当前位置: 首页 > news >正文

嵌入式硬件篇---CAN


文章目录

  • 前言
  • 1. CAN协议基础
    • 1.1 物理层特性
      • 差分信号线
      • 终端电阻
      • 通信速率
      • 总线拓扑
    • 1.2 帧类型
    • 1.3 数据帧格式
  • 2. STM32F103RCT6的CAN硬件配置
    • 2.1 硬件连接
    • 2.2 CubeMX配置
      • 启用CAN1
      • 模式
      • 波特率
      • 引脚分配
      • 过滤器配置(可选)
  • 3. HAL库代码实现
    • 3.1 CAN初始化
    • 3.2 发送CAN数据帧
    • 3.3 接收CAN数据帧(中断模式)
  • 4. 过滤器配置(接收特定ID)
  • 5. 波特率计算
  • 6. 常见问题与调试
    • 6.1 通信失败原因
      • 波特率不匹配
      • 终端电阻缺失
      • ID冲突
      • 硬件连接错误
    • 6.2 逻辑分析仪抓包
  • 7. 完整示例:双机通信
    • 节点A(发送数据)
    • 节点B(接收数据)
  • 总结
    • 硬件配置
    • 数据收发
    • 调试工具
    • 应用场景


前言

CAN(Controller Area Network)是一种高可靠性、多主机的串行通信协议,广泛应用于汽车电子、工业控制等领域。STM32F103RCT6内置了bxCAN控制器(Basic Extended CAN),支持CAN 2.0A/B标准。以下是详细协议解析及代码实现


1. CAN协议基础

1.1 物理层特性

差分信号线

CAN_H(高电平线)
CAN_L(低电平线)

终端电阻

终端电阻:120Ω(两端各一个,抑制反射)。

通信速率

通信速率:最高1 Mbps(常见波特率:125kbps、250kbps、500kbps)。

总线拓扑

总线拓扑:线性总线结构,支持多节点(最多110个节点)。

1.2 帧类型

帧类型 用途
数据帧 传输实际数据(核心帧类型)
远程帧 请求其他节点发送数据
错误帧 报告通信错误
过载帧 通知节点延迟响应

1.3 数据帧格式

[帧起始] [仲裁段] [控制段] [数据段] [CRC段] [ACK段] [帧结束]
仲裁段:
标准帧(11位ID):CAN 2.0A。
扩展帧(29位ID):CAN 2.0B。
数据段:0~8字节有效载荷。

2. STM32F103RCT6的CAN硬件配置

2.1 硬件连接

CAN信号 STM32引脚 说明
CAN_RX PA11 接收引脚
CAN_TX PA12 发送引脚
CAN_H 连接总线 高电平线
CAN_L 连接总线 低电平线
终端电阻 120Ω 接在总线两端

2.2 CubeMX配置

启用CAN1

模式

模式:Normal(正常模式)。

波特率

波特率:500kbps(时钟分频需匹配APB1时钟,默认36MHz)。

引脚分配

引脚分配:

CAN_RX → PA11
CAN_TX → PA12

过滤器配置(可选)

设置接收过滤器(如仅接收特定ID的帧)。

3. HAL库代码实现

3.1 CAN初始化

#include "stm32f1xx_hal.h"CAN_HandleTypeDef hcan;void MX_CAN_Init(void) {hcan.Instance = CAN1;hcan.Init.Prescaler = 9;          // 波特率 = 36MHz / (Prescaler * (1 + BS1 + BS2)) = 500kbpshcan.Init.Mode = CAN_MODE_NORMAL;  // 正常模式(非环回)hcan.Init.SyncJumpWidth = CAN_SJW_1TQ;hcan.Init.TimeSeg1 = CAN_BS1_4TQ;  // BS1 = 4时间单位hcan.Init.TimeSeg2 = CAN_BS2_3TQ;  // BS2 = 3时间单位hcan.Init.TimeTriggeredMode = DISABLE;hcan.Init.AutoBusOff = DISABLE;hcan.Init.AutoWakeUp = DISABLE;hcan.Init.AutoRetransmission = ENABLE; // 自动重传hcan.Init.ReceiveFifoLocked = DISABLE;hcan.Init.TransmitFifoPriority = DISABLE;if (HAL_CAN_Init(&hcan) != HAL_OK) {Error_Handler();}}

