当前位置: 首页 > news >正文

[redis进阶六]详解redis作为缓存分布式锁

目录

一  什么是缓存

缓存总结板书:

二  使⽤Redis作为缓存

三  缓存的更新策略

1) 定期⽣成

 2) 实时⽣成

四  面试重点:缓存预热,缓存穿透,缓存雪崩 和缓存击穿

1)缓存预热

2)缓存穿透

3)缓存雪崩

4)缓存击穿

五  分布式锁

板书:

1)什么是分布式锁

2)分布式锁的基础实现

3)引⼊过期时间

4)引⼊校验id

5)引⼊lua

6)引⼊watchdog(看⻔狗)

7) 引⼊Redlock算法

六   其他功能


一  什么是缓存

缓存总结板书:

缓存(cache)是计算机中的⼀个经典的概念.在很多场景中都会涉及到.
核⼼思路就是把⼀些常⽤的数据放到触⼿可及(访问速度更快)的地⽅,⽅便随时读取.

对于计算机硬件来说,往往访问速度越快的设备,成本越⾼,存储空间越⼩.
缓存是更快,但是空间上往往是不⾜的.因此⼤部分的时候,缓存只放⼀些热点数据(访问频繁的数据),
就⾮常有⽤了.

二  使⽤Redis作为缓存

在⼀个⽹站中,我们经常会使⽤关系型数据库(⽐如MySQL)来存储数据.
关系型数据库虽然功能强⼤,但是有⼀个很⼤的缺陷,就是性能不⾼.(换⽽⾔之,进⾏⼀次查询操作消耗的系统资源较多).

因此,如果访问数据库的并发量⽐较⾼,对于数据库的压⼒是很⼤的,很容易就会使数据库服务器宕机.

如何让数据库能够承担更⼤的并发量呢?核⼼思路主要是两个:

 

  • 开源:引⼊更多的机器,部署更多的数据库实例,构成数据库集群.(主从复制,分库分表等...)
  • 节流:引⼊缓存,使⽤其他的⽅式保存经常访问的热点数据,从⽽降低直接访问数据库的请求数量.

实际开发中,这两种⽅案往往是会搭配使⽤的.

Redis 就是⼀个⽤来作为数据库缓存的常⻅⽅案.

就像⼀个"护盾"⼀样,把MySQL给罩住了.

1) 客户端访问业务服务器,发起查询请求.

2) 业务服务器先查询Redis,看想要的数据是否在Redis中存在.

          如果已经在Redis中存在了,就直接返回.此时不必访问MySQL了.

          如果在Redis中不存在,再查询MySQL.

按照上述讨论的"⼆⼋定律",只需要在Redis中放20%的热点数据,就可以使80%的请求不再真正查询数据库了.

当然,实践中究竟是"⼆⼋",还是"⼀九",还是"三七",这个情况可能会根据业务场景的不同,存在差
异.但是⾄少绝⼤多数情况下,使⽤缓存都能够⼤⼤提升整体的访问效率,降低数据库的压⼒.

三  缓存的更新策略

接下来还有⼀个重要的问题,到底哪些数据才是"热点数据"呢?

1) 定期⽣成

每隔⼀定的周期(⽐如⼀天/⼀周/⼀个⽉),对于访问的数据频次进⾏统计.挑选出访问频次最⾼的前N%的数据.

这种做法实时性较低.对于⼀些突然情况应对的并不好.

⽐如春节期间,"春晚"这样的词就会成为⾮常⾼频的词.⽽平时则很少会有⼈搜索"春晚".

 2) 实时⽣成

先给缓存设定容量上限(可以通过Redis配置⽂件的maxmemory 参数设定).
接下来把⽤户每次查询:

  •  如果在Redis查到了,就直接返回.
  •  如果Redis中不存在,就从数据库查,把查到的结果同时也写⼊Redis.

如果缓存已经满了(达到上限),就触发缓存淘汰策略,把⼀些"相对不那么热⻔"的数据淘汰掉.
按照上述过程,持续⼀段时间之后Redis内部的数据⾃然就是"热⻔数据"了.

通⽤的淘汰策略主要有以下⼏种:

下列策略并⾮局限于Redis,其他缓存也可以按这些策略展开.

1)FIFO (First In First Out) 先进先出
把缓存中存在时间最久的(也就是先来的数据)淘汰掉.


