当前位置: 首页 > news >正文

Java 23种设计模式 - 结构型模式7种

Java 23种设计模式 - 结构型模式7种

1 适配器模式

适配器模式把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能够在一起工作。

优点

  1. 将目标类和适配者类解耦
  2. 增加了类的透明性和复用性,将具体的实现封装在适配者类中,对于客户端类来说是透明的,而且提高了适配者的复用性
  3. 灵活性和扩展性都非常好,符合开闭原则

1.1 例子

整个流程就是通过 SmallToBig(适配器)SmallPort(适配者) 转换为 BigPort(目标) 的子类

/*** 投影仪支持的大口*/
public interface BigPort {public void userBigPort();//使用的大口
}
/*** 电脑的小口*/
public interface SmallPort {public void userSmallPort();//使用小口
}
/*** 适配器模式*/
public class SmallToBig implements BigPort{private SmallPort smallPort;//小口public SmallToBig(SmallPort smallPort){//获得小口this.smallPort=smallPort;}public void userBigPort() {this.smallPort.userSmallPort();    //使用小口}}

public class Client {public static void main(String[] args) {SmallPort smallPort = new SmallPort() {//电脑自带小口public void userSmallPort() {System.out.println("使用的是电脑小口");}};//需要一个大口才可以投影,小口转换为大口BigPort bigPort=new SmallToBig(smallPort);bigPort.userBigPort();//电脑小口工作中    实现了适配}    
}

2 装饰器模式(Decorator Pattern)

通常给对象添加功能,要么直接修改对象添加相应的功能,要么派生子类来扩展,抑或是使用对象组合的方式。显然,直接修改对应的类的方式并不可取,在面向对象的设计中,我们应该尽量使用组合对象而不是继承对象来扩展和复用功能,装饰器模式就是基于对象组合的方式的。

装饰器模式以对客户端透明的方式动态地给一个对象附加上了更多的责任。换言之,客户端并不会角色对象在装饰前和装饰后有什么不同。装饰器模式可以在不用创建更多子类的情况下,将对象的功能加以扩展。

Decorator装饰器,顾名思义,就是动态地给一个对象添加一些额外的职责,就好比为房子进行装修一样。因此,装饰器模式具有如下的特征:

  1. 它必须具有一个装饰的对象。
  2. 它必须拥有与被装饰对象相同的接口。
  3. 它可以给被装饰对象添加额外的功能。

用一句话总结就是:保持接口,增强性能。

装饰器通过包装一个装饰对象来扩展其功能,而又不改变其接口,这实际上是基于对象的适配器模式的一种变种。它与对象的适配器模式的异同点如下。

  • 相同点:都拥有一个目标对象。
  • 不同点:适配器模式需要实现另外一个接口,而装饰器模式必须实现该对象的接口。

2.1 例子

现在有这么一个场景:

  1. 有一批厨师,简单点吧,就全是中国厨师,他们有一个共同的动作是做晚饭
  2. 这批厨师做晚饭前的习惯不同,有些人喜欢做晚饭前洗手、有些人喜欢做晚饭前洗头
public interface Cook {public void cookDinner();
}
public class ChineseCook implements Cook {@Overridepublic void cookDinner() {System.out.println("中国人做晚饭");}}
public abstract class FilterCook implements Cook {protected Cook cook;
}
public class WashHandsCook extends FilterCook {public WashHandsCook(Cook cook) {this.cook = cook;}@Overridepublic void cookDinner() {System.out.println("先洗手");cook.cookDinner();}}
public class WashHearCook extends FilterCook {public WashHearCook(Cook cook) {this.cook = cook;}@Overridepublic void cookDinner() {System.out.println("先洗头");cook.cookDinner();}}
@Test
public void testDecorate() {Cook cook0 = new WashHandsCook(new ChineseCook());Cook cook1 = new WashHearCook(new ChineseCook());cook0.cookDinner();cook1.cookDinner();
}

结果:

先洗手
中国人做饭
先洗头
中国人做饭

简单的一个例子,实现了装饰器模式的两个功能点:

  1. 客户端只定义了Cook接口,并不关心具体实现
  2. 给Chinese增加上了洗头和洗手的动作,且洗头和洗手的动作,可以给其他国家的厨师类复用

2.2 字节输入流InputStream

在这里插入图片描述

InputStream是一个顶层的接口,文章开头就说,装饰器模式是继承关系的一种替代方案,看一下为什么:

  1. InputStream假设这里写了两个实现类,FileInputStream,ObjectInputStream分别表示文件字节输入流,对象字节输入流
  2. 现在我要给这两个输入流加入一点缓冲功能以提高输入流效率,使用继承的方式,那么就写一个BufferedInputStream,继承FileInputStream,ObjectInputStream,给它们加功能
  3. 现在我有另外一个需求,需要给这两个输入流加入一点网络功能,那么就写一个SocketInputStream,继承继承FileInputStream,ObjectInputStream,给它们加功能

这样就导致两个问题:

  1. 因为我要给哪个类加功能就必须继承它,比如我要给FileInputStream,ObjectInputStream加上缓冲功能、网络功能就得扩展出2*2=4个类,更多的以此类推,这样势必导致类数量不断膨胀
  2. 代码无法复用,给FileInputStream,ObjectInputStream加入缓冲功能,本身代码应该是一样的,现在却必须继承完毕后把一样的代码重写一遍,多此一举,代码修改的时候必须修改多个地方,可维护性很差

所以,这个的时候我们就想到了一种解决方案:

  1. 在要扩展的类比如BufferedInputStream中持有一个InputStream的引用,在BufferedInputStream调用InputStream中的方法,这样扩展的代码就可以复用起来
  2. 将BufferedInputStream作为InputStream的子类,这样客户端只知道我用的是InputStream而不需要关心具体实现,可以在客户端不知情的情况下,扩展InputStream的功能,加上缓冲功能