3.2 发送CAN数据帧

void CAN_Send(uint32_t id, uint8_t *data, uint8_t len) {CAN_TxHeaderTypeDef tx_header;uint32_t tx_mailbox;tx_header.StdId = id;           // 标准ID(11位)tx_header.ExtId = 0;            // 扩展ID(未使用)tx_header.IDE = CAN_ID_STD;     // 标准帧tx_header.RTR = CAN_RTR_DATA;   // 数据帧tx_header.DLC = len;            // 数据长度(0~8)tx_header.TransmitGlobalTime = DISABLE;if (HAL_CAN_AddTxMessage(&hcan, &tx_header, data, &tx_mailbox) != HAL_OK) {Error_Handler();}
}// 示例:发送8字节数据(ID=0x123)
uint8_t msg[8] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
CAN_Send(0x123, msg, 8);

3.3 接收CAN数据帧(中断模式)

CAN_RxHeaderTypeDef rx_header;
uint8_t rx_data[8];void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan) {if (HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &rx_header, rx_data) == HAL_OK) {printf("Received ID: 0x%03X, Data: ", rx_header.StdId);for (uint8_t i = 0; i < rx_header.DLC; i++) {printf("%02X ", rx_data[i]);}printf("\n");}
}// 主函数中启用接收中断
int main(void) {HAL_Init();MX_CAN_Init();HAL_CAN_Start(&hcan);HAL_CAN_ActivateNotification(&hcan, CAN_IT_RX_FIFO0_MSG_PENDING);while (1) { /* 其他任务 */ }
}

4. 过滤器配置(接收特定ID)

CAN控制器通过过滤器筛选接收的帧。以下配置仅接收ID=0x123的帧:

CAN_FilterTypeDef filter;filter.FilterBank = 0;                      // 过滤器组0
filter.FilterMode = CAN_FILTERMODE_IDMASK;  // 掩码模式
filter.FilterScale = CAN_FILTERSCALE_32BIT; // 32位过滤
filter.FilterIdHigh = 0x123 << 5;           // ID高16位(左移5位对齐)
filter.FilterIdLow = 0x0000;                // ID低16位
filter.FilterMaskIdHigh = 0xFFFF;           // 掩码高16位(全匹配)
filter.FilterMaskIdLow = 0x0000;            // 掩码低16位
filter.FilterFIFOAssignment = CAN_RX_FIFO0; // 存入FIFO0
filter.FilterActivation = ENABLE;           // 启用过滤器HAL_CAN_ConfigFilter(&hcan, &filter);

5. 波特率计算

CAN波特率由以下公式决定
波特率= Prescaler×(BS1+BS2+1)
APB1时钟:STM32F103默认36MHz。
BS1:TimeSeg1(例中为4)。
BS2:TimeSeg2(例中为3)。
Prescaler:分频系数(例中为9)。

6. 常见问题与调试

6.1 通信失败原因

波特率不匹配

波特率不匹配:确保所有节点波特率一致。

终端电阻缺失

终端电阻缺失:总线两端需接120Ω电阻。

ID冲突

ID冲突:避免多个节点使用相同ID发送

硬件连接错误

硬件连接错误:检查CAN_H/CAN_L是否接反。

6.2 逻辑分析仪抓包

使用CAN分析仪(如PCAN-USB)或示波器观察
差分信号电平(CAN_H - CAN_L应为2V(显性)或0V(隐性))。
帧结构:起始位、ID、数据等是否正常。

7. 完整示例:双机通信

节点A(发送数据)

uint8_t data[8] = {0xAA, 0xBB, 0xCC, 0xDD};
CAN_Send(0x123, data, 4); // 发送ID=0x123的4字节数据

节点B(接收数据)

void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan) {CAN_RxHeaderTypeDef rx_header;uint8_t rx_data[8];HAL_CAN_GetRxMessage(hcan, CAN_RX_FIFO0, &rx_header, rx_data);if (rx_header.StdId == 0x123) {HAL_GPIO_TogglePin(GPIOC, GPIO_PIN_13); // 收到数据后翻转LED}
}

