff09;爬虫的定义 爬虫&#xff0c;英文名为 Web Crawler&#xff0c;也被叫做网络蜘蛛、网络机器人。想象一下&#xff0c;有一个勤劳的小蜘蛛&#xff0c;在互联网这个巨大的蜘蛛网中…...

基于MNIST数据集的手写数字识别(CNN)

目录 一&#xff0c;模型训练 1.1 数据集介绍 1.2 CNN模型层结构 1.3 定义CNN模型 1.4 神经网络的前向传播过程 1.5 数据预处理 1.6 加载数据 1.7 初始化 1.8 模型训练过程 1.9 保存模型 二&#xff0c;模型测试 2.1 定义与训练时相同的CNN模型架构 2.2 图像的预处…...

QT6 源(103)篇三:阅读与注释 QPlainTextEdit,给出源代码

&#xff08;10&#xff09;关于文本处理的内容很多&#xff0c;来不及全面阅读、思考与整理。先给出类的继承图&#xff1a; &#xff08;11&#xff09;本源代码来自于头文件 qplaintextedit . h &#xff1a; #ifndef QPLAINTEXTEDIT_H #define QPLAINTEXTEDIT_H#include &…...

yocto5.2开发任务手册-7 升级配方

此文为机器辅助翻译&#xff0c;仅供个人学习使用&#xff0c;如有翻译不当之处欢迎指正 7 升级配方 随着时间的推移&#xff0c;上游开发者会为图层配方构建的软件发布新版本。建议使配方保持与上游版本发布同步更新。 虽然有多种升级配方的方法&#xff0c;但您可能需要先…...

LangPDF: Empowering Your PDFs with Intelligent Language Processing

LangPDF: Empowering Your PDFs with Intelligent Language Processing Unlock Global Communication: AI-Powered PDF Translation and Beyond In an interconnected world, seamless multilingual document management is not just an advantage—it’s a necessity. LangP…...

DDS(数据分发服务) 和 P2P(点对点网络) 的详细对比

1. 核心特性对比 维度 DDS P2P 实时性 微秒级延迟&#xff0c;支持硬实时&#xff08;如自动驾驶&#xff09; 毫秒至秒级&#xff0c;依赖网络环境&#xff08;如文件传输&#xff09; 架构 去中心化发布/订阅模型&#xff0c;节点自主发现 完全去中心化&#xff0c;节…...

TC8:SOMEIP_ETS_029-030

SOMEIP_ETS_029: echoUINT8Array16Bitlength 目的 检查当method echoUINT8Array16BitLength的参数中长度字段为16bit时,SOME/IP协议层是否能对参数进行序列化和反序列化。 对于可变长度的数组而言,必须用长度字段表示数组长度。否则接收方无法判断有效数据。 SOMEIP_ETS_02…...

Elasticsearch索引全生命周期管理指南之一

#作者&#xff1a;猎人 文章目录 一、索引常规操作二、索引mapping和别名管理 一、索引常规操作 索引数据特点&#xff1a; 索引中的数据随着时间&#xff0c;持续不断增长 按照时间序列划分索引的好处&挑战&#xff1a; 按照时间进行划分索引&#xff0c;会使得管理更加…...

本土DevOps革命:Gitee如何撬动中国企业的数字化转型新动能

在数字化浪潮席卷全球的背景下&#xff0c;中国企业正面临前所未有的转型压力与机遇。随着《数据安全法》和《个人信息保护法》的全面实施&#xff0c;以及信创产业政策的深入推进&#xff0c;研发工具链的自主可控已成为关乎企业核心竞争力的战略命题。在这一关键赛道上&#…...

ARM服务器解决方案

ARM服务器解决方案已成为异构计算领域的重要技术路径&#xff0c;其核心优势与多元化场景适配性正加速产业渗透。以下为关键要点分析&#xff1a; 一、核心优势与架构设计 能效比优化‌ ARM架构基于RISC指令集&#xff0c;单节点功耗可控制在15W以下&#xff0c;较x86架构能效…...

【暗光图像增强】【基于CNN的方法】2020-AAAI-EEMEFN

EEMEFN&#xff1a;Low-Light Image Enhancement via Edge-Enhanced Multi-Exposure Fusion Network EEMEFN&#xff1a;基于边缘增强多重曝光融合网络的低光照图像增强 AAAI 2020 论文链接 0.论文摘要 本研究专注于极低光照条件下的图像增强技术&#xff0c;旨在提升图像亮度…...

嵌入式EasyRTC音视频实时通话SDK在工业制造领域的智能巡检/AR协作等应用

一、背景 在数字化浪潮席卷全球的当下&#xff0c;远程监控与驾驶技术已深度渗透至工业巡检、智能交通等核心领域。然而&#xff0c;传统方案普遍面临实时性瓶颈、高延迟传输及交互体验匮乏等痛点&#xff0c;严重制约行业智能化转型。EasyRTC作为前沿的实时音视频通信技术&am…...

uniapp-商城-58-后台 新增商品(属性子级的添加和更新)

前面对父级属性的添加进行了分析&#xff0c;这里再来继续做属性子级的数据添加&#xff0c;包含页面逻辑以及后台处理的逻辑。当然这里还是在前面的云对象的方式进行的。 本文介绍了在云对象green-mall-sku中添加子级属性的实现过程。首先&#xff0c;通过updateChild接口处理…...

基于springboot+vue的机场乘客服务系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat12开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;Maven3.3.9 系统展示 用户管理 航班信…...

npm和nvm和nrm有什么区别

npm 全称&#xff1a;Node Package Manager。 作用&#xff1a; 包管理&#xff1a;用于安装、共享、分发代码&#xff0c;管理项目依赖关系。项目管理&#xff1a;创建和管理 package.json 文件&#xff0c;记录项目依赖和配置信息。脚本执行&#xff1a;运行项目中的脚本&…...