这就是装饰器模式简单的由来,一切都是为了解决实际问题而诞生。下一步,根据UML图,我们来划分一下装饰器模式的角色。

  1. InputStream是一个抽象构件角色:
  2. ByteArrayInputStream、FileInputStream、ObjectInputStream、PipedInputStream都是具体构建角色
  3. FilterInputStream无疑就是一个装饰角色,因为FilterInputStream实现了InputStream内的所有抽象方法并且持有一个InputStream的引用
  4. 具体装饰角色就是InflaterInputStream、BufferedInputStream、DataInputStream

搞清楚具体角色之后,我们就可以这么写了

public static void main(String[] args) throws Exception
{File file = new File("D:/aaa.txt");InputStream in0 = new FileInputStream(file);InputStream in1 = new BufferedInputStream(new FileInputStream(file)); InputStream in2 = new DataInputStream(new BufferedInputStream(new FileInputStream(file)));
}

我们这里实例化出了三个InputStream的实现类:

  1. in0这个引用指向的是new出来的FileInputStream,这里简单构造出了一个文件字节输入流
  2. in1这个引用指向的是new出来的BufferedInputStream,它给FileInputStream增加了缓冲功能,使得FileInputStream读取文件的内容保存在内存中,以提高读取的功能
  3. in2这个引用指向的是new出来的DataInputStream,它也给FileInputStream增加了功能,因为它有DataInputStream和BufferedInputStream两个附加的功能

同理,我要给ByteArrayInputStream、ObjectInputStream增加功能,也可以使用类似的方法,整个过程中,最重要的是要理解几个问题:

  1. 哪些是具体构建角色、哪些是具体装饰角色,尤其是后者,区分的关键就是,角色中是否持有顶层接口的引用
  2. 每个具体装饰角色有什么作用,因为只有知道每个具体装饰角色有什么作用后,才可以知道要装饰某个功能需要用哪个具体装饰角色
  3. 使用构造方法的方式将类进行组合,给具体构建角色加入新的功能

2.3 字符输入流Reader

根据UML,分析一下每个角色:

  1. 抽象构建角色,毫无疑问,由Reader来扮演,它是一个抽象类,没有具体功能
  2. 具体构建角色,由InputStreamReader、CharArrayReader、PipedReader、StringReader来扮演
  3. 装饰角色,由FilterReader来扮演,BufferedReader是Reader的子类,且持有Reader的引用,因此这里的BufferedReader是可以被认为是一个装饰角色的。
  4. 具体装饰角色,BufferedReader上面提到了扮演了装饰角色,但是也可以被认为是一个具体装饰角色。除了BufferedReader,具体装饰角色还有PushbackReader。

FileReader尽管也在第三行,但是FileReader构不成一个具体装饰角色,因为它不是BufferedReader的子类也不是FilterReader的子类,不持有Reader的引用。

2.4 半透明装饰器模式与全透明装饰器模式

再说一下半透明装饰器模式与全透明装饰器模式,它们的区别是:

  • 对于半透明装饰器模式,装饰后的类未必有和抽象构件角色同样的接口方法,它可以有自己扩展的方法
  • 对于全透明装饰器模式,装饰后的类有着和抽象构件角色同样的接口方法, 全透明装饰器模式是一种比较理想主义的想法,现实中不太可能出现。

比如BufferedInputStream吧,我把FileInputStream装饰为BufferedInputStream,难道BufferedInputStream就完全没有自己的行为?比如返回缓冲区的大小、清空缓冲区(这里只是举个例子,实际BufferedInputStream是没有这两个动作的),这些都是InputStream本身不具备的,因为InputStream根本不知道缓冲区这个概念,它只知道定义读数据相关方法。

所以,更多的我们是采用半透明的装饰器模式,即 允许装饰后的类中有属于自己的方法,因此,前面的I/O代码示例可以这么改动:

public static void main(String[] args) throws Exception
{File file = new File("D:/aaa.txt");FileInputStream in0 = new FileInputStream(file);BufferedInputStream in1 = new BufferedInputStream(new FileInputStream(file)); DataInputStream in2 = new DataInputStream(new BufferedInputStream(new FileInputStream(file)));
}

2.5 装饰器模式的优缺点

优点

  1. 装饰器模式与继承关系的目的都是要扩展对象的功能,但是装饰器模式可以提供比继承更多的灵活性。装饰器模式允许系统动态决定贴上一个需要的装饰,或者除掉一个不需要的装饰。继承关系是不同,继承关系是静态的,它在系统运行前就决定了
  2. 通过使用不同的具体装饰器以及这些装饰类的排列组合,可以创造出很多不同行为的组合。

缺点

由于使用装饰器模式,可以比使用继承关系需要较少数目的类。使用较少的类,当然使设计比较易于进行。但是另一方面,由于使用装饰器模式会产生比使用继承关系更多的对象,更多的对象会使得查错变得困难,特别是这些对象看上去都很像。

2.6 装饰器模式和适配器模式的区别

其实适配器模式也是一种包装(Wrapper)模式,它们看似都是起到包装一个类或对象的作用,但是它们使用的目的非常不一样:

  1. 适配器模式的意义是要将一个接口转变成另外一个接口,它的目的是通过改变接口来达到重复使用的目的
  2. 装饰器模式不要改变被装饰对象的接口,而是恰恰要保持原有的接口,增强原有接口的功能,或者改变原有对象的处理方法而提升性能

3 代理模式

代理模式的定义很简单: 给某一对象提供一个代理对象,并由代理对象控制对原对象的引用。

3.1 角色

一个客户不想或者不能够直接引用一个对象,可以通过代理对象在客户端和目标对象之间起到中介作用。代理模式中的角色有:

