当前位置: 首页 > news >正文

Spring AI 与 Groq 的深度集成:解锁高效 AI 推理新体验

Spring AI 与 Groq 的深度集成:解锁高效 AI 推理新体验

前言

在人工智能飞速发展的当下,AI 推理的效率和性能成为开发者关注的焦点。Groq 作为一款基于 LPU™ 的超快速 AI 推理引擎,凭借其强大的性能,能够支持各类 AI 模型,并提供对 Tool/Function Calling 的支持,同时还公开了兼容 OpenAI API 的终端节点,这为开发者带来了全新的选择和可能。而 Spring AI 作为 Spring 生态中用于人工智能开发的重要框架,通过巧妙地重用现有的 OpenAI 客户端,实现了与 Groq 的集成,进一步拓宽了其应用场景。本文将深入探讨 Spring AI 与 Groq 的集成过程、配置细节以及相关功能的使用,帮助开发者更好地利用这一组合,构建高效的 AI 应用。
在这里插入图片描述

一、Spring AI 与 Groq 集成的前提条件

1. 创建 API 密钥

要实现 Spring AI 与 Groq 的集成,首先需要获取 Groq 的 API 密钥。开发者可访问指定链接创建 API 密钥,随后将获取到的密钥设置到 Spring AI 项目中定义的 spring.ai.openai.api-key 属性,从而完成身份验证,确保能够正常访问 Groq 的服务。

2. 设置 Groq URL

除了 API 密钥,还需设置 Groq 的 URL。将 spring.ai.openai.base-url 属性设置为 api.groq.com/openai,这一步骤明确了 Spring AI 与 Groq 进行通信的目标地址,为后续的数据交互奠定基础。

3. 选择 Groq 模型

Groq 提供了多种模型可供选择,开发者可以根据具体的应用需求,通过 spring.ai.openai.chat.options.model=<model name> 属性来指定所需的模型,如 llama3-70b-8192mixtral-8x7b-32768 等。

此外,也可以通过导出环境变量的方式来设置这些配置属性,示例如下:

export SPRING_AI_OPENAI_API_KEY=<INSERT GROQ API KEY HERE>
export SPRING_AI_OPENAI_BASE_URL=https://api.groq.com/openai
export SPRING_AI_OPENAI_CHAT_MODEL=llama3-70b-8192

4. 添加存储库和 BOM

Spring AI 的工件发布在 Maven Central 和 Spring Snapshot 存储库中。开发者需将这些存储库添加到构建系统,以确保能够获取到所需的依赖。同时,为了更好地进行依赖项管理,Spring AI 提供了 BOM(物料清单),将其添加到构建系统中,可保证项目中使用的 Spring AI 版本一致,避免因版本不兼容引发的问题。

二、Spring AI 与 Groq 集成的配置与功能

1. 自动配置

Spring AI 为 OpenAI Chat 客户端提供了 Spring Boot 自动配置功能。若要启用该功能,只需在项目的 Maven 的 pom.xml 或 Gradle 的 build.gradle 文件中添加 spring-ai-starter-model-openai 依赖。同时,在配置属性方面,启用和禁用聊天自动配置通过 spring.ai.model.chat 前缀的属性进行控制。例如,设置 spring.ai.model.chat=openai 表示启用(默认启用),而 spring.ai.model.chat=none 则表示禁用。

2. 聊天属性配置

(1)重试属性

Spring AI 支持为 OpenAI 聊天模型配置重试机制,通过 spring.ai.retry 前缀的属性进行设置。例如,spring.ai.retry.max-attempts 用于设置最大重试尝试次数(默认 10 次);spring.ai.retry.backoff.initial-interval 定义指数回退策略的初始休眠持续时间(默认 2 秒)等。这些属性能够有效应对网络波动等异常情况,确保请求的可靠性。

(2)连接属性

连接到 Groq 服务的相关属性通过 spring.ai.openai 前缀进行配置,其中 spring.ai.openai.base-urlspring.ai.openai.api-key 是必须设置的关键属性,分别对应 Groq 的服务地址和 API 密钥。