2)LRU(LeastRecentlyUsed)淘汰最久未使⽤的
记录每个key的最近访问时间.把最近访问时间最⽼的key淘汰掉.

3)LFU(LeastFrequently Used)淘汰访问次数最少的
记录每个key最近⼀段时间的访问次数.把访问次数最少的淘汰掉.

4)Random随机淘汰
从所有的key中抽取幸运⼉被随机淘汰掉.

这⾥的淘汰策略,我们可以⾃⼰实现.当然Redis也提供了内置的淘汰策略,也可以供我们直接使⽤.

Redis 内置的淘汰策略如下:

  •  volatile-lru 当内存不⾜以容纳新写⼊数据时,从设置了过期时间的key中使⽤LRU(最近最少使⽤)算法进⾏淘汰
  •  allkeys-lru 当内存不⾜以容纳新写⼊数据时,从所有key中使⽤LRU(最近最少使⽤)算法进⾏淘汰.
  •  volatile-lfu 4.0版本新增,当内存不⾜以容纳新写⼊数据时,在过期的key中,使⽤LFU算法进⾏删除key.
  • allkeys-lfu 4.0版本新增,当内存不⾜以容纳新写⼊数据时,从所有key中使⽤LFU算法进⾏淘汰.
  •  volatile-random 当内存不⾜以容纳新写⼊数据时,从设置了过期时间的key中,随机淘汰数据.
  •  allkeys-random 当内存不⾜以容纳新写⼊数据时,从所有key中随机淘汰数据.
  •  volatile-ttl 在设置了过期时间的key中,根据过期时间进⾏淘汰,越早过期的优先被淘汰.
     (相当于FIFO,只不过是局限于过期的key)
  • noeviction 默认策略,当内存不⾜以容纳新写⼊数据时,新写⼊操作会报错

整体来说Redis提供的策略和我们上述介绍的通⽤策略是基本⼀致的.只不过Redis这⾥会针对"过期key" 和"全部key"做分别处理.

四  面试重点:缓存预热,缓存穿透,缓存雪崩 和缓存击穿

1)缓存预热

什么是缓存预热?

使⽤Redis作为MySQL的缓存的时候,当Redis刚刚启动,或者Redis⼤批key失效之后,此时由于
Redis ⾃⾝相当于是空着的,没啥缓存数据,那么MySQL就可能直接被访问到,从⽽造成较⼤的压⼒.
因此就需要提前把热点数据准备好,直接写⼊到Redis中.使Redis可以尽快为MySQL撑起保护伞.

热点数据可以基于之前介绍的统计的⽅式⽣成即可.这份热点数据不⼀定⾮得那么"准确",只要能帮助MySQL抵挡⼤部分请求即可.随着程序运⾏的推移,缓存的热点数据会逐渐⾃动调整,来更适应当前情况.

2)缓存穿透

什么是缓存穿透?

访问的key在Redis和数据库中都不存在.此时这样的key不会被放到缓存上,后续如果仍然在访问该
key, 依然会访问到数据库.这就会导致数据库承担的请求太多,压⼒很⼤.
这种情况称为 缓存穿透.

为何产⽣?
原因可能有⼏种:

  • 业务设计不合理.⽐如缺少必要的参数校验环节,导致⾮法的key也被进⾏查询了.
  • 开发/运维误操作.不⼩⼼把部分数据从数据库上误删了.
  • ⿊客恶意攻击

如何解决?

  • 针对要查询的参数进⾏严格的合法性校验.⽐如要查询的key是⽤⼾的⼿机号,那么就需要校验当前key 是否满⾜⼀个合法的⼿机号的格式.
  • 针对数据库上也不存在的key,也存储到Redis中,⽐如value就随便设成⼀个"".避免后续频繁访问数据库.
  • 使⽤布隆过滤器先判定key是否存在,再真正查询.

3)缓存雪崩

什么是缓存雪崩?

短时间内⼤量的key在缓存上失效,导致数据库压⼒骤增,甚⾄直接宕机.

本来Redis是MySQL的⼀个护盾,帮MySQL抵挡了很多外部的压⼒.⼀旦护盾突然失效了,MySQL
⾃⾝承担的压⼒骤增,就可能直接崩溃.

为何产⽣?