  1. 抽象对象角色

声明了目标对象和代理对象的共同接口,这样一来在任何可以使用目标对象的地方都可以使用代理对象

  1. 目标对象角色

定义了代理对象所代表的目标对象

  1. 代理对象角色

代理对象内部含有目标对象的引用,从而可以在任何时候操作目标对象;代理对象提供一个与目标对象相同的接口,以便可以在任何时候替代目标对象

3.2 spring aop

在Spring的AOP编程中:

  • 如果加入容器的目标对象有实现接口,用JDK代理
  • 如果目标对象没有实现接口,用Cglib代理。

3.3 静态代理

接口:IUserDao.java

public interface IUserDao {void save();
}

目标对象:UserDao.java

public class UserDao implements IUserDao {public void save() {System.out.println("----已经保存数据!----");}
}

代理对象:UserDaoProxy.java

public class UserDaoProxy implements IUserDao{//接收保存目标对象private IUserDao target;public UserDaoProxy(IUserDao target){this.target=target;}public void save() {System.out.println("开始事务...");target.save();//执行目标对象的方法System.out.println("提交事务...");}
}

静态代理总结:

  1. 可以做到在不修改目标对象的功能前提下,对目标功能扩展.
  2. 缺点:因为代理对象需要与目标对象实现一样的接口,所以会有很多代理类,类太多.同时,一旦接口增加方法,目标对象与代理对象都要维护.

3.4 动态代理

动态代理有以下特点:

  1. 代理对象,不需要实现接口
  2. 代理对象的生成,是利用JDK的API,动态的在内存中构建代理对象(需要我们指定创建代理对象/目标对象实现的接口的类型)
  3. 动态代理也叫做:JDK代理,接口代理

JDK中生成代理对象的API

代理类所在包:java.lang.reflect.Proxy
JDK实现代理只需要使用newProxyInstance方法,但是该方法需要接收三个参数,完整的写法是:

static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces,InvocationHandler h )

注意该方法是在Proxy类中是静态方法,且接收的三个参数依次为:

  • ClassLoader loader :指定当前目标对象使用类加载器,获取加载器的方法是固定的
  • Class<?>[] interfaces :目标对象实现的接口的类型,使用泛型方式确认类型
  • InvocationHandler :事件处理,执行目标对象的方法时,会触发事件处理器的方法,会把当前执行目标对象的方法作为参数传入

接口类IUserDao.java以及接口实现类,目标对象UserDao是一样的,没有做修改.在这个基础上,增加一个代理工厂类(ProxyFactory.java),将代理类写在这个地方,然后在测试类(需要使用到代理的代码)中先建立目标对象和代理对象的联系,然后代用代理对象的中同名方法

/*** 创建动态代理对象* 动态代理不需要实现接口,但是需要指定接口类型*/
public class ProxyFactory{//维护一个目标对象private Object target;public ProxyFactory(Object target){this.target=target;}//给目标对象生成代理对象public Object getProxyInstance(){return Proxy.newProxyInstance(target.getClass().getClassLoader(),target.getClass().getInterfaces(),new InvocationHandler() {@Overridepublic Object invoke(Object proxy, Method method, Object[] args) throws Throwable {System.out.println("开始事务2");//执行目标对象方法Object returnValue = method.invoke(target, args);System.out.println("提交事务2");return returnValue;}});}}
/*** 测试类*/
public class App {public static void main(String[] args) {// 目标对象IUserDao target = new UserDao();// 【原始的类型 class cn.itcast.b_dynamic.UserDao】System.out.println(target.getClass());// 给目标对象,创建代理对象IUserDao proxy = (IUserDao) new ProxyFactory(target).getProxyInstance();// class $Proxy0   内存中动态生成的代理对象System.out.println(proxy.getClass());// 执行方法   【代理对象】proxy.save();}
}

总结:代理对象不需要实现接口,但是目标对象一定要实现接口,否则不能用动态代理

3.5 Cglib代理

上面的静态代理和动态代理模式都是要求目标对象是实现一个接口的目标对象,但是有时候目标对象只是一个单独的对象,并没有实现任何的接口,这个时候就可以使用以目标对象子类的方式类实现代理,这种方法就叫做: Cglib代理

Cglib代理,也叫作子类代理或继承代理,它是在内存中构建一个子类对象从而实现对目标对象功能的扩展.

  • JDK的动态代理有一个限制,就是使用动态代理的对象必须实现一个或多个接口,如果想代理没有实现接口的类,就可以使用Cglib实现.
  • Cglib是一个强大的高性能的代码生成包,它可以在运行期扩展java类与实现java接口.它广泛的被许多AOP的框架使用,例如Spring AOP和synaop,为他们提供方法的interception(拦截)
  • Cglib包的底层是通过使用一个小而块的字节码处理框架ASM来转换字节码并生成新的类.不鼓励直接使用ASM,因为它要求你必须对JVM内部结构包括class文件的格式和指令集都很熟悉.

Cglib子类代理实现方法:

  1. 需要引入cglib的jar文件,但是Spring的核心包中已经包括了Cglib功能,所以直接引入pring-core-3.2.5.jar即可.
  2. 引入功能包后,就可以在内存中动态构建子类
  3. 代理的类不能为final,否则报错
  4. 目标对象的方法如果为final/static,那么就不会被拦截,即不会执行目标对象额外的业务方法.
/*** 目标对象,没有实现任何接口*/
public class UserDao {public void save() {System.out.println("----已经保存数据!----");}
}
/*** Cglib子类代理工厂* 对UserDao在内存中动态构建一个子类对象*/
public class ProxyFactory implements MethodInterceptor{//维护目标对象private Object target;public ProxyFactory(Object target) {this.target = target;}//给目标对象创建一个代理对象public Object getProxyInstance(){//1.工具类Enhancer en = new Enhancer();//2.设置父类en.setSuperclass(target.getClass());//3.设置回调函数en.setCallback(this);//4.创建子类(代理对象)return en.create();}@Overridepublic Object intercept(Object obj, Method method, Object[] args, MethodProxy proxy) throws Throwable {System.out.println("开始事务...");//执行目标对象的方法Object returnValue = method.invoke(target, args);System.out.println("提交事务...");return returnValue;}
}
/*** 测试类*/
public class App {@Testpublic void test(){//目标对象UserDao target = new UserDao();//代理对象UserDao proxy = (UserDao)new ProxyFactory(target).getProxyInstance();//执行代理对象的方法proxy.save();}
}

