当前位置: 首页 > news >正文

Python 整理3种查看神经网络结构的方法

1. 网络结构代码

import torch
import torch.nn as nn# 定义Actor-Critic模型
class ActorCritic(nn.Module):def __init__(self, state_dim, action_dim):super(ActorCritic, self).__init__()self.actor = nn.Sequential(# 全连接层,输入维度为 state_dim,输出维度为 256nn.Linear(state_dim, 64),nn.ReLU(),nn.Linear(64, action_dim),# Softmax 函数,将输出转换为概率分布,dim=-1 表示在最后一个维度上应用 Softmaxnn.Softmax(dim=-1))self.critic = nn.Sequential(nn.Linear(state_dim, 64),nn.ReLU(),nn.Linear(64, 1))def forward(self, state):policy = self.actor(state)value = self.critic(state)return policy, value# 参数设置
state_dim = 1
action_dim = 2model = ActorCritic(state_dim, action_dim)

2. 查看结构

2.1 直接打印模型

print(model)

输出:

ActorCritic((actor): Sequential((0): Linear(in_features=1, out_features=64, bias=True)(1): ReLU()(2): Linear(in_features=64, out_features=2, bias=True)(3): Softmax(dim=-1))(critic): Sequential((0): Linear(in_features=1, out_features=64, bias=True)(1): ReLU()(2): Linear(in_features=64, out_features=1, bias=True))
)

2.2 可视化网络结构(需要安装 torchviz 包)

安装 torchsummary 包:

$ pip install torchsummary

python 代码:

from torchviz import make_dot# 创建一个虚拟输入
x = torch.randn(1, state_dim)
# 生成计算图
dot = make_dot(model(x), params=dict(model.named_parameters()))
dot.render("actor_critic_model", format="png")  # 保存为PNG图片

输出 actor_critic_model

digraph {graph [size="12,12"]node [align=left fontname=monospace fontsize=10 height=0.2 ranksep=0.1 shape=box style=filled]140281544075344 [label="(1, 2)" fillcolor=darkolivegreen1]140281544213744 [label=SoftmaxBackward0]140281544213840 -> 140281544213744140281544213840 [label=AddmmBackward0]140281544213600 -> 140281544213840140285722327344 [label="actor.2.bias(2)" fillcolor=lightblue]140285722327344 -> 140281544213600140281544213600 [label=AccumulateGrad]140281544214032 -> 140281544213840140281544214032 [label=ReluBackward0]140281544213984 -> 140281544214032140281544213984 [label=AddmmBackward0]140281544214176 -> 140281544213984140285722327024 [label="actor.0.bias(64)" fillcolor=lightblue]140285722327024 -> 140281544214176140281544214176 [label=AccumulateGrad]140281544214224 -> 140281544213984140281544214224 [label=TBackward0]140281543934832 -> 140281544214224140285722327264 [label="actor.0.weight(64, 1)" fillcolor=lightblue]140285722327264 -> 140281543934832140281543934832 [label=AccumulateGrad]140281544213648 -> 140281544213840140281544213648 [label=TBackward0]140281544214080 -> 140281544213648140285722327184 [label="actor.2.weight(2, 64)" fillcolor=lightblue]140285722327184 -> 140281544214080140281544214080 [label=AccumulateGrad]140281544213744 -> 140281544075344140285722328704 [label="(1, 1)" fillcolor=darkolivegreen1]140281544213888 [label=AddmmBackward0]140281544214368 -> 140281544213888140285722328064 [label="critic.2.bias(1)" fillcolor=lightblue]140285722328064 -> 140281544214368140281544214368 [label=AccumulateGrad]140281544214128 -> 140281544213888140281544214128 [label=ReluBackward0]140281544214464 -> 140281544214128140281544214464 [label=AddmmBackward0]140281544214512 -> 140281544214464140285722327424 [label="critic.0.bias(64)" fillcolor=lightblue]140285722327424 -> 140281544214512140281544214512 [label=AccumulateGrad]140281544214560 -> 140281544214464140281544214560 [label=TBackward0]140281544214704 -> 140281544214560140285722327504 [label="critic.0.weight(64, 1)" fillcolor=lightblue]140285722327504 -> 140281544214704140281544214704 [label=AccumulateGrad]140281544213696 -> 140281544213888140281544213696 [label=TBackward0]140281544214272 -> 140281544213696140285722327584 [label="critic.2.weight(1, 64)" fillcolor=lightblue]140285722327584 -> 140281544214272140281544214272 [label=AccumulateGrad]140281544213888 -> 140285722328704
}