(3)其他配置属性

spring.ai.openai.chat 前缀的属性用于为 OpenAI 配置聊天模型实现。例如,spring.ai.openai.chat.options.model 用于指定具体的模型;spring.ai.openai.chat.options.temperature 控制生成完成项的创造性程度;spring.ai.openai.chat.options.maxTokens 设置聊天完成中生成的最大令牌数等。开发者可以根据实际需求灵活调整这些属性,以获得更符合预期的结果。

3. 运行时选项

在运行时,开发者可以通过向 Prompt 调用添加特定于请求的运行时选项,对模型配置进行动态调整。例如,若要覆盖特定请求的默认模型和温度,可以使用以下代码:

ChatResponse response = chatModel.call(new Prompt("Generate the names of 5 famous pirates.",OpenAiChatOptions.builder().model("mixtral-8x7b-32768").temperature(0.4).build()));

这种灵活的配置方式使得开发者能够根据不同的输入和需求,实时优化模型的输出。

4. 函数调用

当选择支持工具/函数的 Groq 模型时,Groq API 端点支持工具/函数调用。在 Spring AI 中,开发者可以使用 ChatModel 注册自定义 Java 函数,使 Groq 模型能够智能地选择输出包含参数的 JSON 对象,进而调用已注册的函数。这一功能为连接 LLM 功能与外部工具和 API 提供了强大的技术支持,极大地拓展了应用的功能边界。例如,在获取天气信息的示例中,当模型需要天气数据时,会自动调用注册的 weatherFunction 函数来获取实时天气信息。
在这里插入图片描述

三、示例代码演示

1. 简单的函数调用示例

@SpringBootApplication
public class GroqApplication {public static void main(String[] args) {SpringApplication.run(GroqApplication.class, args);}@BeanCommandLineRunner runner(ChatClient.Builder chatClientBuilder) {return args -> {var chatClient = chatClientBuilder.build();var response = chatClient.prompt().user("What is the weather in Amsterdam and Paris?").functions("weatherFunction").call().content();System.out.println(response);};}@Bean@Description("Get the weather in location")public Function<WeatherRequest, WeatherResponse> weatherFunction() {return new MockWeatherService();}public static class MockWeatherService implements Function<WeatherRequest, WeatherResponse> {public record WeatherRequest(String location, String unit) {}public record WeatherResponse(double temp, String unit) {}@Overridepublic WeatherResponse apply(WeatherRequest request) {double temperature = request.location().contains("Amsterdam")? 20 : 25;return new WeatherResponse(temperature, request.unit);}}
}

在上述代码中,当模型接收到询问阿姆斯特丹和巴黎天气的请求时,会自动调用 weatherFunction 函数,该函数根据预设的逻辑返回相应的天气信息。

2. ChatController 示例

@RestController
public class ChatController {private final OpenAiChatModel chatModel;@Autowiredpublic ChatController(OpenAiChatModel chatModel) {this.chatModel = chatModel;}@GetMapping("/ai/generate")public Map generate(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {return Map.of("generation", this.chatModel.call(message));}@GetMapping("/ai/generateStream")public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {Prompt prompt = new Prompt(new UserMessage(message));return this.chatModel.stream(prompt);}
}

ChatController 类展示了如何在 Web 应用中使用集成后的 OpenAiChatModel。通过定义 /ai/generate/ai/generateStream 两个接口,分别实现了普通文本生成和流式文本生成的功能,方便前端或其他客户端进行调用。

3. 手动配置示例

var openAiApi = new OpenAiApi("https://api.groq.com/openai", System.getenv("GROQ_API_KEY"));
var openAiChatOptions = OpenAiChatOptions.builder().model("llama3-70b-8192").temperature(0.4).maxTokens(200).build();
var chatModel = new OpenAiChatModel(this.openAiApi, this.openAiChatOptions);ChatResponse response = this.chatModel.call(new Prompt("Generate the names of 5 famous pirates."));// Or with streaming responses
Flux<ChatResponse> response = this.chatModel.stream(new Prompt("Generate the names of 5 famous pirates."));

手动配置示例展示了如何直接创建 OpenAiChatModel 实例,并通过设置相关参数进行文本生成。这种方式适用于需要更精细控制模型创建过程的场景。

四、注意事项

需要注意的是,Groq API 与 OpenAI API 并非完全兼容,存在一定的兼容性约束,且目前 Groq 不支持多模式消息和媒体内容。开发者在使用过程中应充分了解这些限制,避免因兼容性问题导致开发工作受阻。

