Python训练打卡Day22
复习日:
1.标准化数据(聚类前通常需要标准化)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
StandardScaler() :这部分代码调用了 StandardScaler 类的构造函数。在Python中,当你在类名后面加上括号时,就相当于调用了这个类的构造函数,构造函数会创建并初始化一个新的对象。
scaler = ... :这部分代码把调用构造函数后创建的新对象赋值给变量 scaler 。之后,你就可以使用 scaler 这个变量来访问 StandardScaler 类定义的属性和方法。
2.k_range = range(2, 11) # 测试 k 从 2 到 10:为什么不是2到11呢?
Python 里 range() 函数的特性是左闭右开区间,也就是说,它会包含起始值,但不包含结束值。
3.plt.subplot(2, 2, 2)
用 matplotlib.pyplot 模块的 subplot() 函数来创建一个子图。 subplot() 函数的参数解释如下:
- 第一个参数 2 :表示将图形窗口在垂直方向上划分为 2 行。
- 第二个参数 2 :表示将图形窗口在水平方向上划分为 2 列。
- 第三个参数 2 :表示当前要创建和操作的子图编号,编号从左到右、从上到下依次递增。在这个例子中, 2 表示选择第二个子图(即第一行的第二个位置)。
4.奇异值分解(SVD)
输入为矩阵A,尺寸为m*n,可以不是方阵,经过SVD后得到三个矩阵、
和
:
左奇异向量矩阵: 是一个
的正交矩阵,列向量是矩阵
的特征向量。
- 作用:表示原始矩阵 在行空间(样本空间)中的主方向或基向量。简单来说,$U$ 的列向量描述了数据在行维度上的“模式”或“结构”。
- 应用:在降维中, 的前几列可以用来投影数据到低维空间,保留主要信息(如在图像处理中提取主要特征)。
奇异值矩阵:
- 是一个 的对角矩阵,对角线上的值是奇异值(singular values),按降序排列,非负。
- 作用:奇异值表示原始矩阵 在每个主方向上的“重要性”或“能量”。较大的奇异值对应更重要的特征,较小的奇异值对应噪声或次要信息。
- 应用:通过选择前个较大的奇异值,可以实现降维,丢弃不重要的信息(如数据压缩、去噪)。
右奇异向量矩阵的转置:
- 是 的转置,
是一个
的正交矩阵,列向量是矩阵
的特征向量。
- 作用:表示原始矩阵 在列空间(特征空间)中的主方向或基向量。简单来说,
的列向量描述了数据在列维度上的“模式”或“结构”。
- 应用:类似,
的前几列可以用来投影数据到低维空间,提取主要特征。
简单来说、
和
提供了数据的核心结构信息,帮助我们在保留主要信息的同时简化数据处理。
奇异值分解(SVD)后,原始矩阵被分解为
,这种分解是等价的,意味着通过
、
和
的乘积可以完全重构原始矩阵
,没有任何信息损失。
但在实际应用中,我们通常不需要保留所有的奇异值和对应的向量,而是可以通过筛选规则选择排序靠前的奇异值及其对应的向量来实现降维或数据压缩。以下是这个过程的核心思想:
1. 奇异值的排序:
- 在 矩阵中,奇异值(对角线上的值)是按降序排列的。靠前的奇异值通常较大,代表了数据中最重要的信息或主要变化方向;靠后的奇异值较小,代表次要信息或噪声。
- 奇异值的大小反映了对应向量对原始矩阵 的贡献程度。
2. 筛选规则:
- 我们可以根据需求选择保留前个奇异值(
是一个小于原始矩阵秩的数),并丢弃剩余的较小奇异值。
- 常见的筛选规则包括:
- 固定数量:直接选择前 个奇异值(例如,前 10 个)。
- 累计方差贡献率:计算奇异值的平方(代表方差),选择累计方差贡献率达到某个阈值(如 95%)的前 个奇异值。
- 奇异值下降幅度:观察奇异值下降的“拐点”,在下降明显变缓的地方截断。
3. 降维与近似:
- 保留前 个奇异值后,我们只取
矩阵的前
列(记为
,尺寸为
)、
矩阵的前
个奇异值(记为
,尺寸为
)、以及 $V^T$ 矩阵的前
行(记为
,尺寸为
)。
- 近似矩阵为 ,这个矩阵是原始矩阵
的低秩近似,保留了主要信息,丢弃了次要信息或噪声。
- 这种方法在降维(如主成分分析 PCA)、图像压缩、推荐系统等领域非常常用。
4. 对应的向量:
- $U$ 的列向量和 $V$ 的列向量分别对应左右奇异向量。保留前 个奇异值时,
的列向量代表数据在行空间中的主要方向,
的列向量代表数据在列空间中的主要方向。
- 这些向量与奇异值一起,构成了数据的主要“模式”或“结构”。
总结:SVD 分解后原始矩阵是等价的,但通过筛选排序靠前的奇异值和对应的向量,我们可以实现降维,保留数据的主要信息,同时减少计算量和噪声影响。这种方法是许多降维算法(如 PCA)和数据处理技术的基础。
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score# 设置随机种子以便结果可重复
np.random.seed(42)# 模拟数据:1000 个样本,50 个特征
n_samples = 1000
n_features = 50