输出模型图片:
在这里插入图片描述

2.3 使用 summary 方法(需要安装 torchsummary 包)

安装 torchsummary 包:

pip install torchsummary

代码:

from torchsummary import summarydevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
model = model.to(device)
summary(model, input_size=(state_dim,))#查看模型参数
print("查看模型参数:")
for name, param in model.named_parameters():print(f"Layer: {name} | Size: {param.size()} | Values: {param[:2]}...")

输出:

cuda:0
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Linear-1                   [-1, 64]             128ReLU-2                   [-1, 64]               0Linear-3                    [-1, 2]             130Softmax-4                    [-1, 2]               0Linear-5                   [-1, 64]             128ReLU-6                   [-1, 64]               0Linear-7                    [-1, 1]              65
================================================================
Total params: 451
Trainable params: 451
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 0.00
----------------------------------------------------------------
查看模型参数:
Layer: actor.0.weight | Size: torch.Size([64, 1]) | Values: tensor([[ 0.7747],[-0.0440]], device='cuda:0', grad_fn=<SliceBackward0>)...
Layer: actor.0.bias | Size: torch.Size([64]) | Values: tensor([ 0.5995, -0.2155], device='cuda:0', grad_fn=<SliceBackward0>)...
Layer: actor.2.weight | Size: torch.Size([2, 64]) | Values: tensor([[ 0.0373,  0.0851,  0.1000,  0.1060,  0.0387,  0.0479,  0.0127,  0.0696,0.0388,  0.0033,  0.1173, -0.1195, -0.0830,  0.0186,  0.0063, -0.0863,-0.0353,  0.0782, -0.0558,  0.0011, -0.0533,  0.1241,  0.0120, -0.0906,-0.0551, -0.0673, -0.1070,  0.0402, -0.0662,  0.0596, -0.0811,  0.0457,0.0349,  0.0564, -0.0155, -0.0404,  0.0843, -0.0978,  0.0459,  0.1097,-0.0858,  0.0736, -0.0067, -0.0756, -0.0363, -0.0525, -0.0426, -0.1087,-0.0611,  0.0420, -0.1038,  0.0402,  0.0065, -0.1217, -0.0467,  0.0383,-0.0217,  0.0283,  0.0800,  0.0228,  0.0415, -0.0473, -0.0199, -0.0436],[-0.1118, -0.0806, -0.0700, -0.0224,  0.0335, -0.0087,  0.0265, -0.1196,-0.0907, -0.0360,  0.0621, -0.0471, -0.0939, -0.0912, -0.1061,  0.1051,-0.0592, -0.0757,  0.0758, -0.1082, -0.0317,  0.1208, -0.0279, -0.0693,0.0920, -0.0318, -0.0476,  0.0236, -0.0761,  0.0591,  0.0862, -0.0712,0.0156, -0.1073,  0.1133,  0.0039, -0.0191,  0.0605, -0.0686, -0.1202,0.0962,  0.0581,  0.1145,  0.0741, -0.0993, -0.0987,  0.0939,  0.1006,0.0773, -0.0756, -0.1096,  0.0156, -0.0599,  0.0857,  0.1005, -0.0618,0.0474,  0.0066, -0.0531, -0.0479,  0.1136,  0.0356,  0.1169, -0.0023]],device='cuda:0', grad_fn=<SliceBackward0>)...
Layer: actor.2.bias | Size: torch.Size([2]) | Values: tensor([-0.0039,  0.0937], device='cuda:0', grad_fn=<SliceBackward0>)...
Layer: critic.0.weight | Size: torch.Size([64, 1]) | Values: tensor([[0.5799],[0.0473]], device='cuda:0', grad_fn=<SliceBackward0>)...
Layer: critic.0.bias | Size: torch.Size([64]) | Values: tensor([ 0.6507, -0.6974], device='cuda:0', grad_fn=<SliceBackward0>)...
Layer: critic.2.weight | Size: torch.Size([1, 64]) | Values: tensor([[ 0.0738, -0.0370, -0.1010, -0.0333, -0.0595, -0.0172,  0.0928,  0.0815,0.1221, -0.0842,  0.0511,  0.0452, -0.0386, -0.0503, -0.0964,  0.0370,-0.0341, -0.0693, -0.0845,  0.0424, -0.0491, -0.0439, -0.0443,  0.0203,0.0960, -0.1178, -0.0836, -0.0144, -0.0576, -0.0851,  0.0461,  0.1160,0.0120,  0.1180,  0.0255,  0.1047, -0.0398,  0.0786,  0.1143,  0.0806,0.1125,  0.0267,  0.0534, -0.0318,  0.1125, -0.0727,  0.1169,  0.0120,-0.0178, -0.0845,  0.0069,  0.0194,  0.1188,  0.0481,  0.1077, -0.0840,0.1013,  0.0586, -0.0857, -0.0974, -0.0630,  0.0359, -0.0080, -0.0926]],device='cuda:0', grad_fn=<SliceBackward0>)...
Layer: critic.2.bias | Size: torch.Size([1]) | Values: tensor([0.0621], device='cuda:0', grad_fn=<SliceBackward0>)...