总结

硬件配置

硬件配置:正确设置波特率、过滤器

数据收发

数据收发:使用HAL_CAN_AddTxMessage中断回调

调试工具

调试工具:逻辑分析仪、CAN分析仪是关键。

应用场景

应用场景:汽车ECU通信、工业传感器网络等。
通过上述代码,STM32F103RCT6可稳定实现CAN通信,适用于高可靠性要求的嵌入式系统。


相关文章:

嵌入式硬件篇---CAN

文章目录 前言1. CAN协议基础1.1 物理层特性差分信号线终端电阻通信速率总线拓扑 1.2 帧类型1.3 数据帧格式 2. STM32F103RCT6的CAN硬件配置2.1 硬件连接2.2 CubeMX配置启用CAN1模式波特率引脚分配过滤器配置&#xff08;可选&#xff09; 3. HAL库代码实现3.1 CAN初始化3.2 发…...

(2025)图文解锁RAG从原理到代码实操,代码保证可运行

什么是RAG RAG(检索增强生成)是一种将语言模型与可搜索知识库结合的方法&#xff0c;主要包含以下关键步骤&#xff1a; 数据预处理 加载&#xff1a;从不同格式(PDF、Markdown等)中提取文本分块&#xff1a;将长文本分割成短序列(通常100-500个标记)&#xff0c;作为检索单元…...

TWAS、GWAS、FUSION

全基因组关联研究&#xff08;GWAS&#xff0c;Genome-Wide Association Study&#xff09;是一种统计学方法&#xff0c;用于在全基因组水平上识别与特定性状或疾病相关的遗传变异。虽然GWAS可以识别与性状相关的遗传信号&#xff0c;但它并不直接揭示这些遗传变异如何影响生物…...

大模型微调终极方案:LoRA、QLoRA原理详解与LLaMA-Factory、Xtuner实战对比

文章目录 一、微调概述1.1 微调步骤1.2 微调场景 二、微调方法2.1 三种方法2.2 方法对比2.3 关键结论 三、微调技术3.1 微调依据3.2 LoRA3.2.1 原理3.2.2 示例 3.3 QLoRA3.4 适用场景 四、微调框架4.1 LLaMA-Factory4.2 Xtuner4.3 对比 一、微调概述 微调&#xff08;Fine-tun…...

FHE 之 面向小白的引导(Bootstrapping)

1. 引言 FHE初学者和工程师常会讨论的一个问题是&#xff1b; “什么是引导&#xff08;bootstrapping&#xff09;&#xff1f;” 从理论角度看&#xff0c;这个问题的答案很简单&#xff1a; 引导就是套用 Gentry 提出的思想——在加密状态下同态地执行解密操作&#xff…...

安装:Kali2025+Docker

安装:Kali2025Docker Kali2025安装 直接官网下载WMware版本 https://www.kali.org/get-kali/#kali-virtual-machines 直接打开运行 初始用户密码 kali/kali sudo -i 命令切换到root 更换镜像 切换到其他可用的 Kali Linux 镜像源可能会解决问题,可以使用国内的镜像源&…...

什么是深拷贝什么是浅拷贝,两者区别

什么是深拷贝什么是浅拷贝&#xff0c;两者区别 1.深拷贝 递归复制对象的所有层级&#xff0c;嵌套的引用类型属性&#xff0c;最后生成一个完全独立的新对象&#xff0c;与原对象无任何引用关联。 特点&#xff1a; 新对象和原对象的所有层级属性是独立的&#xff08;修改…...

A2A大模型协议及Java示例

A2A大模型协议概述 1. 协议作用 A2A协议旨在解决以下问题&#xff1a; 数据交换&#xff1a;不同应用程序之间的数据格式可能不一致&#xff0c;A2A协议通过定义统一的接口和数据格式解决这一问题。模型调用&#xff1a;提供标准化的接口&#xff0c;使得外部应用可以轻松调…...

第七章 数据库编程

1 数据库编程基础 1.1 数据库系统概述 数据库系统是由数据库、数据库管理系统(DBMS)和应用程序组成的完整系统。其主要目的是高效地存储、管理和检索数据。现代数据库系统通常分为以下几类&#xff1a; 关系型数据库(RDBMS)&#xff1a;如MySQL、PostgreSQL、Oracle等&#x…...