X = np.random.randn(n_samples, n_features) * 10 # 随机生成特征数据
y = (X[:, 0] + X[:, 1] > 0).astype(int) # 模拟二分类标签# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(f"训练集形状: {X_train.shape}")
print(f"测试集形状: {X_test.shape}")# 对训练集进行 SVD 分解
U_train, sigma_train, Vt_train = np.linalg.svd(X_train, full_matrices=False)
print(f"Vt_train 矩阵形状: {Vt_train.shape}")# 选择保留的奇异值数量 k
k = 10
Vt_k = Vt_train[:k, :] # 保留前 k 行,形状为 (k, 50)
print(f"保留 k={k} 后的 Vt_k 矩阵形状: {Vt_k.shape}")# 降维训练集:X_train_reduced = X_train @ Vt_k.T
X_train_reduced = X_train @ Vt_k.T
print(f"降维后训练集形状: {X_train_reduced.shape}")# 使用相同的 Vt_k 对测试集进行降维:X_test_reduced = X_test @ Vt_k.T
X_test_reduced = X_test @ Vt_k.T
print(f"降维后测试集形状: {X_test_reduced.shape}")# 训练模型(以逻辑回归为例)
model = LogisticRegression(random_state=42)
model.fit(X_train_reduced, y_train)# 预测并评估
y_pred = model.predict(X_test_reduced)
accuracy = accuracy_score(y_test, y_pred)
print(f"测试集准确率: {accuracy}")# 计算训练集的近似误差(可选,仅用于评估降维效果)
X_train_approx = U_train[:, :k] @ np.diag(sigma_train[:k]) @ Vt_k
error = np.linalg.norm(X_train - X_train_approx, 'fro') / np.linalg.norm(X_train, 'fro')
print(f"训练集近似误差 (Frobenius 范数相对误差): {error}")
实际操作过程中的注意事项:
#1. 标准化数据:在进行 SVD 之前,通常需要对数据进行标准化(均值为 0,方差为 1),以避免某些特征的量纲差异对降维结果的影响。可以使用 `sklearn.preprocessing.StandardScaler`。from sklearn.preprocessing import StandardScalerscaler = StandardScaler()X_train_scaled = scaler.fit_transform(X_train)X_test_scaled = scaler.transform(X_test)
# 注意:`scaler` 必须在训练集上 `fit`,然后对测试集只用 `transform`,以避免数据泄漏。#2. 选择合适的 k:可以通过累计方差贡献率(explained variance ratio)选择 k,通常选择解释 90%-95% 方差的 k值。代码中可以计算:explained_variance_ratio = np.cumsum(sigma_train**2) / np.sum(sigma_train**2)print(f"前 {k} 个奇异值的累计方差贡献率: {explained_variance_ratio[k-1]}")#3. 使用 sklearn 的 TruncatedSVD:`sklearn` 提供了 `TruncatedSVD` 类,专门用于高效降维,尤其适合大规模数据。它直接计算前 k个奇异值和向量,避免完整 SVD 的计算开销。from sklearn.decomposition import TruncatedSVDsvd = TruncatedSVD(n_components=k, random_state=42)X_train_reduced = svd.fit_transform(X_train)X_test_reduced = svd.transform(X_test)print(f"累计方差贡献率: {sum(svd.explained_variance_ratio_)}")
@浙大疏锦行
相关文章:
Python训练打卡Day22
复习日: 1.标准化数据(聚类前通常需要标准化) scaler StandardScaler() X_scaled scaler.fit_transform(X) StandardScaler() :这部分代码调用了 StandardScaler 类的构造函数。在Python中,当你在类名后面加上括号…...
