Java大厂面试突击:从Spring Boot自动配置到Kafka分区策略实战解析
第一轮核心知识
面试官:请解释Spring Boot中自动配置的工作原理并演示如何自定义一个@ConfigurationProperties组件?
xbhog:自动配置通过EnableAutoConfiguration
注解触发,结合当前环境判断(如是否检测到MyBatis依赖)和条件注解(@ConditionalOnClass)来决定是否启用配置类。若需自定义配置,可通过创建带@ConfigurationProperties("my.properties.prefix")
的POJO类,并在配置类中标记@EnableConfigurationProperties
实现。例如配置数据库连接池:
my.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
面试官:优秀!现在请你描述Kafka Producer实现消息分区的策略逻辑和常见自定义分区场景
xbhog:默认分区器采用RangePartitioner
(Kafka 0.11+)按轮询或key哈希分配,业务场景中若需要按用户ID分区可实现Partitioner
接口,重写partition()方法。例如电商订单系统按用户维度做分区:
public int partition(String topic, Object key, byte[] keyBytes) {return ((Long)key).intValue() % numPartitions;
}
面试官:这个方案能有效提高消费端并行能力。最后问:在高并发场景下如何优化Hibernate的一级缓存性能?
第二轮架构设计
面试官:假设需要设计一个支持Excel导入导出的分布式微服务模块,请说明需要的技术栈选型和关键问题
xbhog:技术选型需要Spring Boot (作为基础) + Spring MVC (文件传输) + MyBatis + JPA (数据处理) + Apache POI (Excel操作) + Redis (幂等处理),关键点包括:1. 使用@Async异步处理上传 2. 基于POI SXSSF模式处理百万级导出 3. 通过Redis分布式锁控制同时导入数量
面试官:考虑得比较全面。如何确保微服务间调用时的接口幂等性实现?请给出具体实现代码样例
xbhog:在调用方生成全局唯一ID存储到Redis,服务端检查ID是否已存在。例如基础拦截器实现:
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {String id = exchange.getRequest().getHeaders().getFirst("X-Idempotent-Key");if (redisTemplate.hasKey(id)) {return exchange.getResponse().setStatusCode(HttpStatus.OK);}return chain.filter(exchange.mutate().request(mutableRequest -> mutableRequest.headers().add("X-Handled-Idempotent", "true")).build());
}
面试官微笑着补充:这个实现能有效防止重复提交,但需要考虑Token的失效时间设置。继续第三个问题...
终极挑战环节
面试官:详细说明你设计过的最复杂的分布式链路追踪方案,涉及技术组件和实现原理
xbhog:在金融交易系统中采用Brave + Zipkin方案,通过动态插入Span上下文(TraceId、ParentId)实现跨微服务追踪。配合Spring Cloud Sleuth的@NewSpan
注解在关键入口方法注入span,并结合ELK存储链路ID实现日志关联分析...
面试官收尾:非常专业的回答!你今天的表现给我们留下了深刻印象,我们会尽快通过邮件发送offer通知。(此时面试官的表情管理专家本能使他嘴角微微上扬)
知识点详解附录
-
Spring Boot自定义配置
- 技术细节:
@Component
+@ConfigurationProperties
组合创建可配置的Bean - 业务场景:动态调整第三方支付的回调超时时间
- 技术细节:
-
Kafka自定义分区器
- 策略实现:需要实现
Partitioner
接口的partition方法 - 高阶设计:结合Consul存储分区策略配置实时生效
- 策略实现:需要实现
-
POI SXSSF模式
- 优势:内存消耗恒定(仅保持可视行数在内存)
- 适用场景:百万级数据Excel实时导出(如HR系统年审报表)
-
Redis Idempotent方案
- 关键参数:
SETNX EX NX
组合实现带过期时间的唯一Key - 吞吐优化:使用Redis Cluster分片存储
- 关键参数:
-
分布式链路追踪
- 核心技术:Span的唯一ID与父ID关联形成树状日志链
- 生产实践:通过JVM Agent自动注入埋点代码的Arthas方案
相关文章:
Java大厂面试突击:从Spring Boot自动配置到Kafka分区策略实战解析
第一轮核心知识 面试官:请解释Spring Boot中自动配置的工作原理并演示如何自定义一个ConfigurationProperties组件? xbhog:自动配置通过EnableAutoConfiguration注解触发,结合当前环境判断(如是否检测到MyBatis依赖&…...
【python】lambda用法(结合例子理解)
目录 lambda 是什么? 为什么叫 lambda? 语法 举例 1. 最简单的 lambda:单个数字处理 2. 用 lambda 排序一组字符串(按照长度排序) 3. 在列表里找出绝对值最小的数字 4. 给 map() 用 lambda 5. 组合使用:筛选出偶数 lambda 和 def 的对比 lambda 适合用在什么地…...
前端Ui设计工具
PS 稿、蓝湖、Sketch 和 Figma 前端 UI 设计工具的对比分析 PS 稿(Adobe Photoshop) 提供精准设计细节:PS 稿能让前端更精准地理解页面布局、元素尺寸、颜色等,通过精确测量和查看信息面板,把握设计元素的空间关系、…...