相关文章:

Python 整理3种查看神经网络结构的方法

1. 网络结构代码 import torch import torch.nn as nn# 定义Actor-Critic模型 class ActorCritic(nn.Module):def __init__(self, state_dim, action_dim):super(ActorCritic, self).__init__()self.actor nn.Sequential(# 全连接层&#xff0c;输入维度为 state_dim&#xf…...

【Bootstrap V4系列】学习入门教程之 组件-卡片(Card)

Bootstrap V4系列 学习入门教程之 组件-卡片&#xff08;Card&#xff09; 卡片&#xff08;Card&#xff09;一、Example二、Content types 内容类型2.1 Body 主体2.2 Titles, text, and links 标题、文本和链接2.3 Images 图片2.4 List groups 列表组2.5 Kitchen sink 洗涤槽…...

AI Agent开发第50课-机器学习的基础-线性回归如何应用在商业场景中

开篇 虽然我们这个系列主讲AI Agent,但是这个系列是一个喂饭式从0到深入的全AI类计算机教程系列,它主要面向的是培养出一个个AI时代的程序员,不是像外部那种很水的只是做做套壳、聊天、绘图小工具的急功近利式教学。而机器学习是现代AI的基础与基石,一些机器学习、深度学习…...

代码随想录第34天:动态规划7(打家劫舍问题:链式、环式、树式房屋)

一、背包问题小结 1.递推公式&#xff1a; 1.问能否能装满背包&#xff08;或者最多装多少&#xff09;&#xff1a;dp[j] max(dp[j], dp[j - nums[i]] nums[i]) 2.问装满背包有几种方法&#xff1a;dp[j] dp[j - nums[i]] 3.问背包装满最大价值&#xff1a;dp[j] max…...

网络安全自动化:找准边界才能筑牢安全防线

数字时代&#xff0c;企业每天要面对成千上万的网络攻击。面对庞大的服务器群、分散的团队和长期不重启的设备&#xff0c;很多企业开始思考&#xff1a;哪些安全操作适合交给机器自动处理&#xff1f;哪些必须由人工把关&#xff1f;今天我们就用大白话聊聊这件事。 一、这些事…...

ctfshow——web入门361~368

最近练习ssti 当 Web 应用程序使用模板引擎动态生成 HTML 页面或其他类型的输出时&#xff0c;如果用户输入未经过充分验证或转义就被直接嵌入到模板中&#xff0c;就可能发生 SSTI 攻击。攻击者可以利用这个弱点注入恶意模板代码&#xff0c;该代码将在服务器端执行。 常见的…...

备忘录模式(Memento Pattern)

&#x1f9e0; 备忘录模式&#xff08;Memento Pattern&#xff09; 备忘录模式 是行为型设计模式之一。它通过将对象的状态存储在一个备忘录中&#xff0c;允许对象在不暴露其内部结构的情况下&#xff0c;保存和恢复自己的状态。该模式允许将对象的状态保存到备忘录中&#…...

五一假期作业

sub_process.c #include <stdio.h> // 标准输入输出库 #include <pthread.h> // POSIX线程库 #include <sys/ipc.h> // IPC基础定义&#xff08;如消息队列/共享内存&#xff09; #include <sys/msg.h> // 消息队列操作相关…...