【ALINX 实战笔记】FPGA 大神 Adam Taylor 使用 ChipScope 调试 AMD Versal 设计
本篇文章来自 FPGA 大神、Ardiuvo & Hackster.IO 知名博主 Adam Taylor。在这里感谢 Adam Taylor 对 ALINX 产品的关注与使用。为了让文章更易阅读,我们在原文的基础上作了一些灵活的调整。原文链接已贴在文章底部,欢迎大家在评论区友好互动。 在上篇…...
【数据结构入门训练DAY-35】棋盘问题
本次训练聚焦于使用深度优先搜索(DFS)算法解决棋盘上的棋子摆放问题。题目要求在一个可能不规则的nn棋盘上摆放k个棋子,且任意两个棋子不能位于同一行或同一列。输入包括棋盘大小n和棋子数k,以及棋盘的形状(用#表示可放…...
张 提示词优化(相似计算模式)深度学习中的损失函数优化技巧
失函数的解释 损失函数代码解析 loss = -F.log_softmax(logits[...
Elasticsearch 常用语法手册
🧰 Elasticsearch 常用语法手册 📚 目录 索引操作文档操作查询操作聚合查询健康与状态查看常见问题与注意事项 🔹 索引操作 查询全部索引 GET _search创建索引 PUT /es_db创建索引并设置分片数和副本数 PUT /es_db {"settings&quo…...
华宇TAS应用中间件与亿信华辰多款软件产品完成兼容互认证
近日,华宇TAS应用中间件与亿信华辰多款产品成功通过兼容互认证测试,双方产品在功能协同、性能优化及高可用性等维度实现全面适配,将为用户提供更加稳定、高效、安全的国产化解决方案。 此次认证也标志着华宇在国产化生态适配领域再添重要里程…...
AI大模型从0到1记录学习numpy pandas day24
第 1 章 环境搭建 1.1 Anaconda 1.1.1 什么是Anaconda Anaconda官网地址:https://www.anaconda.com/ 简单来说,Anaconda Python 包和环境管理器(Conda) 常用库 集成工具。它适合那些需要快速搭建数据科学或机器学习开发环境的用…...
开源GPU架构RISC-V VCIX的深度学习潜力测试:从RTL仿真到MNIST实战
点击 “AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。 一、开篇:AI芯片架构演变的三重挑战 (引述TPUv4采用RISC-V的行业案…...
VirtualiSurg使用SenseGlove触觉手套开发XR手术培训体验
虚拟现实和虚拟现实触觉 作为一个领先的培训平台,VirtualiSurg自2017年以来一直利用扩展现实(XR)和触觉技术,为全球医疗保健行业提供个性化的数据驱动学习解决方案。它们使医疗专业人员能够协作学习和培训,提高他们的技能,让他们…...
AbstractErrorController简介-笔记
1. AbstractErrorController简介 org.springframework.boot.autoconfigure.web.servlet.error.AbstractErrorController 是 Spring Boot 提供的一个用于处理 HTTP 错误(如 404、500 等)的抽象类,用于自定义错误响应的逻辑。它是 Spring Boot…...
next.js实现项目搭建
一、创建 Next.js 项目的步骤 1、安装 npx create-next-applatest # 或 yarn create next-app # 或 pnpm create next-app 按照交互式提示配置你的项目: 输入项目名称 选择是否使用 TypeScript 选择是否启用 ESLint 选择是否启用 Tailwind CSS 选择是否使用 s…...