电影感户外哑光人像自拍摄影Lr调色预设,手机滤镜PS+Lightroom预设下载!

调色详情 电影感户外哑光人像自拍摄影 Lr 调色&#xff0c;是借助 Lightroom 软件&#xff0c;针对户外环境下拍摄的人像自拍进行后期处理。旨在模拟电影画面的氛围与质感&#xff0c;通过调色赋予照片独特的艺术气息。强调打造哑光效果&#xff0c;使画面色彩不过于浓烈刺眼&a…...

C++--类的构造函数与初始化列表差异

一&#xff0c;引言 在类中成员函数的构造函数担任其将对象初始化的作用&#xff0c;而初始化列表也有着相似的作用。大部分人建议都是初始化列表进行初始化&#xff0c;本文主要进行讲解二者的区别。 首先看一下构造函数的初始化方式&#xff1a; #define _CRT_SECURE_NO…...

深入浅出之STL源码分析4_类模版

1.引言 我在上面的文章中讲解了vector的基本操作&#xff0c;然后提出了几个问题。 STL之vector基本操作-CSDN博客 1.刚才我提到了我的编译器版本是g 11.4.0&#xff0c;而我们要讲解的是STL&#xff08;标准模板库&#xff09;&#xff0c;那么二者之间的关系是什么&#x…...

Lambda表达式解读

本文通过具体案例演示函数式接口Function<T,R>的三种实现方式演变过程。 一、传统匿名内部类实现 Integer resInt1 t1(new Function<String, Integer>() {Overridepublic Integer apply(String s) {int i Integer.parseInt(s);return i;} });实现特点&#xff1…...

PySide6 GUI 学习笔记——常用类及控件使用方法(常用类边距QMarginsF)

文章目录 类简介方法总览关键说明示例代码 类简介 QMarginsF 用于定义四个浮点型边距&#xff08;左、上、右、下&#xff09;&#xff0c;描述围绕矩形的边框尺寸。所有边距接近零时 isNull() 返回 True&#xff0c;支持运算符重载和数学运算。 方法总览 方法名/运算符参数返…...

Android方法耗时监控插件开发

需求&#xff1a;自定义一个Gradle插件&#xff0c;这个Gradle插件可以统计方法的耗时&#xff0c;并当方法耗时超过阈值时&#xff0c;可以通过打印Log日志在控制台&#xff0c;然后可以通过Log定位到耗时方法的位置&#xff0c;帮助我们找出耗时方法和当前线程名&#xff0c;…...

TWAS / FUSION

FUSION 是一套用于执行转录组范围和调控组范围关联研究&#xff08;TWAS 和 RWAS&#xff09;的工具。它通过构建功能/分子表型的遗传成分的预测模型&#xff0c;并使用 GWAS 汇总统计数据预测和测试该成分与疾病的关联&#xff0c;目标是识别 GWAS 表型与仅在参考数据中测量的…...

C++中的static_cast:类型转换的安全卫士

C中的static_cast&#xff1a;类型转换的安全卫士 在C编程中&#xff0c;类型转换是不可避免的操作&#xff0c;而static_cast作为C四大强制类型转换运算符之一&#xff0c;是最常用且相对安全的一种转换方式。今天我们就来深入探讨一下这个重要的类型转换工具。 一、static_…...

uniapp-商城-51-后台 商家信息(logo处理)

前面对页面基本进行了梳理和说明&#xff0c;特别是对验证规则进行了阐述&#xff0c;并对自定义规则的兼容性进行了特别补充&#xff0c;应该说是干货满满。不知道有没有小伙伴已经消化了。 下面我们继续前进&#xff0c;说说页面上的logo上传组件&#xff0c;主要就是uni-fil…...

04 mysql 修改端口和重置root密码

当我们过了一段时间&#xff0c;忘了自己当初创建的数据库密码和端口&#xff0c;或者端口被占用了&#xff0c;要怎么处理呢 首先&#xff0c;我们先停止mysql。 一、修改端口 打开my.ini文件&#xff0c;搜索port&#xff0c;默认是3306&#xff0c;根据你的需要修改为其他…...