Multi Agents Collaboration OS:专属多智能体构建—基于业务场景流程构建专属多智能体

背景 随着人工智能技术的飞速发展&#xff0c;大型语言模型&#xff08;LLM&#xff09;的能力不断突破&#xff0c;单一智能体的能力边界逐渐显现。为了应对日益复杂的现实世界任务&#xff0c;由多个具备不同能力、可以相互协作的智能体组成的多智能体系统 (Multi-Agent Sys…...

数据库的二级索引

二级索引 10.1 二级索引作为额外的键 表结构 正如第8章提到的&#xff0c;二级索引本质上是包含主键的额外键值对。每个索引通过B树中的键前缀来区分。 type TableDef struct {// 用户定义的部分Name stringTypes []uint32 // 列类型Cols []string // 列名Indexes …...

湖北理元理律师事务所:债务法律服务的民生价值重构

当前我国居民杠杆率达62.3%&#xff08;央行2023年数据&#xff09;&#xff0c;债务问题已从经济议题演变为社会议题。湖北理元理律师事务所通过构建覆盖咨询、备案、规划的全链条服务&#xff0c;试图在法律框架内探索债务危机的社会化解决方案。 民生导向的服务设计 1.阶梯…...

DotNetBrowser 3.2.0 版本发布啦!

包含来自 Chromium 135 的安全修复支持自定义用户代理客户端提示&#xff08;User Agent Client Hints&#xff09;在 Avalonia 离屏渲染模式中支持拖放&#xff08;Drag & Drop&#xff09;功能 &#x1f517; 点击此处了解更多详情。 &#x1f193; 免费试用 30 天。...

PyTorch 张量与自动微分操作

笔记 1 张量索引操作 import torch ​ # 下标从左到右从0开始(0->第一个值), 从右到左从-1开始 # data[行下标, 列下标] # data[0轴下标, 1轴下标, 2轴下标] ​ def dm01():# 创建张量torch.manual_seed(0)data torch.randint(low0, high10, size(4, 5))print(data->,…...

C语言数据在内存中的存储详解

在 C 语言的编程世界里&#xff0c;理解数据在内存中的存储方式是非常重要的&#xff0c;它能帮助我们更好地掌握数据类型、内存管理和程序性能优化等内容。今天&#xff0c;我就来给大家详细讲解数据在内存中的存储&#xff0c;包括整数、大小端字节序和浮点数的存储方式&…...

【AI大模型】SpringBoot整合Spring AI 核心组件使用详解

目录 一、前言 二、Spring AI介绍 2.1 Spring AI介绍 2.2 Spring AI主要特点 2.3 Spring AI核心组件 2.4 Spring AI应用场景 2.5 Spring AI优势 2.5.1 与 Spring 生态无缝集成 2.5.2 模块化设计 2.5.3 简化 AI 集成 2.5.4 支持云原生和分布式计算 2.5.5 安全性保障…...

linux-文件操作

在 Linux 系统中&#xff0c;文件操作与管理是日常使用和系统管理的重要组成部分。下面将详细介绍文件的复制、移动、链接创建&#xff0c;以及文件查找、文本处理、排序、权限管理等相关知识。 一、文件的复制 在 Linux 里&#xff0c;cp 命令可用于复制文件或目录&#xff…...

丢失的数字 --- 位运算

目录 一&#xff1a;题目 二&#xff1a;算法原理 三&#xff1a;代码实现 一&#xff1a;题目 题目链接&#xff1a; 268. 丢失的数字 - 力扣&#xff08;LeetCode&#xff09; 二&#xff1a;算法原理 三&#xff1a;代码实现 class Solution { public:int missingNumb…...

从Rtos到Linux:学习的策略

这里目的只是为了学习&#xff0c;哪天工作需要用上了能更顺利的上手&#xff0c;写文章的目的是为了记录和便于查询。工作的前两年主要是以mcu裸机为主&#xff0c;目的是压缩资源以最少的ram和flash实现最多的功能&#xff0c;后来五年做的东西越来越复杂的跑的rtos&#xff…...

BUUCTF——Mark loves cat

BUUCTF——Mark loves cat 进入靶场 简单的看了一下功能点 扫一下目录吧 扫目录发现一个.git 下一下源码看看 找到个flag.php和index.php <?php$flag file_get_contents(/flag);再看看index.php&#xff08;代码有点长&#xff0c;所以只留了后面有用的&#xff09; &…...