使用GoLang版MySQLDiff对比表结构
概述 下载地址: https://github.com/camry/mysqldiff/ 编译安装 git clone https://github.com/camry/mysqldiff.git go env -w GOPROXYhttps://goproxy.cn,direct go env -w GOPRIVATE*.corp.example.com go build .\mysqldiff.go执行对比 ./mysqldiff --sourc…...
git工具使用详细教程-------命令行和图形化工具
下载 git下载地址:https://git-scm.com/downloads TortoiseGit(图形化工具)下载地址:https://tortoisegit.org/download/ 认识git结构 工作区:存放代码的地方 暂存区:临时存储,将工作区的代码…...
失控的产品
大部分程序员很难有机会做一个新的产品,绝大多时候去一家新公司也都是在旧产品上修修补补。 笔者还是很幸运得到了开发新品的机会,从2023年开始做,中间经历了许多磕磕碰碰。 有的小伙伴从中离开,偶尔又加入1~2个人,但…...
区块链blog1__合作与信任
🍂我们的世界 🌿不是孤立的,而是网络化的 如果是单独孤立的系统,无需共识,而我们的社会是网络结构,即结点间不是孤立的 🌿网络化的原因 而目前并未发现这样的理想孤立系统,即现实中…...
ES常识9:如何实现同义词映射(搜索)
在 Elasticsearch(ES)中实现同义词映射(如“美丽”和“漂亮”),核心是通过 同义词过滤器(Synonym Token Filter) 在分词阶段将同义词扩展或替换为统一词项,从而让搜索时输入任意一个…...
aws 实践创建policy + Role
今天Cyber 通过image 来创建EC2 的时候,要添加policy, 虽然是administrator 的role, 参考Cyber 提供的link: Imageshttps://docs.cyberark.com/pam-self-hosted/14.2/en/content/pas%20cloud/images.htm#Bring 1 Step1:...
兰亭妙微B端UI设计:融合多元风格,点亮品牌魅力
在B端产品市场,独特的品牌形象是企业脱颖而出的关键。兰亭妙微专注于B端UI设计,通过融合多元风格,为企业点亮品牌魅力,助力品牌价值提升。 兰亭妙微主创团队源自清华,历经多年沉淀,积累了丰富的设计经验。…...
高项-逻辑数据模型
逻辑数据模型的核心理解 1. 定义与特点 逻辑数据模型(Logical Data Model, LDM): 是一种抽象的数据结构设计,用于描述业务实体(如客户、订单)及其关系(如“客户下单”),…...
Aquatone安装与使用
前言:aquatone工具获取网页截图,在资产收集的时候,对于网站可以起到快速浏览 michenriksen/aquatone: A Tool for Domain Flyovershttps://github.com/michenriksen/aquatone 任务一 安装chromium sudo apt install chromiumchromium -h 任务二 下载aquatone Relea…...
解读RTOS 第八篇 · 内核源码解读:以 FreeRTOS 为例
1. 引言 FreeRTOS 作为最流行的嵌入式实时操作系统之一,其内核源码简洁且功能完善。通过剖析其关键模块(任务管理、调度器、队列、内存管理和移植层),不仅能够更深入地理解 RTOS 的运行机制,还能掌握根据项目需求进行内核定制与优化的能力。本章将带你以 FreeRTOS 10.x 版…...
6、登录功能后端开发
6、登录功能后端开发 https://xiaoxueblog.com/ai/%E7%99%BB%E5%BD%95%E5%8A%9F%E8%83%BD%E5%90%8E%E7%AB%AF%E5%BC%80%E5%8F%91.html 1、新建用户表SQL脚本 -- CREATE DATABASE aicloud CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;-- 创建用户表 drop table if exi…...
「彻底卸载 Quay 容器仓库」:干净移除服务、镜像与配置的全流程指南
文章目录 🧹 第一步:停止并禁用 systemd 服务🚮 第二步:移除 Podman 容器与相关资源1. 删除 quay-app 容器2. 删除镜像(如果你想彻底清理)3. 删除挂载卷(比如 SQLite 存储) …...
C++从入门到实战(十五)String(上)介绍STL与String的关系,为什么有string类,String有什么用
C从入门到实战(十五)String(上) 前言一、STL与String的关系1. STL 是什么?2. String 是什么?3. String 与 STL 的关系 二、为什么有string类,有什么用1. 为什么需要 string 类?2. st…...