总结

通过以上对 Spring AI 与 Groq 集成的详细介绍,我们可以看到,这一组合为开发者提供了一种高效、灵活的 AI 应用开发方式。借助 Groq 强大的 AI 推理能力和 Spring AI 便捷的开发框架,开发者能够快速构建出功能丰富的 AI 应用。从集成的前提条件到各类配置属性的设置,再到函数调用等核心功能的实现,以及通过示例代码的直观展示,都为开发者提供了全面的指导。尽管存在一些兼容性限制,但随着技术的不断发展和完善,Spring AI 与 Groq 的集成必将在 AI 开发领域发挥更加重要的作用,助力开发者创造出更多优秀的 AI 应用,推动人工智能技术在各个领域的广泛应用和创新发展 。

相关文章:

Spring AI 与 Groq 的深度集成:解锁高效 AI 推理新体验

Spring AI 与 Groq 的深度集成&#xff1a;解锁高效 AI 推理新体验 前言 在人工智能飞速发展的当下&#xff0c;AI 推理的效率和性能成为开发者关注的焦点。Groq 作为一款基于 LPU™ 的超快速 AI 推理引擎&#xff0c;凭借其强大的性能&#xff0c;能够支持各类 AI 模型&…...

101alpha---第10

rank(((0 < ts_arg_min(ts_delta(close, 1), 4)) ? ts_delta(close, 1) : ((ts_arg_max(ts_delta(close, 1), 4) < 0) ? ts_delta(close, 1) : (-1 * ts_delta(close, 1))))) alpha 那么我们来看具体含义 吧 rank(((0 < ts_arg_min(ts_delta(close, 1), 4)) ? …...

vim中的查找

在 Vim 中&#xff0c;使用 n 键可以按正向&#xff08;向下&#xff09;继续查找下一个匹配项。若要反向&#xff08;向上&#xff09;查找&#xff0c;可以使用以下方法&#xff1a; 1. 使用 N 键反向查找 在查找命令&#xff08;如 /keyword&#xff09;后&#xff0c;按下…...

什么是IP专线?企业数字化转型的关键网络基础设施

为什么企业需要IP专线&#xff1f; 在当今数字化浪潮席卷全球的背景下&#xff0c;企业网络需求正经历着前所未有的变革。传统网络架构已难以满足现代企业对高效、安全、灵活网络服务的需求&#xff0c;IP专线正是在这一背景下应运而生的关键网络解决方案。 专线服务本质上是…...

Linux环境基础开发工具的使用(yum、vim、gcc、g++、gdb、make/Makefile)

目录 Linux软件包管理器 - yum Linux下载软件的方式 认识yum 查找软件包 安装软件包 如何实现本地机器和云服务器之间的文件互传 卸载软件 Linux编辑器 - vim vim的基本概念 vim下各模式的切换 vim命令模式各命令汇总 vim底行模式各命令汇总 Linux编译器 - gcc/g …...

5.11 - 5.12 JDBC+Mybatis+StringBoot项目配置文件

JDBC&#xff1a; 预编译SQL优点&#xff1a;安全&#xff0c;性能更高。 在cmd里面输入java-jar就可以运行jar包。 Mybatis&#xff1a; 持久层框架。用于简化JDBC的开发。 数据库连接池里面放置的是一个一个Connection连接对象。&#xff08;连接池中的连接可以复用&#…...

判断一个数组有没有重复值

要判断一个数组是否包含重复值&#xff0c;你可以使用多种方法。以下是一些常用的方法&#xff1a; 方法 1&#xff1a;使用 Set Set 是一种集合数据结构&#xff0c;它只存储唯一的值。因此&#xff0c;你可以将数组转换为 Set&#xff0c;然后比较 Set 的大小与数组的长度。…...

51c大模型~合集127

我自己的原文哦~ https://blog.51cto.com/whaosoft/13905076 #Executor-Workers架构 图解Vllm V1系列2 本文详细介绍了vllm v1的Executor-Workers架构&#xff0c;包括Executor的四种类型&#xff08;mp、ray、uni、external_launcher&#xff09;及其适用场景&#xff…...