多线程 2 - 死锁问题

死锁 死锁&#xff0c;是多线程代码中的一类经典问题。加锁能够解决线程安全问题&#xff0c;但如果加锁方式不当&#xff0c;就很可能产生死锁。 出现死锁的三种场景 1、一个线程一把锁 就像上篇文章讲过的&#xff0c;如果对同一个线程上了两把锁&#xff0c;而且上的锁是…...

网络原理(Java)

注&#xff1a;此博文为本人学习过程中的笔记 在网络初始中谈到TCP/IP五层模型&#xff0c;接下来我们将介绍这里面涉及到的网络协议。 应用层是程序员接触最多的层次&#xff0c;程序员写的代码只要涉及到网络通信都可以视为是应用层的一部分。应用层里的东西和程序员直接相…...

HDFS 常用基础命令详解——快速上手分布式文件系统

简介&#xff1a; 本文面向刚接触 Hadoop HDFS&#xff08;Hadoop 分布式文件系统&#xff09;的读者&#xff0c;结合 CSDN 博客风格&#xff0c;系统梳理最常用的 HDFS 客户端命令&#xff0c;并配以示例和注意事项&#xff0c;帮助你在开发和运维中快速掌握 HDFS 的文件管理…...

Unity Shaders and Effets Cookbook

目录 作者简介 审稿人简介 前言 我是偏偏 Unity Shaders and Effets Cookbook 第一章&#xff1a;Diffuse Shading - 漫反射着色器 第二章&#xff1a;Using Textures for Effects - 着色器纹理特效的应用 第三章&#xff1a;Making Your Game Shine with Specular - 镜…...

Markdown—LaTeX 数学公式

目录 一、字母1. 希腊大写字母2. 希腊小写字母3. 花体字母 二、上标和下标1. 上标2. 下标3. 其他 三、括号四、数学符号1. 基本数学符号1&#xff09;运算符2&#xff09;常见函数3&#xff09;分式、根号、累加/乘4&#xff09;极限5&#xff09;积分 2. 三角函数与几何符号1&…...

AI 驱动的开发工具

&#x1f527; 主流 AI 前端开发工具 1. GitHub Copilot 由 GitHub 与 OpenAI 联合开发&#xff0c;集成在 Visual Studio Code、JetBrains 等主流 IDE 中&#xff0c;提供智能代码补全、函数生成等功能&#xff0c;极大地提高了开发效率。 (CSDN博客) 2. Cursor 一款 AI 驱…...

【入门】数字走向I

描述 输入整数N&#xff0c;输出相应方阵。 输入描述 一个整数N。&#xff08; 0 < n < 10 ) 输出描述 一个方阵&#xff0c;每个数字的场宽为3。 #include <bits/stdc.h> using namespace std; int main() {int n;cin>>n;for(int i1;i<n*n;i){cout…...

Kubernetes生产实战(十三):灰度发布与蓝绿发布实战指南

在微服务架构中&#xff0c;如何安全高效地发布新版本是每个团队必须掌握的技能。本文将深入讲解Kubernetes中两种主流发布策略的落地实践&#xff0c;附带生产环境真实案例。 一、金丝雀发布&#xff08;灰度发布&#xff09;&#xff1a;渐进式验证新版本 核心思想&#xf…...

数孪实战笔记(1)数字孪生的含义、应用及技术体系

一、含义 数字孪生&#xff08;Digital Twin&#xff09;是一种通过数字化模型在虚拟世界中实时映射和模拟物理实体、系统或过程的技术。它的核心目的是通过对现实对象的建模、感知、分析和预测&#xff0c;实现对物理世界的全面感知、智能控制和优化决策。数字孪生 实体对象 …...

深入浅出之STL源码分析5_类模版实例化与特化

在 C 中&#xff0c;​​类模板的实例化&#xff08;Instantiation&#xff09;和特化&#xff08;Specialization&#xff09;​​ 是模板编程的核心概念&#xff0c;而 ​​显式实例化&#xff08;Explicit Instantiation&#xff09;和隐式实例化&#xff08;Implicit Insta…...

JDBC演进之路:从基础操作到高效连接池

文章目录 一、JDBC 1.0&#xff1a;手动管理的起点1.1 核心特点1.2 代码示例&#xff1a;1.3 痛点分析 二、JDBC 2.0&#xff1a;配置化的升级2.1 核心改进2.2 代码示例2.3 优势与不足 三、JDBC 3.0&#xff1a;连接池的革命3.1 核心改进3.2 代码示例3.3 核心优势 四、版本对比…...