4 外观模式(Facade Pattern)

用于隐藏系统的复杂性,用户客户端与访问者之间,通过一个外观类,对客户端屏蔽复杂的子系统调用。这种类型的设计模式属于结构型模式。

4.1 例子

  • Facade: 外观角色
  • SubSystem:子系统角色

public class SystemA {public void operationA(){System.out.println("operation a...");}
}public class SystemB {public void operationB() {System.out.println("operation b...");}
}public class SystemC {public void operationC() {System.out.println("operation c...");}
}
public class Facade {public void wrapOperation() {SystemA a = new SystemA();a.operationA();SystemB b = new SystemB();b.operationB();SystemC c = new SystemC();c.operationC();}
}
public class Client {public static void main(String[] args) {Facade facade = new Facade();facade.wrapOperation();}
}

result:

operation a...
operation b...
operation c...

4.2 模式分析

根据“单一职责原则”,在软件中将一个系统划分为若干个子系统有利于降低整个系统的复杂性,一个常见的设计目标是使子系统间的通信和相互依赖关系达到最小,而达到该目标的途径之一就是引入一个外观对象,它为子系统的访问提供了一个简单而单一的入口。

  • 外观模式也是“迪米特法则”的体现,通过引入一个新的外观类可以降低原有系统的复杂度,同时降低客户类与子系统类的耦合度。
  • 外观模式要求一个子系统的外部与其内部的通信通过一个统一的外观对象进行,外观类将客户端与子系统的内部复杂性分隔开,使得客户端只需要与外观对象打交道,而不需要与子系统内部的很多对象打交道。
  • 外观模式的目的在于降低系统的复杂程度。
  • 外观模式从很大程度上提高了客户端使用的便捷性,使得客户端无须关心子系统的工作细节,通过外观角色即可调用相关功能。

外观模式的缺点

  • 不能很好地限制客户使用子系统类,如果对客户访问子系统类做太多的限制则减少了可变性和灵活性。
  • 在不引入抽象外观类的情况下,增加新的子系统可能需要修改外观类或客户端的源代码,违背了“开闭原则”。

5 桥接模式 Bridge Pattern

将抽象化与实现化解耦,使得二者可以独立变化,例如我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。

5.1 例子

public interface Sourceable {  public void method();  
}  
public class SourceSub1 implements Sourceable {  @Override  public void method() {  System.out.println("this is the first sub!");  }  
}  public class SourceSub2 implements Sourceable {  @Override  public void method() {  System.out.println("this is the second sub!");  }  
}

public abstract class Bridge {  private Sourceable source;  public void method(){  source.method();  }  public Sourceable getSource() {  return source;  }  public void setSource(Sourceable source) {  this.source = source;  }  
}
public class MyBridge extends Bridge {  public void method(){  getSource().method();  }  
}
public class Client {  public static void main(String[] args) {  Bridge bridge = new MyBridge();  /*调用第一个对象*/  Sourceable source1 = new SourceSub1();  bridge.setSource(source1);  bridge.method();  /*调用第二个对象*/  Sourceable source2 = new SourceSub2();  bridge.setSource(source2);  bridge.method();  }  
}

result:

this is the first sub!
this is the second sub!

6 组合模式 Composite Pattern

组合模式,又叫部分整体模式,用于把一组相似的对象当作一个单一的对象。 允许你将对象组合成树形结构来表现 “整体/部分” 层次结构,组合能够让我们用一致的方式处理个别对象以及对象集合。

6.1 例子

  • Component 抽象构件
  • Composite 树枝构件
  • Leaf 树叶构件
public abstract class Component {//个体和整体都具有的共享public void doSomething(){//编写业务逻辑}
}

public class Composite extends Component {//构件容器private ArrayList<Component> components = new ArrayList<Component>()//增加一个叶子构件或树枝构件public void add(Component component){this.components.add(component);}//删除一个叶子构件或树枝构件public void remove(Component component){this.components.remove(component);}    //获得分支下的所有叶子构件和树枝构件public ArrayList<Component> getChildren(){return this.components;}
}
public class Leaf extends Component {/** 
可以覆写父类方法* public void doSomething(){* * }*/
}

public class Client {public static void main(String[] args) {//创建一个根节点Composite root = new Composite();root.doSomething();//创建一个树枝构件Composite branch = new Composite();//创建一个叶子节点Leaf leaf = new Leaf();//建立整体root.add(branch);branch.add(leaf);          }//通过递归遍历树public static void display(Composite root){for(Component c:root.getChildren()){if(c instanceof Leaf){ //叶子节点c.doSomething();}else{ //树枝节点display((Composite)c);}}}
}