Spring急速入门

Spring 是 企业级开发的一站式框架&#xff0c;核心是 IOC&#xff08;控制反转&#xff09; 和 AOP&#xff08;面向切面编程&#xff09; 一、Spring 核心&#xff1a;IOC 理论 1. 什么是 IOC&#xff1f; IOC&#xff08;Inversion of Control&#xff0c;控制反转&…...

#在 CentOS 7 中手动编译安装软件操作及原理

在 CentOS 7 中&#xff0c;手动编译安装软件&#xff08;即从源代码编译安装&#xff09;是一种高度灵活的方式&#xff0c;适用于需要定制化软件功能、优化性能或安装官方仓库未提供的软件版本的场景。以下是针对手动编译安装的详细说明&#xff0c;包括原理、步骤、注意事项…...

【Kubernetes】初识基础理论(第一篇)

前言 单机容器编排&#xff1a; docker-compose 容器集群编排&#xff1a; docker swarm、mesosmarathon、kubernetes 应用编排&#xff1a; ansible 一、Kubernetes概述 Kubernetes 是一个可移植的、可扩展的开源平台&#xff0c;用于管理容器化的…...

配置集群(yarn)

在配置 YARN 集群前&#xff0c;要先完成以下准备工作&#xff1a; 集群环境规划&#xff1a;明确各节点的角色&#xff0c;如 ResourceManager、NodeManager 等。网络环境搭建&#xff1a;保证各个节点之间能够通过网络互通。时间同步设置&#xff1a;安装 NTP 服务&#xff0…...

按钮导航组件 | 纯血鸿蒙组件库AUI

摘要&#xff1a; 按钮导航组件(A_ButtonNav)&#xff1a;可设置导航数据(含文本及路由)&#xff0c;可设置按钮颜色、导航标题及导航子标题。 一、组件调用方式 1.1.极简调用&#xff1a; 用 A_ButtonNav 调用“按钮导航组件”&#xff0c;只需要给属性 data &#xff08;导…...

自适应主从复制模拟器的构建与研究

自适应主从复制模拟器的构建与研究 摘要: 本文旨在构建一个自适应主从复制模拟器,深入研究主从复制原理及优化方法。从研究者视角出发,详细阐述模拟器的设计、实现与实验过程,通过表格、图表及代码等辅助手段,逐步探讨如何在不同网络条件和负载下,自动调整主从复制参数和…...

015枚举之滑动窗口——算法备赛

滑动窗口 最大子数组和 题目描述 给你一个整数数组 nums &#xff0c;请你找出一个具有最大和的连续子数组&#xff08;子数组最少包含一个元素&#xff09;&#xff0c;返回其最大和。 原题链接 思路分析 见代码注解 代码 int maxSubArray(vector<int>& num…...

【Dv3Admin】工具视图配置文件解析

在开发后台管理系统时,处理复杂的 CRUD 操作是常见的需求。Django Rest Framework(DRF)通过 ModelViewSet 提供了基础的增删改查功能,但在实际应用中,往往需要扩展更多的功能,如批量操作、权限控制、查询优化等。dvadmin/utils/viewset.py 模块通过继承并扩展 ModelViewS…...

在MyBatis Plus里处理LocalDateTime类型

在MyBatis Plus里处理LocalDateTime类型 在MyBatis Plus里处理LocalDateTime类型时&#xff0c;你要确保数据库字段和Java实体类属性之间的类型映射是正确的。下面为你介绍处理这种情况的方法&#xff1a; 1. 数据库字段类型对应设置 要保证数据库字段类型和LocalDateTime相…...

编程技能:字符串函数03,strncpy

专栏导航 本节文章分别属于《Win32 学习笔记》和《MFC 学习笔记》两个专栏&#xff0c;故划分为两个专栏导航。读者可以自行选择前往哪个专栏。 &#xff08;一&#xff09;WIn32 专栏导航 上一篇&#xff1a;编程技能&#xff1a;字符串函数02&#xff0c;strcpy 回到目录…...

edge设置位IE模式打开网页

打开Edge浏览器->在浏览器工具栏右键->自定义工具栏->外观->选择要在工具栏上显示的按钮->找到“Internet Explorer 模式”按钮->开启,将其添加到工具栏中...