⼤规模key失效,可能性主要有两种:

  • Redis挂了.
  • Redis上的⼤量的key同时过期

为啥会出现⼤量的key同时过期?
这种和可能是短时间内在Redis上缓存了⼤量的key,并且设定了相同的过期时间.

如何解决?

  • 部署⾼可⽤的Redis集群,并且完善监控报警体系.
  • 不给key设置过期时间或者设置过期时间的时候添加随机时间因⼦.

4)缓存击穿

什么是缓存击穿?

为何产生?

相当于缓存雪崩的特殊情况.针对热点key,突然过期了,导致⼤量的请求直接访问到数据库上,甚⾄引
起数据库宕机.

如何解决:

  • 基于统计的⽅式发现热点key,并设置永不过期.
  • 进⾏必要的服务降级.例如访问数据库的时候使⽤分布式锁,限制同时请求数据库的并发数.

五  分布式锁

板书:

1)什么是分布式锁

在⼀个分布式的系统中,也会涉及到多个节点访问同⼀个公共资源的情况.此时就需要通过锁来做互斥控制,避免出现类似于"线程安全"的问题.
⽽java的synchronized或者C++的std::mutex,这样的锁都是只能在当前进程中⽣效,在分布式的这
种多个进程多个主机的场景下就⽆能为⼒了.
此时就需要使⽤到分布式锁.

2)分布式锁的基础实现

思路⾮常简单.本质上就是通过⼀个键值对来标识锁的状态.
举个例⼦:考虑买票的场景,现在⻋站提供了若⼲个⻋次,每个⻋次的票数都是固定的.
现在存在多个服务器节点,都可能需要处理这个买票的逻辑:先查询指定⻋次的余票,如果余票>0,则设置余票值-=1.

显然上述的场景是存在"线程安全"问题的,需要使⽤锁来控制.
否则就可能出现"超卖"的情况.

此时如何进⾏加锁呢?我们可以在上述架构中引⼊⼀个Redis,作为分布式锁的管理器.

此时,如果买票服务器1尝试买票,就需要先访问Redis,在Redis上设置⼀个键值对.⽐如key就是⻋次,value随便设置个值(⽐如1).


如果这个操作设置成功,就视为当前没有节点对该001⻋次加锁,就可以进⾏数据库的读写操作.操作完成之后,再把Redis上刚才的这个键值对给删除掉.


如果在买票服务器1操作数据库的过程中,买票服务器2也想买票,也会尝试给Redis上写⼀个键值对,key 同样是⻋次.但是此时设置的时候发现该⻋次的key已经存在了,则认为已经有其他服务器正在持有锁,此时服务器2就需要等待或者暂时放弃.

但是上述⽅案并不完整.

3)引⼊过期时间

当服务器1加锁之后,开始处理买票的过程中,如果服务器1意外宕机了,就会导致解锁操作(删除该
key) 不能执⾏.就可能引起其他服务器始终⽆法获取到锁的情况.
为了解决这个问题,可以在设置key的同时引⼊过期时间.即这个锁最多持有多久,就应该被释放.

注意!此处的过期时间只能使⽤⼀个命令的⽅式设置.

如果分开多个操作,⽐如setnx之后,再来⼀个单独的expire,由于Redis的多个指令之间不存在关
联,并且即使使⽤了事务也不能保证这两个操作都⼀定成功,因此就可能出现setnx成功,但是expire
失败的情况.
此时仍然会出现⽆法正确释放锁的问题.

4)引⼊校验id

对于Redis中写⼊的加锁键值对,其他的节点也是可以删除的.

        ⽐如服务器1写⼊⼀个"001":1这样的键值对,服务器2是完全可以把"001"给删除掉的.
        当然,服务器2不会进⾏这样的"恶意删除"操作,不过不能保证因为⼀些bug导致服务器2把锁误删除.

为了解决上述问题,我们可以引⼊⼀个校验id.

⽐如可以把设置的键值对的值,不再是简单的设为⼀个1,⽽是设成服务器的编号.形如"001":"服务器1".


这样就可以在删除key(解锁)的时候,先校验当前删除key的服务器是否是当初加锁的服务器,如果是,才能真正删除;不是,则不能删除.

逻辑⽤伪代码描述如下:

但是很明显,解锁逻辑是两步操作"get"和"del",这样做并⾮是原⼦的.

5)引⼊lua

为了使解锁操作原⼦,可以使⽤Redis的Lua脚本功能.