远程调试---在电脑上devtools调试运行在手机上的应用

1、启动项目–以vite项目为例:先ipconfig查看ip地址 ,然后在vite中配置host为ip地址 2、手机上查看项目:保证手机和电脑在同一局域网, 在手机浏览器打开我们vite启动的项目地址, 3、使用chii进行远程调试 (1) 安装 npm install chii -g (2)启动 chii start -p 8080 (3)在…...

街景主观感知全流程(自建数据集+两两对比程序+Trueskill计算评分代码+训练模型+大规模预测)27

目录 0、Emeditor软件1、Place Pluse 2.0数据集2、街景主观感知大框架2.1 街景主观感知&#xff1a;自建数据集2.2 街景主观感知&#xff1a;两两对比程序2.3 街景主观感知&#xff1a;Trueskill评分2.4 街景主观感知&#xff1a;训练模型&#xff0c;Resnet或EfficientNet或V…...

进阶二:基于HC-SR04和LCD1602的超声波测距

一、实验目的 掌握HC-SR04超声波测距模块的工作原理和使用方法。学会使用LCD1602液晶显示屏显示测量数据。熟悉89C51单片机与外设的接口电路设计和编程方法。二、实验原理 1. HC-SR04超声波测距模块原理 HC-SR04超声波测距模块可提供2cm - 400cm的非接触式距离感测功能,测距精…...

单因子实验 方差分析

本文是实验设计与分析&#xff08;第6版&#xff0c;Montgomery著傅珏生译)第3章单因子实验 方差分析python解决方案。本文尽量避免重复书中的理论&#xff0c;着于提供python解决方案&#xff0c;并与原书的运算结果进行对比。您可以从 下载实验设计与分析&#xff08;第6版&a…...

《Python星球日记》 第53天:卷积神经网络(CNN)入门

名人说&#xff1a;路漫漫其修远兮&#xff0c;吾将上下而求索。—— 屈原《离骚》 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、图像表示与通道概念1. 数字图像的本质2. RGB颜色模型3. 图像预处理 二、卷积…...

基于人工智能的个性化 MySQL 学习路径推荐研究

基于人工智能的个性化 MySQL 学习路径推荐研究 摘要: 随着信息技术的飞速发展,数据库在各行业应用广泛,MySQL 作为主流数据库之一,学习需求庞大。然而,不同学习者在知识水平、学习进度和目标上存在差异,传统统一的学习路径难以满足个性化需求。本研究通过运用人工智能技…...

阿里云OSS-服务端加签直传说明/示例(SpringBoot)

目录 概述 OSS文件上传方式 1. OSS控制台上传 2. 客户端直传 3. 后端上传 4. 加签直传 服务端加签方式 1. 服务端生成PostObject所需的签名和Post Policy 2.服务端生成STS临时访问凭证 3. 服务端生成PutObject所需的签名URL 实现1&#xff1a;生成PostObject所需的签…...

《向上生长》读书笔记day5

哎&#xff0c;好像有点坚持不下去了&#xff0c;有点松懈了 不咋想继续写读书笔记&#x1f602;&#xff0c;不过我不可能这么轻易放弃的&#xff0c;起码要做完这一本书&#xff0c;话不多说&#xff0c;开始进入的读书&#x1f4d2;笔记 今天读了两个章节&#xff0c;穷人翻…...

优选算法——队列+BFS

目录 1. N叉树的层序遍历 2. 二叉树的锯齿层序遍历 3. 二叉树最大宽度 4. 在每个树行中找最大值 1. N叉树的层序遍历 题目链接&#xff1a;429. N 叉树的层序遍历 - 力扣&#xff08;LeetCode&#xff09; 题目展示&#xff1a; 题目分析&#xff1a; 层序遍历即可~仅…...

Java MCP 实战 --> AI玩转贪吃蛇

MCP 实战 --> AI玩转贪吃蛇 MCP 更加便捷的扩展了 LLM 的能力&#xff0c;使得 AI 发展更加迅猛。本篇主要为了学习MCP的应用&#xff0c;实现了让AI去玩贪吃蛇&#xff0c;使用 Java 实现了 MCP Server 和 MCP Client 的编码。其他文章如下&#xff1a; thinking 基础版…...