深入探索Python Pandas:解锁数据分析的无限可能
放在前头 深入探索Python Pandas:解锁数据分析的无限可能 深入探索Python Pandas:解锁数据分析的无限可能 在当今数据驱动的时代,高效且准确地处理和分析数据成为了各个领域的关键需求。而Python作为一门强大且灵活的编程语言,…...
django admin 设置字段不可编辑
在Django中,如果你想让管理员在后台管理界面中无法编辑某个字段,你可以通过在模型的Meta类中设置editable属性为False,或者在admin.py文件中使用readonly_fields属性来实现。 方法1:在模型中使用Meta类设置 你可以在模型的Meta类…...
AI在医疗领域的10大应用:从疾病预测到手术机器人
AI在医疗领域的10大应用:从疾病预测到手术机器人 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 AI在医疗领域的10大应用:从疾病预测到手术机器人摘要引言1. 医学影像诊断:从静态…...
深入理解 Java 单例模式:从基础到最佳实践
单例(Singleton)模式是 Java 中最基本、最常用的设计模式之一。它确保一个类在任何情况下都只有一个实例,并提供一个全局访问点来获取这个唯一的实例。 一、为什么需要单例模式?(使用场景) 单例模式主要适…...
Rust:安全与性能兼得的现代系统编程语言
一、起源与设计理念 Rust 是由 Mozilla 研究院 Graydon Hoare 于 2006 年发起设计的系统级编程语言,其诞生源于传统系统语言(如 C/C)在内存安全与并发编程方面的缺陷。经过近十年的迭代,Rust 1.0 稳定版于 2015 年正式发布&#…...
AI赋能智慧医疗新范式:小天互连即时通讯打造高效、安全的医疗通讯平台
在医疗行业,高效的信息协作与严格的数据安全不仅直接关系患者诊疗效率,更是医院现代化管理的核心命题。小天互连即时通讯系统通过将智能化功能与医疗场景深度结合,打造出全链路数字化协作平台,有效破解了传统沟通模式的效率瓶颈&a…...
图像生成新势力:GPT-Image-1 与 GPT-4o 在智创聚合 API 的较量
在人工智能领域,图像生成技术正迅速发展,OpenAI 推出的 GPT-Image-1 和 GPT-4o 在图像生成方面展现出了强大的能力。智创聚合 API 平台已支持这两个模型,并且其图片生成 / 编辑工作台支持图片的循环编辑等功能,为用户提供了更便捷…...
如何避免爬虫因Cookie过期导致登录失效
1. Cookie的作用及其过期机制 1.1 什么是Cookie? Cookie是服务器发送到用户浏览器并保存在本地的一小段数据,用于维持用户会话状态。爬虫在模拟登录后,通常需要携带Cookie访问后续页面。 1.2 Cookie为什么会过期? 会话Cookie&…...
集成方案 | Docusign + 甄零科技,赋能企业海外业务高效增长!
本文将详细介绍 Docusign 与甄零科技的集成步骤及其效果,并通过实际应用场景来展示 Docusign 的强大集成能力,以证明 Docusign 集成功能的高效性和实用性。 甄零科技是一家专注于数字化合同管理系统的 SaaS 解决方案提供商,致力于为企业打造“…...
【Arxiv 2025】Single Image Iterative Subject-driven Generation and Editing
文章目录 文章标题作者及研究团队介绍01 在论文所属的研究领域,有哪些待解决的问题或者现有的研究工作仍有哪些不足?02 这篇论文主要解决了什么问题?03 这篇论文解决问题采用的关键解决方案是什么?04 这篇论文的主要贡献是什么&am…...
CoOAG:首个捕捉学术研究兴趣动态演变的数据集
2025-04-24,由西安交通大学基于学术合作网络构建一种新的动态图数据集CoOAG,用于研究动态图中的节点分类问题。该数据集通过捕捉作者研究兴趣的动态变化,为动态图学习领域提供了新的研究方向和测试平台,特别是在标签受限的动态节点…...
决策树随机深林
决策树和随机森林是机器学习中常用的两种模型,以下是对它们的简单介绍: 决策树 - 原理:通过一系列的条件判断对样本进行分类或预测。它由节点(内部节点是属性上的测试,叶节点是类别或值)和边组成࿰…...
Unity 和 Unreal Engine(UE) 两大主流游戏引擎的核心使用方法
以下是 Unity 和 Unreal Engine(UE) 两大主流游戏引擎的核心使用方法和对比分析,帮助开发者快速上手并根据项目需求选择合适工具: 一、Unity 使用指南 1. 安装与配置 安装:从 Unity Hub 下载,选择长期支持…...
Maven 依赖范围(Scope)详解
Maven 依赖范围(Scope)详解 Maven 是一个强大的项目管理工具,广泛用于 Java 开发中构建、管理和部署应用程序。在使用 Maven 构建项目时,我们经常需要引入各种第三方库或框架作为项目的依赖项。通过在 pom.xml 文件中的 <depe…...