使⽤Lua脚本完成上述解锁功能:

if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) 
elsereturn 0 
end;

上述代码可以编写成⼀个.lua后缀的⽂件,由 redis-cli 或者redis-plus-plus 或者 jedis 等客户端加载,并发送给Redis服务器,由Redis服务器来执⾏这段逻辑.

⼀个lua脚本会被Redis服务器以原⼦的⽅式来执⾏.

redis-plus-plus 和 jedis 如何调⽤lua,咱们此处不做过多介绍.具体api的写法⼤家可以⾃⾏研究.

6)引⼊watchdog(看⻔狗)

上述⽅案仍然存在⼀个重要问题.当我们设置了key过期时间之后(⽐如10s),仍然存在⼀定的可能性,当任务还没执⾏完,key就先过期了.这就导致锁提前失效.

把这个过期时间设置的⾜够⻓,⽐如30s,是否能解决这个问题呢?很明显,设置多⻓时间合适,是⽆⽌境的.即使设置再⻓,也不能完全保证就没有提前失效的情况.
⽽且如果设置的太⻓了,万⼀对应的服务器挂了,此时其他服务器也不能及时的获取到锁.
因此相⽐于设置⼀个固定的⻓时间,不如动态的调整时间更合适.

所谓watchdog,本质上是加锁的服务器上的⼀个单独的线程,通过这个线程来对锁过期时间进⾏"续约".
        注意,这个线程是业务服务器上的,不是Redis服务器的.

这样就不担⼼锁提前失效的问题了.⽽且另⼀⽅⾯,如果该服务器挂了,看⻔狗线程也就随之挂了,此时⽆⼈续约,这个key⾃然就可以迅速过期,让其他服务器能够获取到锁了.

7) 引⼊Redlock算法

实践中的Redis⼀般是以集群的⽅式部署的(⾄少是主从的形式,⽽不是单机).那么就可能出现以下⽐
较极端的⼤冤种情况:

为了解决这个问题,Redis的作者提出了Redlock算法.

Redlock算法:

        我们引⼊⼀组Redis节点.其中每⼀组Redis节点都包含⼀个主节点和若⼲从节点.并且组和组之间存储的数据都是⼀致的,相互之间是"备份"关系(⽽并⾮是数据集合的⼀部分,这点有别于Rediscluster).


        加锁的时候,按照⼀定的顺序,写多个master节点.在写锁的时候需要设定操作的"超时时间".⽐如50ms. 即如果setnx操作超过了50ms还没有成功,就视为加锁失败.

如果给某个节点加锁失败,就⽴即再尝试下⼀个节点.
当加锁成功的节点数超过总节点数的⼀半,才视为加锁成功.

        如上图,⼀共五个节点,三个加锁成功,两个失败,此时视为加锁成功.

这样的话,即使有某些节点挂了,也不影响锁的正确性.

同理,释放锁的时候,也需要把所有节点都进⾏解锁操作.(即使是之前超时的节点,也要尝试解锁,尽量保证逻辑严密).

简⽽⾔之,Redlock算法的核⼼就是,加锁操作不能只写给⼀个Redis节点,⽽要写个多个!!分布式系统中任何⼀个节点都是不可靠的.最终的加锁成功结论是"少数服从多数的".


由于⼀个分布式系统不⾄于⼤部分节点都同时出现故障,因此这样的可靠性要⽐单个节点来说靠谱不少.

六   其他功能

上述描述中我们解释了基于Redis的分布式锁的基本实现原理.
上述锁只是⼀个简单的互斥锁.但是实际上我们在⼀些特定场景中,还有⼀些其他特殊的锁,⽐如:

  • 可重⼊锁
  • 公平锁
  • 读写锁
  • ......

基于Redis的分布式锁,也可以实现上述特性.(当然了对应的实现逻辑也会更复杂).

此处我们不做过多讨论了.
实际开发中,我们也并不会真的⾃⼰实现⼀个分布式锁.已经有很多现成的库帮我们封装好了,我们直接使⽤即可.

⽐如Java中的Redisson,C++中的redis-plus-plus.当然,有些⼤⼚也会有⾃⼰版本的分布式锁的实
现.