C/C++滑动窗口算法深度解析与实战指南

C/C滑动窗口算法深度解析与实战指南 引言 滑动窗口算法是解决数组/字符串连续子序列问题的利器&#xff0c;通过动态调整窗口边界&#xff0c;将暴力解法的O(n)时间复杂度优化至O(n)。本文将系统讲解滑动窗口的核心原理、C/C实现技巧及经典应用场景&#xff0c;助您掌握这一高…...

Webug4.0靶场通关笔记15- 第19关文件上传(畸形文件)

目录 第19关 文件上传(畸形文件) 1.打开靶场 2.源码分析 &#xff08;1&#xff09;客户端源码 &#xff08;2&#xff09;服务器源码 3.渗透实战 &#xff08;1&#xff09;构造脚本 &#xff08;2&#xff09;双写绕过 &#xff08;3&#xff09;访问脚本 本文通过《…...

黑马点评大总结

8.2.1 短信登录 首先是用户提交手机号&#xff0c;后端将生成的验证码以及用户信息存入session中&#xff0c;用户登录时进行拦截并从session中拿出来信息校验&#xff0c;并把用户信息存入ThreadLocal中session共享问题&#xff1a;每个tomcat有自己的一份session&#xff0c…...

LeetCode:返回倒数第k个结点

1、题目描述 实现一种算法&#xff0c;找出单向链表中倒数第 k 个节点。返回该节点的值。 注意&#xff1a;本题相对原题稍作改动 示例&#xff1a; 输入&#xff1a; 1->2->3->4->5 和 k 2 输出&#xff1a; 4 说明&#xff1a; 给定的 k 保证是有效的。 2、…...

zotero pdf中英翻译插件使用

最近发现一个pdf中英翻译的神器zotero-pdf2zh&#xff0c;按照官方安装教程走一遍的时候&#xff0c;发现一些流程不清楚的问题&#xff0c; 此文就是整理一些安装需要的文件以及遇到的问题&#xff1a; 相关文件下载地址 Zotero 是一款免费的、开源的文献管理工具&#xff0…...

Java后端程序员学习前端之CSS

什么是css Cascading Style Sheet 层叠级联样式表 表现 (美化网页) 字体&#xff0c;颜色&#xff0c;边距&#xff0c;高度&#xff0c;宽度&#xff0c;背景图片&#xff0c;网页定位&#xff0c;网页浮动.. 发展史 CSS1.0 CSS2.0 DIV(块)CSS&#xff0c;HTML与CSS结构分离…...

MySQL——数据库基础操作

学习MySQL之前&#xff0c;要先配置好相关环境与软件下载&#xff0c;怎么就不展开了&#xff1a;找找网上对应环境下的教程即可 目录 数据库与MySQL 案例使用 MySQL架构 SQL指令分类 储存引擎 库操作 创建数据库 编码集与校验规则 校验规则的影响 删除数据库 数…...

[低代码 + AI] 明道云与 Dify 的三种融合实践方式详解

随着低代码平台和大语言模型工具的不断发展,将企业数据与智能交互能力融合,成为提高办公效率与自动化水平的关键一步。明道云作为一款成熟的低代码平台,Dify 则是一个支持自定义工作流的开源 LLM 应用框架。两者结合,可以实现灵活、高效的智能化业务处理。 本文将详解明道…...

湖北理元理律师事务所:规模化债事服务的探索与实践

在个人债务问题日益普遍化的当下&#xff0c;如何通过合法、系统化的服务帮助债务人化解危机&#xff0c;成为法律服务业的重要课题。湖北理元理律师事务所作为经国家司法局批准设立的债事服务机构&#xff0c;其构建的“法律技术金融”服务模式&#xff0c;为债务优化领域提供…...

MySQL JOIN详解:掌握数据关联的核心技能

一、为什么需要JOIN&#xff1f; 在关系型数据库中&#xff0c;数据通常被拆分到不同的表中以提高存储效率。当我们需要从多个表中组合数据时&#xff0c;JOIN操作就成为了最关键的技能。通过本文&#xff0c;您将全面掌握MySQL中7种JOIN操作&#xff0c;并学会如何在实际场景中…...