【Python 正则表达式】
Python 正则表达式通过 re 模块实现模式匹配,是文本处理的核心工具。以下是系统化指南,包含语法详解和实战案例: 一、正则基础语法 1. 元字符速查表 符号含义示例匹配结果.任意字符(除换行符)r"a.c"“abc”…...
【MySQL】第四弹——表的CRUD进阶(二)数据库设计
文章目录 🌟范式🌟表的设计💫第一范式 1NF🪐反例🪐正例 💫第二范式 2NF🪐反例🪐正例 💫第三范式 3NF🪐反例🪐正例 💫表的设计方法&…...
Unity基础学习(十五)核心系统——音效系统
目录 一、关于音频文件的导入相关 二、音频源组件Audio Source 三、Audio Listener的介绍 四、关于播放音乐的方式 五、麦克风输入相关 Microphone 类方法与属性总览 1. Start 方法 2. End 方法 3. IsRecording 方法 4. GetPosition 方法 5. devic…...
计算机视觉----常见卷积汇总
普通卷积 普通卷积大家应该都比较熟悉了,如果不熟悉的话,可以参考我之前的博客,或者去网上自行百度。这里主要想补充两个知识点。一:卷积核参数量怎么算? 二:如何高效的并行运算卷积滑窗? …...
【人工智能-agent】--Dify+Mysql+Echarts搭建了一个能“听懂”人话的数据可视化助手!
Echarts官网:https://echarts.apache.org/zh/index.html ECharts 是一个由百度团队开发的、基于 JavaScript 的开源可视化图表库,它提供了丰富的图表类型和强大的交互功能,能够帮助开发者轻松创建专业级的数据可视化应用。 核心特点 丰富的图…...
【专栏启动】开篇:为什么是 Django + Vue3?测试平台的技术选型与架构蓝图
【专栏启动】开篇:为什么是 Django Vue3?测试平台的技术选型与架构蓝图 前言一、为什么是 Django Vue3?二、测试平台的架构设计蓝图三、测试平台模块功能概述 结语 前言 一个高效、稳定、易用的测试平台,不仅能够帮助团队提升测…...
Rust 学习笔记:关于 Vector 的练习题
Rust 学习笔记:关于 Vector 的练习题 Rust 学习笔记:关于 Vector 的练习题哪个调用会报错?以下代码能否通过编译?若能,输出是?以下代码能否通过编译?若能,输出是?以下代码…...
Modbus TCP转Profinet网关:数字化工厂异构网络融合的核心枢纽
在现代工业生产中,随着智能制造和工业互联网的不断发展,数字化工厂成为了制造业升级的重要方向。数字化工厂的核心在于实现设备、数据和人的互联互通,而这其中,通信协议扮演着至关重要的角色。今天,我们就来探讨开疆智…...
精益数据分析(62/126):从客户访谈评分到市场规模估算——移情阶段的实战进阶
精益数据分析(62/126):从客户访谈评分到市场规模估算——移情阶段的实战进阶 在创业的移情阶段,科学评估用户需求与市场潜力是决定产品方向的关键。今天,我们结合Cloud9 IDE的实战经验与《精益数据分析》的方法论&…...
各类开发教程资料推荐,Java / python /golang /js等
更多资源在文末👇👇👇👇👇👇👇👇👇 1. 入门首选(易学且应用广) Python 特点:语法简洁、易读,社区资源丰富。 用途&#…...
现代健康养生小贴士
在忙碌的现代生活中,掌握一些简单实用的健康养生技巧,能轻松为身体 “充电”,提升生活质量。以下从饮食、运动、作息等方面,为你带来科学易执行的养生建议。 一、饮食:吃对食物,为健康加分 早餐要吃好&am…...
每日一道leetcode(新学数据结构版)
208. 实现 Trie (前缀树) - 力扣(LeetCode) 题目 Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动…...
ChromaDB 向量库优化技巧实战
chroma 一步步使用 安装 # 安装chromadb pip install chromadb,sentence_transformers# 不启动服务会出现sock.connect(sa)TimeoutError: timed out chroma run服务启动后,您将看到类似以下输出: 建立连接 部署完成后,需要建立与Chroma服…...
全国各地区经纬度数据(包含省、市、县)
全国各地区经纬度数据(包含省、市、县) 1、指标:行政区划代码、省份、城市、经度、纬度 2、来源:高德地图 3、用途:可用于空间相关研究 4、下载链接: 全国各地区经纬度数据(包含省、市、县…...