相关文章:

[redis进阶六]详解redis作为缓存分布式锁

目录 一 什么是缓存 缓存总结板书: 二 使⽤Redis作为缓存 三 缓存的更新策略 1) 定期⽣成 2) 实时⽣成 四 面试重点:缓存预热,缓存穿透,缓存雪崩 和缓存击穿 1)缓存预热 2)缓存穿透 3)缓存雪崩 4)缓存击穿 五 分布式锁 板书: 1)什么是分布式锁 2)分布式锁的基…...

【RabbitMQ】应用问题、仲裁队列(Raft算法)和HAProxy负载均衡

🔥个人主页: 中草药 🔥专栏:【中间件】企业级中间件剖析 一、幂等性保障 什么是幂等性? 幂等性是指对一个系统进行重复调用(相同参数),无论同一操作执行多少次,这些请求…...

国产密码新时代!华测国密 SSL 证书解锁安全新高度

在数字安全被提升到国家战略高度的今天,国产密码算法成为筑牢网络安全防线的关键力量。华测国密SSL证书凭借其强大性能与贴心服务,为企业网络安全保驾护航,成为符合国家安全要求的不二之选!​ 智能兼容,告别浏览器适配…...

【Linux篇章】Linux 进程信号2:解锁系统高效运作的 “隐藏指令”,开启性能飞跃新征程(精讲捕捉信号及OS运行机制)

本篇文章将以一个小白视角,通俗易懂带你了解信号在产生,保存之后如何进行捕捉;以及在信号这个话题中;OS扮演的角色及背后是如何进行操作的;如何理解用户态内核态;还有一些可以引出的其他知识点;…...

C# 基础 try-catch代码块

​ try-catch代码块是C#中用于异常处理的核心机制。异常是在程序执行过程中可能出现的错误,而try-catch代码块允许您在执行代码时捕获并处理这些异常。 一、基础结构 try {//可能抛出异常的代码 } catch (ArgumentException ex) {//处理特定异常 } catch (Excepti…...

为什么 mac os .bashrc 没有自动加载?

原因说明 在macOS中,默认情况下,终端使用的是Bash或Zsh作为shell。对于较新版本的macOS(从Catalina开始),默认的shell已经切换为Zsh。因此,如果你正在使用Zsh,.bashrc文件不会自动生效&#xf…...

【HarmonyOS Next之旅】DevEco Studio使用指南(二十二)

目录 1 -> 开发静态共享包 1.1 -> 创建库模块 1.2 -> 编译库模块 2 -> 开发动态共享包 2.1 -> 使用约束 2.2 -> 开发动态共享包 2.2.1 -> 创建HSP模块 2.2.2 -> 编译HSP模块 3 -> 发布共享包 1 -> 开发静态共享包 HAR(Harmony Archive…...

QT6.8安装教程

官网下载 链接: Index of /official_releases/online_installers 这个比较慢 建议去 清华大学开源软件镜像站:Index of /qt/archive/online_installers/4.9/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 根据自己什么系统选择 点击打开…...

【Rust泛型】Rust泛型使用详解与应用场景

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

一周学完计算机网络之三:1、数据链路层概述

简单的概述 数据链路层是计算机网络体系结构中的第二层,它在物理层提供的基本服务基础上,负责将数据从一个节点可靠地传输到相邻节点。可以将其想象成一个负责在两个相邻的网络设备之间进行数据 “搬运” 和 “整理” 的 “快递中转站”。 几个重要概念…...

配置ssh无密登录

在root下有一个.ssh文件夹,它的下面有一个known_hosts文件,这个里面记录了哪些其他的主机通过ssh访问过当前的主机。 免密登录原理 (2)生成公钥和私钥 具体操作: 1. 进入 hadoop1001 2. 运行命令:ssh-keyg…...

南京邮电大学金工实习答案

一、金工实习的定义 金工实习是机械类专业学生一项重要的实践课程,它绝非仅仅只是理论知识在操作层面的简单验证,而是一个全方位培养学生综合实践能力与职业素养的系统工程。从本质上而言,金工实习是学生走出教室,亲身踏入机械加…...

无偿帮写毕业论文

以下教程教你如何利用相关网站和AI免费帮你写一个毕业论文。毕竟毕业论文只要过就行,脱产学习这么多年,终于熬出头了,完成毕设后有空就去多看看亲人好友,祝好! 一、找一个论文模板(最好是overleaf) 废话不多说&#…...