Day20打卡-奇异值SVD分解

今天学习非特征筛选的方法&#xff1a; 知识点回顾&#xff1a; 线性代数概念回顾&#xff08;可不掌握&#xff09;奇异值推导&#xff08;可不掌握&#xff09;奇异值的应用 特征降维&#xff1a;对高维数据减小计算量、可视化数据重构&#xff1a;比如重构信号、重构图像&am…...

【RT-Thread Studio】nor flash配置Fal分区

前置条件&#xff1a;【RT-Thread Studio】W25Q128配置 添加 FAL软件包 配置SFUD驱动程序&#xff0c;使用FAL的设备为W25Q128 将fal_cfg.h和fal_flash_sfud_port.c提取出来&#xff0c;放到自己创建的fal_porting目录。 修改 fal_flash_sfud_port.c struct fal_flash_dev n…...

在资源受限设备上实现手势识别:基于包络EMG数据和实时测试的Tiny-ML方法

英文标题&#xff1a;Enabling Gesture on a Resource-Constrained Device: A Tiny-ML Approach with Envelope EMG Data and Real-Time Testing 中文标题&#xff1a;在资源受限设备上实现手势识别&#xff1a;基于包络EMG数据和实时测试的Tiny-ML方法 作者信息 Mohsin Ali S…...

动态规划:最长递增子序列

给定一个数组&#xff0c;求最长递增子序列的长度,就是要求我们求出一个序列中最长的上升子序列的长度&#xff0c;最长上升子序列的定义就是从原序列中按照孙旭去除一些数字&#xff0c;这些数字是逐渐增大的。 *定义dp[i]表示以第i个元素结尾的最长上升子序列的长度。 *初始…...

贪心算法专题(Part2)

目录 1. 最优除法 2. 加油站 3. 坏了的计算器 4. 可被三整除的最大和 5. 单调递增的数字 6. 合并区间 7. 无重叠区间 8. 用最少数量的箭引爆气球 1. 最优除法 题目链接&#xff1a;553. 最优除法 - 力扣&#xff08;LeetCode&#xff09; 题目展示&#xff1a; 题目分…...

4.9/Q1,GBD数据库最新文章解读

文章题目&#xff1a;The burden of diseases attributable to high body mass index in Asia from 1990 - 2019: results from the global burden of disease study 2019 DOI&#xff1a;10.1080/07853890.2025.2483977 中文标题&#xff1a;1990 年至 2019 年亚洲高体重指数导…...

API 网关核心功能解析:负载均衡、容灾、削峰降级原理与实战摘要

在微服务架构中&#xff0c;API 网关作为流量入口枢纽&#xff0c;通过负载均衡、容灾、削峰降级等核心功能保障系统稳定性与高可用性。本文结合 Spring Cloud Gateway 实战代码、原理剖析及行业最佳实践&#xff0c;深度解析网关核心能力&#xff0c;并对比当前前沿技术方案&a…...

Spring之AOP

什么是AOP AOP:Aspect 0riented Programming(面向切面编程、面向方面编程)&#xff0c;可简单理解为就是面向特定方法编程。 场景:案例中部分业务方法运行较慢&#xff0c;定位执行耗时较长的接口&#xff0c;此时需要统计每一个业务方法的 执行耗时。 优势: 1.减少重复代…...

TransmittableThreadLocal:穿透线程边界的上下文传递艺术

文章目录 前言一、如何线程上下文传递1.1 ThreadLocal单线程1.2 InheritableThreadLocal的继承困境1.3 TTL的时空折叠术 二、TTL核心设计解析2.1 时空快照机制2.2 装饰器模式2.3 采用自动清理机制 三、设计思想启示四、实践启示录结语 前言 在并发编程领域&#xff0c;线程上下…...

基于STM32的甲醛检测

一、制作目标 以正点原子的miniSTM32F103RCT6开发板为主控&#xff0c;使用甲醛传感器检测环境空气中的甲醛含量&#xff08;以mg/m^3为单位&#xff09;、C02含量&#xff08;以ppm为单位&#xff09;和总有机挥发物含量TVOC&#xff08;以mg/m^3为单位&#xff09;在OLED显示…...