几种排序方式的C语言实现(冒泡、选择、插入、希尔等)

## 分类 存储器类型&#xff1a; - 内排序&#xff08;数据规模小 内存&#xff09; - 外排序&#xff08;数据库 磁盘&#xff09; 是否基于元素之间的比较 - 基数排序 - 其他排序&#xff1a;冒泡、选择、插入、快速、归并、希尔、堆…… 时间复杂度 - O&#…...

【MATLAB例程】线性卡尔曼滤波的程序,三维状态量和观测量,较为简单,可用于理解多维KF,附代码下载链接

本文所述代码实现了一个 三维状态的扩展卡尔曼滤波 (Extended Kalman Filter, EKF) 算法。通过生成过程噪声和观测噪声&#xff0c;对真实状态进行滤波估计&#xff0c;同时对比了滤波前后状态量的误差和误差累积分布曲线。 文章目录 简介运行结果MATLAB源代码 简介 代码分为以…...

芯片测试之X-ray测试

原理&#xff1a; X-ray是利用阴极射线管产生高能量电子与金属靶撞击&#xff0c;在撞击过程中&#xff0c;因电子突然减速&#xff0c;其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置&#xff0c;利用X-Ray穿透不同密度物质后其光强度的变化&#xff0c;…...

机器学习中的特征工程:解锁模型性能的关键

在机器学习领域&#xff0c;模型的性能往往取决于数据的质量和特征的有效性。尽管深度学习模型在某些任务中能够自动提取特征&#xff0c;但在大多数传统机器学习任务中&#xff0c;特征工程仍然是提升模型性能的关键环节。本文将深入探讨特征工程的重要性、常用方法以及在实际…...

【学习笔记】机器学习(Machine Learning) | 第七章|神经网络(1)

机器学习&#xff08;Machine Learning&#xff09; 简要声明 基于吴恩达教授(Andrew Ng)课程视频 BiliBili课程资源 文章目录 机器学习&#xff08;Machine Learning&#xff09;简要声明 机器学习之深度学习神经网络入门一、神经网络的起源与发展二、神经元模型&#xff08;…...

反向传播算法:神经网络的核心优化方法,一文打通任督二脉

搞神经网络训练,**反向传播(Backpropagation)**是最核心的算法。 没有它,模型就只能瞎猜参数,训练基本白搭。 这篇文章不整公式推导,不搞花架子,咱就把最关键的几个问题讲明白: 反向传播到底是干啥的? 它是怎么一步步更新参数的? 哪些坑你必须避免? 一、反向传播是…...

neo4j框架:java安装教程

安装使用neo4j需要事先安装好java&#xff0c;java版本的选择是一个犯难的问题。本文总结了在安装java和使用Java过程中遇到的问题以及相应的解决方法。 Java的安装包可以在java官方网站Java Downloads | Oracle 中国进行下载 以java 8为例&#xff0c;选择最后一行的x64 compr…...

基于React的高德地图api教程007:椭圆的绘制、编辑和删除

文章目录 7、椭圆绘制7.1 绘制椭圆7.1.1 设置圆心7.1.2 确定短半轴7.1.3 确定长半轴7.1.4 实时显示椭圆形状7.2 修改椭圆7.2.1 修改椭圆属性信息7.2.2 修改椭圆形状7.3 删除椭圆7.4 定位椭圆7.5 代码下载7.07、椭圆绘制 7.1 绘制椭圆 7.1.1 设置圆心 第一次点击地图设置圆心…...

Python多线程实战:提升并发效率的秘诀

一、前言&#xff1a;为什么需要多任务处理&#xff1f; 在实际开发中&#xff0c;我们经常需要让程序同时执行多个任务&#xff0c;例如&#xff1a; 同时下载多个文件&#xff1b;在后台运行耗时计算的同时保持界面响应&#xff1b;并发处理网络请求等。 Python 提供了多种…...

将嵌入映射到 Elasticsearch 字段类型:semantic_text、dense_vector、sparse_vector

作者&#xff1a; Andre Luiz 讨论如何以及何时使用 semantic_text、dense_vector 或 sparse_vector&#xff0c;以及它们与嵌入生成的关系。 通过这个自定进度的 Search AI 实践学习亲自体验向量搜索。你可以开始免费云试用&#xff0c;或者在本地机器上尝试 Elastic。 多年来…...

RabbitMQ 消息模式实战:从简单队列到复杂路由(四)

模式对比与选择 各模式特点对比 简单队列模式&#xff1a;结构最为简单&#xff0c;生产者直接将消息发送到队列&#xff0c;消费者从队列中获取消息&#xff0c;实现一对一的消息传递。其优势在于易于理解和实现&#xff0c;代码编写简单&#xff0c;适用于初学者和简单业务…...

OpenCV CUDA模块中矩阵操作------归一化与变换操作

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 OpenCV 的 CUDA 模块中&#xff0c;normalize 和 rectStdDev 函数用于对矩阵进行归一化处理和基于积分图计算矩形区域的标准差。 函数介绍 …...

1Panel应用推荐:Beszel轻量级服务器监控平台

1Panel&#xff08;github.com/1Panel-dev/1Panel&#xff09;是一款现代化、开源的Linux服务器运维管理面板&#xff0c;它致力于通过开源的方式&#xff0c;帮助用户简化建站与运维管理流程。为了方便广大用户快捷安装部署相关软件应用&#xff0c;1Panel特别开通应用商店&am…...