7 享元模式 Flyweight Pattern

用于减少创建对象的数量,以减少内存占用和提高性能。将多个对同一对象的访问集中起来,不必为每个访问者创建一个单独的对象,以此来降低内存的消耗。

比如数据库的连接池Pool。想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。

7.1 例子

  • Shape 形状
  • Circle 圆

public interface Shape {void draw();
}
public class Circle implements Shape {private String color;private int x;private int y;private int radius;public Circle(String color){this.color = color;     }public void setX(int x) {this.x = x;}public void setY(int y) {this.y = y;}public void setRadius(int radius) {this.radius = radius;}@Overridepublic void draw() {System.out.println("Circle: Draw() [Color : " + color +", x : " + x +", y :" + y +", radius :" + radius);}
}
public class ShapeFactory {private static final HashMap<String, Shape> circleMap = new HashMap<>();public static Shape getCircle(String color) {Circle circle = (Circle)circleMap.get(color);if(circle == null) {circle = new Circle(color);circleMap.put(color, circle);System.out.println("Creating circle of color : " + color);}return circle;}
}
public class Client {private static final String colors[] = { "Red", "Green", "Blue", "White", "Black" };public static void main(String[] args) {for(int i=0; i < 20; ++i) {Circle circle = (Circle)ShapeFactory.getCircle(getRandomColor());circle.setX(getRandomX());circle.setY(getRandomY());circle.setRadius(100);circle.draw();}}private static String getRandomColor() {return colors[(int)(Math.random()*colors.length)];}private static int getRandomX() {return (int)(Math.random()*100 );}private static int getRandomY() {return (int)(Math.random()*100);}
}

result:

Creating circle of color : Black
Circle: Draw() [Color : Black, x : 36, y :71, radius :100
Creating circle of color : Green
Circle: Draw() [Color : Green, x : 27, y :27, radius :100
Creating circle of color : White
Circle: Draw() [Color : White, x : 64, y :10, radius :100
Creating circle of color : Red
Circle: Draw() [Color : Red, x : 15, y :44, radius :100
Circle: Draw() [Color : Green, x : 19, y :10, radius :100
Circle: Draw() [Color : Green, x : 94, y :32, radius :100
Circle: Draw() [Color : White, x : 69, y :98, radius :100
Creating circle of color : Blue
Circle: Draw() [Color : Blue, x : 13, y :4, radius :100
Circle: Draw() [Color : Green, x : 21, y :21, radius :100
Circle: Draw() [Color : Blue, x : 55, y :86, radius :100
Circle: Draw() [Color : White, x : 90, y :70, radius :100
Circle: Draw() [Color : Green, x : 78, y :3, radius :100
Circle: Draw() [Color : Green, x : 64, y :89, radius :100
Circle: Draw() [Color : Blue, x : 3, y :91, radius :100
Circle: Draw() [Color : Blue, x : 62, y :82, radius :100
Circle: Draw() [Color : Green, x : 97, y :61, radius :100
Circle: Draw() [Color : Green, x : 86, y :12, radius :100
Circle: Draw() [Color : Green, x : 38, y :93, radius :100
Circle: Draw() [Color : Red, x : 76, y :82, radius :100
Circle: Draw() [Color : Blue, x : 95, y :82, radius :100

相关文章:

Java 23种设计模式 - 结构型模式7种

Java 23种设计模式 - 结构型模式7种 1 适配器模式 适配器模式把一个类的接口变换成客户端所期待的另一种接口&#xff0c;从而使原本因接口不匹配而无法在一起工作的两个类能够在一起工作。 优点 将目标类和适配者类解耦增加了类的透明性和复用性&#xff0c;将具体的实现封…...

Linux快速入门

Linux概述 Linux系统版本 Linux系统分为内核版和发行版 内核版 由Linux核心团队开发、维护 免费、开源 负责控制硬件 发行版 基于Linux内核版进行扩展 由各个Linux厂商开发、维护 有收费版本和免费版本 Linux系统发行版&#xff1a; Ubuntu:以桌面应用为主&#xff0c;免费 …...

了解Hadoop

Hadoop了解 Hadoop 是 Apache 基金会开发的一个开源分布式计算平台&#xff0c;主要用于存储和处理大规模数据集。 它能让用户在不了解分布式系统底层细节的情况下&#xff0c;轻松进行分布式程序的开发&#xff0c;将应用程序自动部署到由大量普通机器组成的集群上进行高效运…...

FPGA:如何提高RTL编码能力?

要提升RTL&#xff08;寄存器传输级&#xff09;编码能力&#xff0c;需从硬件设计思维建立、典型电路建模、编码规范掌握、工具链应用和工程实践五个维度系统性训练。以下是具体提升路径&#xff1a; 一、建立硬件设计思维&#xff1a;理解RTL与软件的本质区别 RTL代码最终会…...

高频微服务面试题总结

微服务基础概念 什么是微服务架构? 将单一应用拆分为一组小型服务每个服务运行独立进程,轻量级通信独立开发、部署和扩展特点:松耦合、独立技术栈、独立数据库微服务与单体架构对比 维度单体架构微服务架构开发效率初期快初期慢部署整体部署独立部署扩展性整体扩展细粒度扩展…...

【RAG】Milvus、Pinecone、PgVector向量数据库索引参数优化

Milvus 、PgVector 索引参数优化 IVF类索引关键参数&#xff08;基于聚类算法&#xff09; nlist (倒排列表数量): 决定将向量空间划分为多少个聚类中心值越大搜索越精确但耗时越长推荐值: 通常设置为数据量的4√n到n/1000之间例如: 1百万数据量可设nlist1000到4000 nprobe (…...

基金基础知识-指数基金 | 投资理财(4) 【待续】

基金通常是由股票、债券等多种资产组合而成的投资工具​​&#xff0c;核心是分散化&#xff0c;将资金投向一篮子资产&#xff08;动态&#xff09;&#xff0c;避免单一资产的风险。 按投资标的分类&#xff1a; 基金类型 相当于 特点 适合人群 货币基金 活期钱包&…...

【K8S系列】Kubernetes常用 命令

以下为的 Kubernetes 超全常用命令文档&#xff0c;涵盖集群管理、资源操作、调试排错等核心场景&#xff0c;结合示例与解析&#xff0c; 高效运维 Kubernetes 环境。 一、集群与节点管理 1. 集群信息查看 查看集群基本信息kubectl cluster-info # 显示API Server、DNS等核…...