代码随想录训练营第二十二天| 101.对称二叉树 100.相同的树

101.对称二叉树&#xff1a; 文档讲解&#xff1a;代码随想录|101.对称二叉树 视频讲解&#xff1a;新学期要从学习二叉树开始&#xff01; | LeetCode&#xff1a;101. 对称二叉树_哔哩哔哩_bilibili 状态&#xff1a;已做出 思路&#xff1a; 这道题目我初始做的时候想着使用…...

nvm管理node版本

To manage Node.js versions on Windows, I recommend using nvm-windows (Node Version Manager for Windows). Here’s how we can handle this: First, let’s install nvm-windows. I’ll propose a command to check if it’s already installed: nvm versionGreat! I s…...

智能手表测试计划文档(软/硬件)

&#x1f4c4; 智能手表测试计划文档&#xff08;软/硬件&#xff09; 项目名称&#xff1a;Aurora Watch S1 文档编号&#xff1a;AW-S1-QA-TP-001 编制日期&#xff1a;2025-xx-xx 版本&#xff1a;V1.0 编写人&#xff1a;xxx&#xff08;测试主管&#xff09; 一、测试目标…...

基于大模型的原发性醛固酮增多症全流程预测与诊疗方案研究

目录 一、引言 1.1 研究背景与意义 1.2 国内外研究现状 1.3 研究目的与方法 二、原发性醛固酮增多症概述 2.1 疾病定义与发病机制 2.2 临床表现与诊断标准 2.3 流行病学特征 三、大模型预测原理与技术 3.1 大模型简介 3.2 预测原理与算法 3.3 数据收集与预处理 四…...

spring中的@Lazy注解详解

一、核心功能与作用 Lazy 注解是 Spring 框架中用于延迟 Bean 初始化的核心工具&#xff0c;通过将 Bean 的创建推迟到首次使用时&#xff0c;优化资源利用和启动性能。其核心功能包括&#xff1a; 延迟初始化 默认情况下&#xff0c;Spring 在容器启动时立即初始化所有单例 …...

Docker快速入门与应用

1. 什么是 Docker&#xff1f; Docker 就像一个“魔法箱子”&#xff0c;可以把你开发的应用&#xff08;代码、环境、配置&#xff09;‌打包成一个标准化的容器‌&#xff0c;这个容器可以在任何支持 Docker 的系统上运行&#xff0c;无需担心环境差异导致的问题。 ‌类比‌…...

判断一个数是不是素数的最高效的算法

判断一个数是否是素数&#xff0c;有从简单到复杂多种方法。最高效的算法取决于输入规模&#xff08;是几个亿以内的数&#xff0c;还是上百位的大整数&#xff09;&#xff0c;我会按实用场景分类讲解&#xff1a; ✅ 常规范围内&#xff08;比如 ≤ 1e12&#xff09;判断素数…...

《Head First 设计模式》第一章 - 笔记

本书是本人写的设计模式的笔记&#xff0c;写下核心要点&#xff0c;如果你掌握过设计模式&#xff0c;想快速阅读本书内容&#xff0c;这个笔记适合你阅读。如果你是新手&#xff0c;有 java 基础和 oo 设计原则基础&#xff0c;你适合跟我一样从零阅读本书。 第一章 策略模式…...

GPT系列:自然语言处理的演进与多模态的探索

GPT系列&#xff1a;自然语言处理的演进与多模态的探索 GPT系列的发展一、GPT-1 &#xff1a;通过生成式的预训练改进自然语言GPT-1的动机做一个预训练模型的难点GPT-1的微调模式GPT-1的训练数据Bert 二、GPT-2语言模型是非监督的GPT-2的动机引入promptGPT-2模型架构的改变GPT-…...

Linux驱动:驱动编译流程了解

要求 1、开发板中的linux的zImage必须是自己编译的 2、内核源码树,其实就是一个经过了配置编译之后的内核源码。 3、nfs挂载的rootfs,主机ubuntu中必须搭建一个nfs服务器。 内核源码树 解压 tar -jxvf x210kernel.tar.bz2 编译 make x210ii_qt_defconfigmakeCan’t use ‘…...