深入浅出数据库规范化的三大范式

数据库的“成长之路”&#xff1a;从1NF到3NF的规范化进化 在数据库的世界里&#xff0c;关系模式就像一个“孩子”&#xff0c;需要一步步学习“规矩”&#xff0c;才能健康成长。今天&#xff0c;我们就来聊聊数据库的规范化历程——从第一范式&#xff08;1NF&#xff09;出…...

精益数据分析(39/126):SaaS与移动应用商业模式的关键要点剖析

精益数据分析&#xff08;39/126&#xff09;&#xff1a;SaaS与移动应用商业模式的关键要点剖析 在创业和数据分析的探索之旅中&#xff0c;每一次深入研究不同的商业模式都是一次宝贵的学习机会。今天&#xff0c;依旧怀揣着与大家共同进步的期望&#xff0c;深入解读《精益…...

【PostgreSQL数据分析实战:从数据清洗到可视化全流程】4.3 数据脱敏与安全(模糊处理/掩码技术)

&#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 文章大纲 PostgreSQL数据脱敏实战&#xff1a;从模糊处理到动态掩码的全流程解析4.3 数据脱敏与安全&#xff1a;模糊处理与掩码技术深度实践4.3.1 数据脱敏的核心技术体系4.3.1.1 技…...

nginx面试题

nginx 返回状态码413 Nginx 状态码 413 表示“请求实体过大”&#xff08;Request Entity Too Large&#xff09;&#xff0c;意味着客户端发送的请求体大小超过了服务器允许的限制。 解决方法 修改 Nginx 配置文件&#xff1a; 找到 Nginx 配置文件&#xff0c;通常位于 /etc…...

flink rocksdb状态说明

文章目录 1.默认情况2.flink中的状态3.RocksDB4.对比情况5.使用6.RocksDB架构7.参考文章8.总结提示:以下主要考虑flink 状态永久存储 rocksdb情况,做一些简单说明 1.默认情况 当flink使用rocksdb存储状态时。无论是永久存储还是临时存储都可能会落盘写文件(如果没有配置存储…...

Linux | WEB服务器的部署及优化

一. web服务的常用知识 1.1 www www&#xff08;World Wide Web&#xff09;&#xff1a;即为万维网&#xff0c;常被称为“全球信息广播”。它是一种基于超文本和HTTP协议&#xff0c;能够将文字、图形、影像以及声音等多媒体信息&#xff0c;通过超链接的方式组织在一起&…...

Nginx正反向代理与正则表达式

目录 一&#xff1a;正向代理 1.编译安装nginx 2.配置正向代理 二&#xff1a;反向代理 1.配置nginx七层代理 2.配置nginx四层代理 三&#xff1a;nginx 缓存 1.缓存功能的核心原理和缓存类型 2.代理缓存功能设置 四&#xff1a;nginx rewrite 和正则表达式 1.Nginx…...

字节:LLM自动化证明工程基准

&#x1f4d6;标题&#xff1a;APE-Bench I: Towards File-level Automated Proof Engineering of Formal Math Libraries &#x1f310;来源&#xff1a;arXiv, 2504.19110 &#x1f31f;摘要 &#x1f538;大型语言模型&#xff08;LLM&#xff09;的最新进展在形式定理证明…...

豆包多轮对话优化策略:上下文理解与记忆,意图识别,对话管理

豆包多轮对话优化策略:上下文理解与记忆,意图识别,对话管理 上下文理解与记忆:我会分析每一轮用户输入的文本内容,理解其中的语义、意图和关键信息,并将这些信息与之前轮次的对话内容相结合,形成对整个对话上下文的理解和记忆。例如,在一个关于旅游规划的对话中,用户先…...

ADK 第四篇 Runner 执行器

智能体执行器 Runner&#xff0c;负责完成一次用户需求的响应&#xff0c;是ADK中真正让Agent运行起来的引擎&#xff0c;其核心功能和Agents SDK中的Runner类似&#xff0c;具体作用如下&#xff1a; 会话管理&#xff1a;自动读取/写入 SessionService&#xff0c;维护历史信…...

yolo 用roboflow标注的数据集本地训练 kaggle训练 comet使用 训练笔记5

本地训练 8gb内存&#xff0c;机械硬盘用了4分钟训练完了 ........... model torch.hub.load(path/to/yolov5, custom, path./runs/train/exp10/weights/best.pt, sourcelocal) 连不上github kaggel训练 传kaggle了 # Train YOLOv5s on COCO128 for 3 epochs !python train…...

chili3d笔记11 连接yolo python http.server 跨域请求 flask

from ultralytics import YOLO from flask import Flask, request, jsonify from flask_cors import CORS import base64 from io import BytesIO from PIL import Image import json# 加载模型 model YOLO(./yolo_detect/best.pt)app Flask(__name__) CORS(app) # 启用跨域…...