高性能编程相关

​​​​​​​常见高性能编程技巧&#xff1a; 一&#xff0c;系统级性能优化&#xff1a;从系统架构设计考虑&#xff0c;例如消息队列&#xff0c;模块分成分级&#xff0c;IO读写带宽等 二&#xff0c;算法级性能优化&#xff1a;时间和空间优化 三&#xff0c;代码级性能优…...

使用 NV‑Ingest、Unstructured 和 Elasticsearch 处理非结构化数据

作者&#xff1a;来自 Elastic Ajay Krishnan Gopalan 了解如何使用 NV-Ingest、Unstructured Platform 和 Elasticsearch 为 RAG 应用构建可扩展的非结构化文档数据管道。 Elasticsearch 原生集成了行业领先的生成式 AI 工具和提供商。查看我们的网络研讨会&#xff0c;了解如…...

k8s之statefulset

什么是statefulset(sts) statefulset是用来管理有状态应用的工作负载API对象,也是一种工作负载资源 有状态和无状态 无状态应用:当前应用不会记录状态(网络可能会变、挂载的东西可能会变、顺序可能会变) 有状态应用:需要记录当前状态(网络不变、存储不变、顺序不变) 使…...

在自然语言处理任务中,像 BERT 这样的模型会在输入前自动加上一些特殊token

&#x1f331; 1. 什么是 BERT&#xff1f; BERT 是一个自然语言理解模型。你可以把它想象成一个超级聪明的“语言理解机器人”。你把一句话丢进去&#xff0c;它能&#xff1a; 理解这句话的意思&#xff1b;告诉你哪个词是实体&#xff08;人名、地名&#xff09;&#xff…...

java学习笔记

Java 方法返回值 Java 是一种强类型语言,方法在定义时必须明确指定返回值的类型。 这确保了类型安全和代码的可预测性. 方法返回值不能缺省。 必须显式声明返回类型. 如果方法没有返回值,需要使用 void 关键字来表示。 void 意味着该方法执行某些操作但不返回任何值。 访问修…...

动态规划--两个数组的dp问题

目录 1 最长公共子序列 2 最长回文子序列 3 不相交的线 4 不同的子序列 5 通配符匹配 6 正则表达式匹配 7 交错字符串 8 两个字符串的最小ASCII删除和 9 最长重复子数组 本文主要讲解两个数组的动态规划问题的几个经典例题&#xff0c;希望看完本文之后能够对大家做这…...

Xcavate 上线 Polkadot |开启 Web3 房地产投资新时代

在传统资产 Tokenization 浪潮中&#xff0c;Xcavate 以房地产为切口迅速崛起。作为 2023 年 OneBlock 冬季波卡黑客松冠军&#xff0c;Xcavate 凭借创新的资产管理与分发机制&#xff0c;在波卡生态中崭露头角。此次主网上线&#xff0c;标志着 Xcavate 正式迈入全球化应用阶段…...

在企业级项目中高效使用 Maven-mvnd

1、引言 1.1 什么是 Maven-mvnd? Maven-mvnd 是 Apache Maven 的一个实验性扩展工具(也称为 mvnd),基于守护进程(daemon)模型构建,目标是显著提升 Maven 构建的速度和效率。它由 Red Hat 推出,通过复用 JVM 进程来减少每次构建时的启动开销。 1.2 为什么企业在构建过…...

[论文阅读]Deeply-Supervised Nets

摘要 我们提出的深度监督网络&#xff08;DSN&#xff09;方法在最小化分类误差的同时&#xff0c;使隐藏层的学习过程更加直接和透明。我们尝试通过研究深度网络中的新公式来提升分类性能。我们关注卷积神经网络&#xff08;CNN&#xff09;架构中的三个方面&#xff1a;&…...

使用零样本LLM在现实世界环境中推广端到端自动驾驶——论文阅读

《Generalizing End-To-End Autonomous Driving In Real-World Environments Using Zero-Shot LLMs》2024年12月发表&#xff0c;来自纽约stony brook大学、UIC和桑瑞思&#xff08;数字化医疗科技公司&#xff09;的论文。 传统的自动驾驶方法采用模块化设计&#xff0c;将任务…...

多视图密集对应学习:细粒度3D分割的自监督革命

原文标题&#xff1a;Multi-view Dense Correspondence Learning (MvDeCor) 引言 在计算机视觉与图形学领域&#xff0c;3D形状分割一直是一个基础且具有挑战性的任务。如何在标注稀缺的情况下&#xff0c;实现对3D模型的细粒度分割&#xff1f;近期&#xff0c;斯坦福大学视觉…...

【论文阅读】——Articulate AnyMesh: Open-Vocabulary 3D Articulated Objects Modeling

文章目录 摘要一、介绍二、相关工作2.1. 铰接对象建模2.2. 部件感知3D生成 三、方法3.1. 概述3.2. 通过VLM助手进行可移动部件分割3.3. 通过几何感知视觉提示的发音估计3.4. 通过随机关节状态进行细化 四、实验4.1. 定量实验发音估计设置: 4.2. 应用程序 五、结论六、思考 摘要…...

Docker Compose 的详细使用总结、常用命令及配置示例

以下是 Docker Compose 的详细使用总结、常用命令及配置示例&#xff0c;帮助您快速掌握这一容器编排工具。 一、Docker Compose 核心概念 定位&#xff1a;用于定义和管理多容器 Docker 应用&#xff0c;通过 YAML 文件配置服务、网络、卷等资源。核心概念&#xff1a; 服务 …...

2025.05.08-得物春招研发岗-第三题

📌 点击直达笔试专栏 👉《大厂笔试突围》 💻 春秋招笔试突围在线OJ 👉 笔试突围OJ 03. 矩阵魔法变换 问题描述 A先生是一位著名的魔法师,他最近发明了一种特殊的矩阵魔法。这种魔法可以同时改变矩阵中特定区域内所有元素的值。 A先生有一个 n m n \times m...