【MySQL】数据库基础

目录 1.什么是数据库2.见一见数据库3.服务器、表、库之间的关系4.MySQL架构5.sql语句分类6.查看MySQL存储引擎6.1 查看存储引擎6.2 常见存储引擎对比 1.什么是数据库 概念&#xff1a;数据库一般是指&#xff0c;在磁盘或者内存中存储的特定结构组织的数据 – 将来在磁盘上存储…...

1.1 文章简介

前因后果链 行业需求 → 技能断层 → 课程设计响应 (高薪岗位要求数学基础) → (符号/公式理解困难) → (聚焦原理与应用) 行业驱动因素 • 前因&#xff1a;机器学习/AI等领域的高薪岗位激增&#xff0c;但数学能力成为主要门槛 • 关键矛盾&#xff1a;算法论文中的数学…...

laravel 中使用的pdf 扩展包 laravel-snappy(已解决中文乱码)

Centos7 安装 wkhtmltopdf 1、先查看系统是 32 位的还是 64 位的 uname -a2、通过 composer 安装 wkhtmltopdf 32位: $ composer require h4cc / wkhtmltopdf-i386 0.12.x $ composer require h4cc / wkhtmltoimage-i386 0.12.x 64位: $ composer require h4cc/wkhtmltopdf-…...

java反序列化commons-collections链6

cc链6&#xff0c;最好用的cc链&#xff0c;因为它不受jdk版本的限制和cc版本的限制&#xff0c;前半段很像urldns链&#xff0c;后半段是cc1链 先来看一下它的利用链 Gadget chain:java.io.ObjectInputStream.readObject()java.util.HashSet.readObject()java.util.HashMap.p…...

WebSocket的原理及QT示例

一.WebSocket 介绍 1.概述 WebSocket 是一种在单个 TCP 连接上进行全双工通讯的协议&#xff0c;它在 2011 年被 IETF 定为标准 RFC 6455&#xff0c;并由 RFC7936 补充规范。与传统的 HTTP 协议不同&#xff0c;WebSocket 允许服务器和客户端之间进行实时、双向的数据传输&a…...

css 点击后改变样式

背景&#xff1a; 期望实现效果&#xff1a;鼠标点击之后&#xff0c;保持选中样式。 实现思路&#xff1a;在css样式中&#xff0c;:active 是一种伪类&#xff0c;用于表示用户当前正在与被选定的元素进行交互。当用户点击或按住鼠标时&#xff0c;元素将被激活&#xff0c;此…...

AI 在模仿历史语言方面面临挑战:大型语言模型在生成历史风格文本时的困境与研究进展

概述 在当今数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;技术在诸多领域展现出了强大的能力&#xff0c;但在处理历史语言这一特定任务时&#xff0c;却遭遇了不小的挑战。美国和加拿大的研究人员通过合作发现&#xff0c;像 ChatGPT 这样的大型语言模型&#x…...

C++.Windows图形

Windows图形 1. 基础知识1.1 Windows图形编程基础1.2 GDI与GDI1.3 窗口消息处理2.1 注册窗口类2.2 创建窗口2.3 显示窗口3.1 创建按钮3.2 按钮消息处理4.1 设置窗口透明度4.2 透明窗口示例5.1 使用区域创建异形窗口5.2 异形窗口示例6.1 GDI抗锯齿设置6.2 抗锯齿绘图示例7.1 Dir…...

【Vue3】使用vite创建Vue3工程、Vue3基本语法讲解

一、什么是Vite Vite是新一代前端构建工具&#xff0c;官网地址&#xff1a;Vite中文网&#xff0c;vite的优势如下&#xff1a; 轻量快速的热重载&#xff08;HMR&#xff09;&#xff0c;能实现极速的服务启动对TypeScript、JSX、CSS等支持开箱即用真正的按需编译&#xff…...

专题二:二叉树的深度优先搜索

以leetcode2331题为例 题目分析&#xff1a; 以第一个示例为例 算法原理分析&#xff1a; 从宏观角度&#xff0c;也就是我的算法之回溯的第一篇 我们发现我们在研究示例的时候&#xff0c;必须从下往上推 也就是我在研究一个结点是true还是false的时候&#xff0c;必须…...