安全为上,在系统威胁建模中使用量化分析

*注&#xff1a;Open FAIR™ 知识体系是一种开放和独立的信息风险分析方法。它为理解、分析和度量信息风险提供了分类和方法。Open FAIR作为领先的风险分析方法论&#xff0c;已得到越来越多的大型组织认可。 在数字化风险与日俱增的今天&#xff0c;企业安全决策正面临双重挑战…...

STA中的multi_cycle 和false_path详细讨论

特殊路径&#xff1a;跨时钟域下的exception_path&#xff1a;分为多种情况优先 1、不同clk_domain ,但频率相同 create_clock -name CLKM -period 10 -waveform {0 5} [get_ports CLKM] create_clock -name CLKP -period 10 -waveform {0 5} [get_ports CLKP] set_multicycl…...

Vite 的工作流程

Vite 的工作流程基于其创新的 “预构建 按需加载” 机制&#xff0c;通过利用现代浏览器对原生 ES 模块的支持&#xff0c;显著提升了开发效率和构建速度。以下是其核心工作流程的详细分析&#xff1a; 一、开发环境工作流程 1. 启动开发服务器 冷启动&#xff1a;通过 npm …...

NGINX 的 ngx_http_auth_jwt_module模块

一、模块概述 ngx_http_auth_jwt_module 模块用于通过验证请求中提供的 JWT 来进行客户端授权。此模块支持 JSON Web 签名&#xff08;JWS&#xff09;、JSON Web 加密&#xff08;JWE&#xff09;以及嵌套 JWT&#xff08;Nested JWT&#xff09;&#xff0c;使其成为一种灵活…...

【Game】Powerful——Transformation Card(10)

文章目录 1 级卡片2 级卡片3 级卡片4 级卡片5 级卡片6 级卡片7 级卡片8 级卡片8.1、神兽8.2、珍兽 9、其他9.1、5 级变身卡9.2、8 级变身卡 10、PK 汇总物理 11、卡片合成 1 级卡片 千变万化等级要求&#xff1a;1 级 金钱龟&#xff0c;防御30⬆ 大耳兔&#xff0c;速度15⬆…...

【算法学习】递归、搜索与回溯算法(一)

算法学习&#xff1a; https://blog.csdn.net/2301_80220607/category_12922080.html?spm1001.2014.3001.5482 前言&#xff1a; 这个专题与前面的相比是比较有难度的&#xff0c;但是在平时刷题时出现的概率还是非常高的&#xff0c;下面还是按照之前的逻辑来理清一下这几道…...

发行基础:上传版本注意事项

1、steam的规则是上传&#xff0c;提审&#xff0c;随时可更新。 2、基本流程&#xff1a;根据app id以及depot id&#xff0c;上传本地游戏文件到服务器&#xff0c;把分支版本设置为默认&#xff0c;发布。 试玩版与正式版的app id与depot id是相互独立的。 3、理论上开发者…...

智算中心建设方案和前景分析

智算中心建设方案和前景分析 一、智算中心的概念与重要性 1.1 定义与内涵 智算中心&#xff0c;即智能计算中心&#xff0c;是基于最新人工智能理论&#xff0c;采用领先的人工智能计算架构&#xff0c;专门为人工智能应用提供所需的算力服务、数据服务和算法服务的新型基础…...

亚马逊卖家复刻案例:用社群分层策略实现海外用户月均消费3.2次

近年来&#xff0c;随着跨境电商市场的快速发展&#xff0c;全球消费模式经历深刻变革。尤其是在美国、欧洲等成熟市场&#xff0c;中小卖家面对高度市场集中和运营成本上升的双重压力&#xff0c;纷纷寻求以更精细化的用户运营来提高客户复购率&#xff0c;增加单用户价值。20…...