【Spring AI 实战】基于 Docker Model Runner 构建本地化 AI 聊天服务:从配置到函数调用全解析

【Spring AI 实战】基于 Docker Model Runner 构建本地化 AI 聊天服务&#xff1a;从配置到函数调用全解析 前沿&#xff1a;本地化 AI 推理的新范式 随着大语言模型&#xff08;LLM&#xff09;应用的普及&#xff0c;本地化部署与灵活扩展成为企业级 AI 开发的核心需求。Do…...

【数据机构】2. 线性表之“顺序表”

- 第 96 篇 - Date: 2025 - 05 - 09 Author: 郑龙浩/仟墨 【数据结构 2】 文章目录 数据结构 - 2 -线性表之“顺序表”1 基本概念2 顺序表(一般为数组)① 基本介绍② 分类 (静态与动态)③ 动态顺序表的实现**test.c文件:****SeqList.h文件:****SeqList.c文件:** 数据结构 - 2 …...

Django ORM: values() 和 annotate() 方法详解

1. values()方法 1.1 基本概念 values()方法用于返回一个包含字典的QuerySet&#xff0c;而不是模型实例。每个字典表示一个对象&#xff0c;键对应于模型字段名称。 1.2 基本用法 # 获取所有书籍的标题和出版日期 from myapp.models import Bookbooks Book.objects.value…...

数据结构篇-二叉树

抽象定义CFG文法具体表示基本操作性质 抽象定义 二叉树是一个抽象的数学概念。它的定义是递归的 一棵二叉树可以是一个外部节点&#xff0c;一棵二叉树可以是内部节点&#xff0c;连接到一对二叉树&#xff0c;分别是它的左子树&#xff0c;和右子树。 这个抽象定义描述了二…...

前端面试每日三题 - Day 29

这是我为准备前端/全栈开发工程师面试整理的第29天每日三题练习&#xff1a; ✅ 题目1&#xff1a;Web Components技术全景解析 核心三要素 Custom Elements&#xff08;自定义元素&#xff09; class MyButton extends HTMLElement {constructor() {super();this.attachShado…...

Java设计模式之抽象工厂模式:从入门到精通

一、抽象工厂模式概述 抽象工厂模式(Abstract Factory Pattern)是一种创建型设计模式,它提供了一种创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 1.1 专业定义 抽象工厂模式定义了一个工厂接口,用于创建一系列相关或依赖的对象,客户端通过调用抽象工…...

Rust中记录日志:fast_log

在Rust程序中记录日志&#xff0c;可以使用fast_log。 根据fast_log 的介绍&#xff0c;这是一个性能非常高的日志实现&#xff0c;还支持文件追加模式、压缩、切分与回滚等操作。 而且&#xff0c;这个库记录日志是异步的&#xff0c;即不会因为日志而影响程序的运行。只有当…...

构筑芯片行业的“安全硅甲”

在半导体行业&#xff0c;数据就是生命线。一份芯片设计图纸的泄露&#xff0c;可能让企业数亿研发投入付诸东流&#xff1b;一段核心代码的外传&#xff0c;甚至可能影响国家产业安全。然而&#xff0c;现实情况却是——许多芯片企业的数据防护&#xff0c;仍处于“裸奔”状态…...

C++ Dll创建与调用 查看dll函数 MFC 单对话框应用程序(EXE 工程)改为 DLL 工程

C Dll创建 一、添加 DllMain&#xff08;必要&#xff09; #include <fstream>void Log(const char* msg) {std::ofstream f("C:\\temp\\dll_log.txt", std::ios::app);f << msg << std::endl; }BOOL APIENTRY DllMain(HMODULE hModule, DWORD u…...

使用智能表格做FMEDA

一、优点 使用智能表格替代excel做FMEDA具备以下优势&#xff1a; 减少维护成本&#xff08;数据库关联&#xff0c;修改方便&#xff09;便于持续优化&#xff08;失效率分布&#xff0c;失效率模型可重复使用&#xff09;多人同步编写&#xff08;同时操作&#xff0c;同步…...

电动汽车充换电设施可调能力聚合评估与预测 - 使用说明文档

电动汽车充换电设施可调能力聚合评估与预测 - 使用说明文档 概述 本脚本real_data_model.m基于论文《大规模电动汽车充换电设施可调能力聚合评估与预测》(鲍志远&#xff0c;胡泽春)实现了电动汽车充电设施的负荷预测和可调能力评估。使用混合模型&#xff08;LSTM神经网络线…...

Tomcat 日志体系深度解析:从访问日志配置到错误日志分析的全链路指南

一、Tomcat 核心日志文件架构与核心功能 1. 三大基础日志文件对比&#xff08;权威定义&#xff09; 日志文件数据来源核心功能典型场景catalina.out标准输出 / 错误重定向包含 Tomcat 引擎日志与应用控制台输出&#xff08;System.out/System.err&#xff09;排查 Tomcat 启…...

MSF 生成不同的木马 msfvenom 框架命令

目录 什么是 msfvenom&#xff1f; 一、针对 Windows 的木马生成命令 1. EXE 格式&#xff08;经典可执行文件&#xff09; 2. VBS 脚本&#xff08;Visual Basic Script&#xff09; 3. PowerShell 脚本 4. DLL 文件&#xff08;动态链接库&#xff09; 5. Python 脚本…...

Linux云计算训练营笔记day05(Rocky Linux中的命令:管道操作 |、wc、find、vim)

管道操作 | 作用: 将前面命令的输出&#xff0c;传递给后面命令&#xff0c;作为后面命令的参数 head -3 /etc/passwd | tail -1 取第三行 head -8 /etc/passwd | tail -3 | cat -n 取6 7 8行 ifconfig | head -2 | tail -1 只查看IP地址 ifconfig | grep 192 过滤192的ip…...