【高数上册笔记01】:从集合映射到区间函数

【参考资料】 同济大学《高等数学》教材樊顺厚老师B站《高等数学精讲》系列课程 (注:本笔记为个人数学复习资料,旨在通过系统化整理替代厚重教材,便于随时查阅与巩固知识要点) 仅用于个人数学复习,因为课…...

大数据从专家到小白

文章目录 数据湖技术Apache Iceberg FlinkHiveHadoopHDFS 数据湖技术 Apache Iceberg Iceberg是一个通用的表格式(数据组织格式),它可以适配Presto,Spark等引擎提供高性能的读写和元数据管理功能。 Flink Hive Hadoop HDFS...

特励达力科LeCroy推出Xena Freya Z800 800GE高性能的800G以太网测试平台

Xena Freya Z800 800GE 是由全球领先的测试与测量解决方案提供商特励达力科公司(Teledyne LeCroy)开发的高性能以太网测试平台,专为满足从10GE到800GE数据中心互连速度的需求而设计。特励达力科公司在网络测试领域拥有超过50年的技术积累&…...

LeetCode 热题 100 98. 验证二叉搜索树

LeetCode 热题 100 | 98. 验证二叉搜索树 大家好,今天我们来解决一道经典的二叉树问题——验证二叉搜索树。这道题在 LeetCode 上被标记为中等难度,要求判断给定的二叉树是否是一个有效的二叉搜索树(BST)。 问题描述 给你一个二…...

Linux文件编程——open函数

在 Linux 系统中,文件操作不仅仅通过高级语言的标准库进行,底层的文件操作是通过 系统调用 来实现的。系统调用 是用户空间与操作系统内核之间的接口,允许程序请求操作系统提供的服务,包括文件读写、内存管理、进程控制等。本文将…...

Linux-Ext系列文件系统

1.理解硬件 1.1磁盘 机械磁盘是计算机中唯⼀的⼀个机械设备 磁盘---外设 慢 容量⼤,价格便宜 1.2磁盘的物理结构 1.3磁盘的存储结构 扇区:是磁盘存储数据的基本单位,512字节,块设备 如何定位⼀个扇区呢? 可以先定…...

Multisim14使用教程详尽版--(2025最新版)

一、Multisim14前言 1.1、主流电路仿真软件 1. Multisim:NI开发的SPICE标准仿真工具,支持模拟/数字电路混合仿真,内置丰富的元件库和虚拟仪器(示波器、频谱仪等),适合教学和竞赛设计。官网:艾…...

C——猜数字游戏

前面我们已经学习了C语言常见概念,数据类型和变量以及分置于循环的内容,现在我们可以将这些内容结合起来写一个有趣的小游戏。下面正式开始我们今天的主题——猜数字游戏的实现。 猜数字游戏的要求: 1.电脑自动生成1~100的随机数。 2.玩家…...

【iOS】SDWebImage源码学习

SDWebImage源码学习 文章目录 SDWebImage源码学习前言SDWebImage缓存流程sd_setImageWithURL(UIImageViewWebCache层)sd_internalSetImageWithURL(UIViewWebCache层)loadImageWithURL(SDWebManger层)queryCacheOperationForKey(SDImageCache层)删除缓存 callDownloadProcessFor…...

.Net HttpClient 处理响应数据

HttpClient 处理响应数据 1、初始化及全局设置 //初始化:必须先执行一次 #!import ./ini.ipynb2、处理响应状态 //判断响应码:正常 {var response await SharedClient.GetAsync("api/Normal/GetAccount?id1");if(response.StatusCode Sy…...

【心海资源】【最新话费盗u】【未测】提币对方官方波场+没有任何加密+无后门+前端VUE

提笔接口请使用官方提笔,第三方提笔都有风险 后门你们也扫扫,这种源码风险大,自己玩玩学习进行了 重要的事情说三遍 !!!!!!!!!&…...

Python中的标识、相等性与别名:深入理解对象引用机制

在Python编程中,理解变量如何引用对象以及对象之间的比较方式是至关重要的基础概念。本文将通过Lewis Carroll的笔名示例,深入探讨Python中的对象标识、相等性判断以及别名机制。 别名现象:变量共享同一对象 >>> charles {name: …...

Java 1.8(也称为Java 8)

Java 1.8(也称为Java 8)是Oracle于2014年发布的一个重要版本,引入了许多新特性和改进,极大地提升了Java语言的表达力和开发效率。以下是Java 1.8的主要新特性: ### 1. Lambda表达式 Lambda表达式是Java 1.8最具革命性…...