Termius ssh连接服务器 vim打开的文件无法复制问题

你的问题是&#xff1a; • 在 Termius (macOS) SSH 连接到 VMware Ubuntu&#xff0c;使用 vim 打开 .cpp 文件时&#xff0c;可以复制文本&#xff1b; • 但在 Windows 10 上 SSH 到 VMware 的 Red Hat 6.4 时&#xff0c;复制操作无效。 ⸻ &#x1f3af; 初步分析 复制…...

搭建大数据学习的平台

一、基础环境准备 1. 硬件配置 物理机&#xff1a;建议 16GB 内存以上&#xff0c;500GB 硬盘&#xff0c;多核 CPU虚拟机&#xff1a;至少 3 台&#xff08;1 主 2 从&#xff09;&#xff0c;每台 4GB 内存&#xff0c;50GB 硬盘 2. 操作系统 Ubuntu 20.04 LTS 或 CentOS…...

Matlab 模糊控制节水洗衣机模型

1、内容简介 Matlab 232-模糊控制节水洗衣机模型 可以交流、咨询、答疑 2、内容说明 略 3、仿真分析 略 4、参考论文 略...

如何找正常运行虚拟机

1.新建虚拟机。Linux centos7&#xff0c;给虚拟机改个名字不要放在c盘 2.安装操作系统。cd/dvd->2009.iso 启动虚拟机...

python二手书交易管理系统

目录 技术栈介绍具体实现截图系统设计研究方法&#xff1a;设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示 技术栈介绍 Django-SpringBoot-php-Node.js-flask 本课题的研究方法和研究步骤基本合理&#xff0c;难度适中&#xf…...

使用本地部署的 LLaMA 3 模型进行中文对话生成

以下程序调用本地部署的 LLaMA3 模型进行多轮对话生成&#xff0c;通过 Hugging Face Transformers API 加载、预处理、生成并输出最终回答。 程序用的是 Chat 模型格式&#xff08;如 LLaMA3 Instruct 模型&#xff09;&#xff0c;遵循 ChatML 模板&#xff0c;并使用 apply…...

C++编程练习,认识面向对象权限,如何进行封装

#include <iostream> #include <string> using namespace std; /* 银行的账户是一个模板&#xff0c;是一个类&#xff0c;有存款人信息和账户额度&#xff0c;而具体的存款人视为一个对象&#xff0c; 一个对象不能私自修改账户额度&#xff0c;需要通过一个操作流…...

A Survey of Learning from Rewards:从训练到应用的全面剖析

A Survey of Learning from Rewards&#xff1a;从训练到应用的全面剖析 你知道大语言模型&#xff08;LLMs&#xff09;如何通过奖励学习变得更智能吗&#xff1f;这篇论文将带你深入探索。从克服预训练局限的新范式&#xff0c;到训练、推理各阶段的策略&#xff0c;再到广泛…...

电脑端音乐播放器推荐:提升你的听歌体验!

在快节奏的职场环境中&#xff0c;许多上班族都喜欢用音乐为工作时光增添色彩。今天要分享的这款音乐工具&#xff0c;或许能为你的办公时光带来意想不到的惊喜。 一、软件介绍-澎湃 澎湃音乐看似是个普通的播放器&#xff0c;实则藏着强大的资源整合能力。左侧功能栏清晰陈列着…...

小刚说C语言刷题—1149 - 回文数个数

1.题目描述 一个正整数&#xff0c;正读和反读都相同的数为回文数。 例如 22&#xff0c; 131&#xff0c; 2442 &#xff0c; 37073&#xff0c; 66&#xff0c;…… 所有 11位数都是回文数。 给出一个正整数 n &#xff08; 1≤n≤10000 &#xff09;&#xff0c;求出 1,2…...

基于SpringBoot的博客系统测试报告

一、编写目的 本报告为博客系统测试报告&#xff0c;本项目模拟了csdn&#xff0c;实现了包括了用户登录&#xff0c;发布博客文章&#xff0c;查看博客等功能。 二、项目背景 博客系统采用前后端分离的方法来实现&#xff0c;同时使用了数据库来存储相关的数据&#xff0c…...