【相机标定】OpenCV 相机标定中的重投影误差与角点三维坐标计算详解

摘要&#xff1a; 本文将从以下几个方面展开&#xff0c;结合典型代码深入解析 OpenCV 中的相机标定过程&#xff0c;重点阐述重投影误差的计算方法与实际意义&#xff0c;并通过一个 calcBoardCornerPositions() 函数详细讲解棋盘格角点三维坐标的构建逻辑。 在计算机视觉领域…...

传统销售VS智能销售:AI如何重构商业变现逻辑

如今最会赚钱的企业早就不靠堆人力了&#xff0c;他们都在悄悄用AI做商业变现。当普通销售还在手动记录客户信息时&#xff0c;AI销售系统已经能实时追踪客户在商品页的停留时长&#xff0c;甚至精确到秒。 传统客服人员还在机械地复制粘贴标准话术&#xff0c;AI销售却已经能根…...

从设计到开发,原型标注图全流程标准化

一、原型标注图是什么&#xff1f; 原型标注图&#xff08;Annotated Prototype&#xff09;是设计原型&#xff08;Prototype&#xff09;的详细说明书&#xff0c;通过图文结合的方式&#xff0c;将设计稿中的视觉样式、交互逻辑、适配规则等技术细节转化为开发可理解的标准…...

Mac QT水平布局和垂直布局

首先上代码 #include "mainwindow.h" #include "ui_mainwindow.h" #include <QPushButton> #include<QVBoxLayout>//垂直布局 #include<QHBoxLayout>//水平布局头文件 MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), …...

部署Superset BI(四)连接sql server数据库

sqlserver没有出现在Superset的连接可选菜单上&#xff0c;这一点让我奇怪。既然没有那就按着HANA的配置方式&#xff0c;照猫画虎。更奇怪的是安装好还不能出现&#xff0c;难道superset和微软有仇&#xff1f; --修改配置文件 rootNocobase:/usr/superset/superset# cd docke…...

Python爬虫(22)Python爬虫进阶:Scrapy框架动态页面爬取与高效数据管道设计

目录 一、背景&#xff1a;Scrapy在现代爬虫中的核心价值二、Scrapy项目快速搭建1. 环境准备与项目初始化2. 项目结构解析 三、动态页面处理&#xff1a;集成Splash与中间件1. 配置Splash渲染服务&#xff08;Docker部署&#xff09;2. 修改settings.py启用中间件3. 在Spider中…...

全球实物文件粉碎服务市场洞察:合规驱动下的安全经济与绿色转型

一、引言&#xff1a;从纸质堆叠到数据安全的“最后一公里” 在数字化转型浪潮中&#xff0c;全球企业每年仍产生超过1.2万亿页纸质文件&#xff0c;其中包含大量机密数据、客户隐私及商业敏感信息。据QYResearch预测&#xff0c;2031年全球实物文件粉碎服务市场规模将达290.4…...

使用Python 打造多格式文件预览工具 — 图、PDF、Word、Excel 一站式查看

在日常办公或文件管理场景中&#xff0c;我们经常面临这样的问题&#xff1a;在一个文件夹中短时间内产生了大量不同类型的文件&#xff08;如图片、PDF、Word、Excel&#xff09;&#xff0c;我们需要快速浏览和筛选这些文件的内容&#xff0c;却不希望一个个打开它们。有没有…...

Microsoft 365 Copilot:为Teams在线会议带来多语言语音交流新体验

随着AI技术的飞速发展&#xff0c;Microsoft 365 Copilot将大型语言模型&#xff08;LLM&#xff09;与业务数据深度融合&#xff0c;为用户带来了前所未有的办公体验。在Teams在线会议中&#xff0c;Copilot不仅能够作为智能助手提升会议效率&#xff0c;还能通过实时辅助同声…...

c++:双向链表容器(std::list)

目录 &#x1f9f1; 一、什么是 std::list&#xff1f; ⚙️ 二、底层结构图解 &#x1f9ea; 三、list 的常见操作 &#x1f4e6; 四、完整示例代码 &#x1f4cc; 五、特点总结对比 &#x1f6e0; 六、特殊函数 &#x1f4da; 七、list 迭代器操作 ⚠️ 八、使用场景…...

jenkins 启动报错

java.lang.UnsatisfiedLinkError: /opt/application/jdk-17.0.11/lib/libfontmanager.so: libfreetype.so.6: cannot open shared object file: No such file or directory。 解决方案&#xff1a; yum install freetype-devel 安装完成之后重启jenkins。...

输入顶点坐标输出立方体长宽高的神经网络

写一个神经网络&#xff0c;我输入立方体投影线段的三视图坐标&#xff0c;输出分类和长宽高 import torch from torch import nn import torch.nn.functional as F# 假设每个视图有8个顶点&#xff0c;每个顶点有2个坐标值&#xff0c;因此每种视图有16个输入特征 input_dim…...

Layui表格行点击事件监听

​ 在 Layui 中&#xff0c;如果想监听表格行的点击事件&#xff0c;可以通过以下步骤实现&#xff1a; 初始化表格&#xff1a;首先确保你已经使用 Layui 的 table.render 方法成功渲染了你的表格。绑定行点击事件&#xff1a;Layui 并没有直接提供针对表格行点击的事件监听器…...

2025数维杯数学建模竞赛B题完整参考论文(共38页)(含模型、代码、数据)

2025数维杯数学建模竞赛B题完整参考论文 目录 摘要 一、问题重述 二、问题分析 三、模型假设 四、定义与符号说明 五、 模型建立与求解 5.1问题1 5.1.1问题1思路分析 5.1.2问题1模型建立 5.1.3问题1求解结果 5.2问题2 5.2.1问题2思路分析 5.2.2问题2…...