LVGL简易计算器实战

文章目录 📁 文件结构建议🔹 eval.h 表达式求值头文件🔹 eval.c 表达式求值实现文件(带详细注释)🔹 ui.h 界面头文件🔹 ui.c 界面实现文件🔹 main.c 主函数入口✅ 总结 项目效果&…...

Linux | Uboot-Logo 修改文档(第十七天)

01 Uboot 修改 首先我们在 home 目录下新建一个文件夹 imx6ull,然后打开 i.MX6ULL 终结者光盘资料\05_uboot linux源码,在 window 下解压下图箭头所指的压缩包,解压后分别得到 linux-imx-rel_imx_4.1.15_2.1.0_ga_20200323.tar.gz 和 uboot-imx-rel_imx_4.1.15_2.1.0_…...

数字孪生概念

数字孪生(Digital Twin) 是指通过数字技术对物理实体(如设备、系统、流程或环境)进行高保真建模和实时动态映射,实现虚实交互、仿真预测和优化决策的技术体系。它是工业4.0、智慧城市和数字化转型的核心技术之一。 1. …...

c++STL-string的使用

这里写自定义目录标题 string的使用string写成类模板的原因string的版本举例构造、析构函数和赋值重载构造函数和析构函数operator Iterators迭代器begin和endrbegin和rendcbegin和cend,crbegin和crend(c11) capacity容量有关函数不同编译器下…...

总结C/C++中程序内存区域划分

C/C程序内存分配的⼏个区域 1..栈区(stack):在执⾏函数时,函数内局部变量的存储单元都可以在栈上创建,函数执⾏结束时 这些存储单元⾃动被释放。栈内存分配运算内置于处理器的指令集中,效率很⾼&#xff0c…...

C# 方法(方法重载)

本章内容: 方法的结构 方法体内部的代码执行 局部变量 局部常量 控制流 方法调用 返回值 返回语句和void方法 局部函数 参数 值参数 引用参数 引用类型作为值参数和引用参数 输出参数 参数数组 参数类型总结 方法重载 命名参数 可选参数 栈帧 递归 方法重载 一个类中可以有多个…...

Dockerfile 完全指南:从入门到最佳实践

Dockerfile 完全指南:从入门到最佳实践 1. Dockerfile 简介与作用 Dockerfile 是一个文本文件,包含了一系列用于构建 Docker 镜像的指令。它允许开发者通过简单的指令定义镜像的构建过程,实现自动化、可重复的镜像构建。 主要作用&#xf…...

DEEPPOLAR:通过深度学习发明非线性大核极坐标码(2)

目录 2.问题的提出和背景 2.1 信道编码 2.2.极化码 极坐标编码 极坐标解码 原文:《DEEPPOLAR: Inventing Nonlinear Large-Kernel Polar Codes via Deep Learning》 2.问题的提出和背景 2.1 信道编码 信道编码是一种为传输添加冗余的技术,使其对…...

ESP32-S3 学习笔记(1)

ESP32-S3 学习笔记(1) 背景环境添加工程文件材料准备轻触开关的正负极 背景 ​ 闲来无事,看到立创论坛上有许多大佬开源的项目,甚是厉害,于是决定自己也来搞一搞,同时可以做一些技术积累,看了很…...

Python Cookbook-7.9 访问 MySQL 数据库

任务 想访问一个 MySQL 数据库。 解决方案 MySQLdb 模块正是为这种任务而设计的: import MySQLdb #创建一个连接对象,再用它创建游标 con = MySQLdb.connect(host = "127.0.0.1", port = 3306, user = "joe",<...

docker安装superset实践

1、拉取docker镜像 docker pull apache/superset:latest 2、安装superset容器 mkdir /usr/local/develop/docker/superset/ -p touch /usr/local/develop/docker/superset/superset_config.py superset_config.py配置文件如下&#xff1a; SQLALCHEMY_DATABASE_URI mysql:…...

Web开发—Vue工程化

文章目录 前言 Vue工程化 一、介绍 二、环境准备 1.介绍create-vue 2.NodeJS安装 3.npm介绍 三&#xff0c;Vue项目创建 四&#xff0c;项目结构 五&#xff0c;启动项目 六&#xff0c;Vue项目开发流程 七&#xff0c;API风格 前言 Vue工程化 前面我们在介绍Vue的时候&#…...