记录一下seata后端数据库由mariadb10切换到mysql8遇到的SQLException问题
文章目录 前言一、问题记录二、参考帖子三、记录store.db.driverClassName 前言 记录一下seata后端数据库由mariadb10切换到mysql8遇到的SQLException问题。 一、问题记录 17:39:23.709 ERROR --- [ionPool-Create-1134013833] com.alibaba.druid.pool.DruidDataSource : …...
【Python 面向对象】
Python 的面向对象编程(OOP)通过类(Class)和对象(Object)实现代码结构化,支持封装、继承和多态三大特性。以下是系统化指南: 一、类与对象基础 1. 定义类 class Dog:# 类属性&…...
软考软件评测师——计算机组成与体系结构
目录 计算机寻址方式详解与对比分析 一、立即寻址 二、直接寻址 三、间接寻址 四、寄存器寻址 五、寄存器间接寻址 六、变址寻址 七、基址寻址 八、相对寻址 九、综合对比分析 计算机寻址方式详解与对比分析 一、立即寻址 核心概念 指令操作码后直接携带操作数值&a…...
宝元LNC数控数据采集方式、跨平台采集通讯方案介绍
文章目录 采集效果图通讯方案介绍技术名词解释技术细节小结 采集效果图 通讯方案介绍 老版本宝元:必须走TCP通讯,如LNC568A系列 今天主要介绍新版本的宝元,如采用M6800控制器的5800系列系统等 新版本宝元通讯方式: ①sdk通讯&…...
ZFile与Cpolar技术结合实现远程数据实时访问与集中管理的可行性分析
文章目录 前言1.关于ZFile2.本地部署ZFile3.ZFile本地访问测试4.ZFile的配置5.cpolar内网穿透工具安装6.创建远程连接公网地址7.固定ZFile公网地址 前言 在信息爆炸的年代,每个现代人都在数字浪潮中扮演着独特的角色。不论是商务精英、影像创作者还是学术达人&…...
JS手写代码篇---手写 Object.create
JS手写代码篇 在做手写题的时候,我们要思考两个问题 这个代码的作用是什么能够实现的效果是什么样子 1. 手写 Object.create 思路:创造一个对象,类似于Object.create()方法>将obj作为原型 // 手写 Object.create function create (ob…...
homeassistant安装
这里写自定义目录标题 homeassistant安装(windows)安装virtual boxhaos下载haos安装docker镜像地址更换安装File editor安装hacs安装Xiaomi Miot Auto问题排查 homeassistant安装(windows) 安装virtual box 百度搜索virtual box…...
Pythonnet - 实现.NET Core和Python进行混合编程
1 安装Pythonnet包 2...
C++23 新特性:ranges::contains 与 ranges::contains_subrange
文章目录 ranges::containsranges::contains_subrange编译器支持总结 C23 标准带来了许多令人兴奋的新特性,其中就包括了 ranges::contains 和 ranges::contains_subrange 这两个算法。这两个算法由提案 P2302R4 提出,它们为 C 程序员提供了更加丰富和…...
(C语言)超市管理系统 (正式版)(指针)(数据结构)(清屏操作)(文件读写)
目录 前言: 源代码: product.h product.c fileio.h fileio.c main.c 代码解析: 一、程序结构概述 二、product.c 函数详解 1. 初始化商品列表 Init_products 2. 添加商品 add_product 3. 显示商品 display_products 4. 修改商品 mo…...
Framebuffer显示bmp图片
代码: /* 标准输入输出头文件,提供文件操作和输入输出函数(如printf)*/ #include <stdio.h>/* 文件控制操作头文件,提供文件打开模式(如O_RDWR)和文件控制函数 */ #include <fcntl.h&…...
常用负载均衡技术有哪些?不同网络层面上的网络负载均衡技术
前言 负载均衡是一种策略,它能让多台服务器或多条链路共同承担一些繁重的计算或I/O任务,从而以较低成本消除网络瓶颈,提高网络的灵活性和可靠性。 在系统管理员发现网络性能不好时,可以通过网络负载均衡来分配资源,以…...