什么是硬件中断请求号?什么是中断向量号?

一、硬件中断请求号&#xff08;IRQ&#xff0c;Interrupt Request Number&#xff09; ​定义​&#xff1a; 硬件中断请求号&#xff08;IRQ&#xff09;是硬件设备向CPU发送中断请求时使用的唯一标识符&#xff0c;用于区分不同的中断源。例如&#xff0c;键盘、硬盘等外设…...

[Java实战]Spring Boot 定时任务(十五)

[Java实战]Spring Boot 定时任务&#xff08;十五&#xff09; 一、定时任务的应用场景 数据同步&#xff1a;每日凌晨同步第三方数据状态检查&#xff1a;每5分钟扫描订单超时未支付资源清理&#xff1a;每小时清理临时文件报表生成&#xff1a;每月1号生成财务统计报表通知…...

OpenWrt开发第7篇:OpenWrt配置支持Web界面

文/指尖动听知识库-谷谷 文章为付费内容,商业行为,禁止私自转载及抄袭,违者必究!!! 文章专栏:Openwrt开发-基于Raspberry Pi 4B开发板 OpenWrt的luci是一个基于Web的图形化管理界面,为用户提供了直观的操作方式,无需命令行即可完成大部分功能的配置。 1.在终端输入ma…...

【多模态】IMAGEBIND论文阅读

every blog every motto: Although the world is full of suffering&#xff0c; it is full also of the overcoming of it 0. 前言 IMAGEBIND 多模态论文梗概 IMAGEBIND是一种夸模态的神经网络&#xff0c;以图片为中心&#xff0c;联合六中模态的网络&#xff08;图片、文…...

【C语言干货】二维数组传参本质

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、二维数组的内存布局 1.二维数组的实质2.二维数组的地址关系 二、二维数组传参的本质 1.参数传递的退化机制2.三种等效的函数声明方式 总结 前言 提示&#…...

基于SpringBoot的抽奖系统测试报告

一、编写目的 本报告为抽奖系统测试报告&#xff0c;本项目可用于团体抽奖活动&#xff0c;包括了用户注册&#xff0c;用户登录&#xff0c;修改奖项以及抽奖等功能。 二、项目背景 抽奖系统采用前后端分离的方法来实现&#xff0c;同时使用了数据库来存储相关的数据&…...

Go语言从零构建SQL数据库(9)-数据库优化器的双剑客

数据库优化器的双剑客&#xff1a;谓词下推与列裁剪 在数据库查询优化的世界里&#xff0c;有两位特别重要的"超级英雄"&#xff1a;谓词下推和列裁剪。这两种优化技术虽然简单&#xff0c;却能带来惊人的性能提升。今天&#xff0c;我们就来揭开它们的神秘面纱&…...

C++中什么是函数指针?

在C中&#xff0c;函数指针是一个指向函数的指针变量。通过函数指针&#xff0c;我们可以像使用函数一样调用它所指向的函数&#xff0c;常用于实现回调函数、函数指针数组等功能。 以下是一个简单的C代码示例&#xff0c;展示了函数指针的使用&#xff1a; cpp #include <…...

Python工具链UV整合环境管理

Python工具链UV整合环境管理 终极Python工具链UV&#xff1a;从依赖管理到项目开发的全维度解析一、引言&#xff1a;重新定义Python开发的大一统时代二、深度安装指南&#xff1a;多场景适配方案1. 官方独立安装器&#xff08;推荐方案&#xff09;2. 进阶安装方式3. 安装验证…...

RuoYi-v4.7.8 jar/war部署

准备条件 jdk-8u73-windows-x64.exe mysql5.7 apache-tomcat-9.0.60 apache-maven-3.8.1 RuoYi-v4.7.8.zip &#xff08;官网 RuoYi&#xff09; 登录gitee,选择标签要下载的版本好&#xff0c;点击克隆下载zip压缩文件 安装maven Apache Archive Distribution Directory…...

基于SpringBoot的小区停车位管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…...

张量并行优质博客

必读图解系列1 比较全面的相关文献总结博客&#xff0c;可以重点看一下其中的行列切分算子2 # 图解大模型训练之&#xff1a;张量模型并行(TP)&#xff0c;Megatron-LM ↩︎ # 大规模分布式 AI 模型训练系列——张量并行 ↩︎...