博物馆除湿控湿保卫战:M-5J1R 电解除湿科技如何重塑文物守护的未来
在卢浮宫幽深的长廊里,达芬奇的《蒙娜丽莎》正经历着一场看不见的战争——不是来自时间的侵蚀,而是空气中无形的水分子。每一件文物都在与湿度进行着无声的抗争,这场抗争关乎人类文明的延续。湿度,这个看不见的文物杀手࿰…...
消防应急物资智能调用立库:豪越科技助力消防“速战速决”
在消防救援的战场上,时间就是生命,每一秒都关乎着人民群众的生命财产安全。然而,在过去的紧急救援中,应急物资无法及时到位的情况时有发生,成为制约救援效率的关键难题,给救援工作带来了巨大的困境。 想象一…...
机器学习基础理论 - 分类问题评估指标
几个定义:混淆矩阵 TP: True Positives, 表示实际为正例且被分类器判定为正例的样本数FP: False Positives, 表示实际为负例且被分类器判定为正例的样本数FN: False Negatives, 表示实际为正例但被分类器判定为负例的样本数TN: True Negatives, 表示实际为负例且被分类…...
深度学习4.1 多层感知机
基本概念 多层感知机(Multilayer Perceptron, MLP)是一种前馈人工神经网络,由输入层、至少一个隐藏层和输出层组成。 核心特点: 采用全连接结构(相邻层神经元全部相连; 通过非线性激活函数…...
解决两个技术问题后小有感触-QZ Tray使用经验小总结
老朋友都知道,我现在是一家软件公司销售部门的项目经理和全栈开发工程师,就是这么“奇怪”的岗位,大概我是公司销售团队里比较少有技术背景、销售业绩又不那么理想的销售。 近期在某个票务系统项目上驻场,原来我是这个项目的项目…...
非计算机专业如何利用AI开展跨学科和交叉研究
对于非计算机专业的研究者,利用AI开展跨学科研究既充满机遇也面临挑战。以下是一份系统化的指南,帮助您高效入门并找到交叉研究的突破口: 一、认知重塑:理解AI的本质与局限 AI不是“黑箱”:现代AI以数据驱动为核心&a…...
Python 数据可视化进阶:精准插入图表到指定 Excel 工作表
Python 数据可视化进阶:精准插入图表到指定 Excel 工作表 在处理数据的过程中,我们常常需要将生成的图表精准地插入到已存在数据的 Excel 文件的指定工作表中。借助 Python 的强大库组合,这一操作得以高效实现。以下是经过优化和注释补充的代…...
MQTT - MQTT 实践(Windows EMQX、MQTTX、客户端认证、连接与主题)
概述 -说明概括MQTT消息队列遥测传输协议一种规则EMQX一款大规模分布式物联网接入平台一个平台MQTTXMQTT 客户端一个工具 工具(MQTTX)和平台(EMQX)间遵循规则(MQTT)即可进行双向通信 一、Windows EMQX 下…...
【计算机网络物理层】从信号传输到介质选型的核心技术解析
目录 前言技术背景与价值当前技术痛点解决方案概述目标读者说明 一、技术原理剖析核心概念图解核心作用讲解关键技术模块说明技术选型对比 二、实战演示环境配置要求核心代码实现(信号模拟)运行结果验证 三、性能对比测试方法论量化数据对比结果分析 四、…...
云原生--核心组件-容器篇-5-Docker核心之-容器
1、Docker容器的定义与核心概念 定义: Docker容器是基于Docker镜像运行的轻量级、独立、可移植的运行环境,它封装了应用程序及其依赖项,提供了一个隔离的执行空间。容器化应用比传统的虚拟机更加高效,因为它们共享主机操作系统的内…...
一、I/O的相关概念
I/O的相关概念 1、I/O I/O即Input和Output,用户进程执行I/O操作,归结起来,也就是向操作系统发出请求,读请求就把数据填到缓冲区里,写数据就把缓冲区里数据排干,目的地可以是磁盘也可以是其他通道。进程通…...
django filter 日期大于当前日期的
在Django中,如果你想要过滤出日期大于当前日期的记录,你可以使用Django的QuerySet API中的__gt(大于)操作符。这里是如何做到这一点的步骤: 确定你的模型:首先,确保你有一个模型(Mo…...
Unreal Engine 实现智慧水库周边环境以及智慧社区模拟的实例
下面分别为你介绍使用 Unreal Engine 实现智慧水库周边环境以及智慧社区模拟的实例。 智慧水库周边环境模拟 1. 场景搭建 地形与地理特征:利用 Unreal Engine 的地形编辑工具,依据水库实际的地理测绘数据构建地形。模拟山脉、丘陵、河流等周边地貌&am…...
[MCU]SRAM
MCU存储体系 1.SRAM 2.FLASH 3.TCM SRAM SRAM(Static Random-Access Memory):静态随机存取存储器. 特点:访问速度快、断电丢失、不 SRAM分类 1.系统SRAM:连接在系统总线上,所有外设和CPU都可访问 2.TCM SRAM&…...
【dockerredis】用docker容器运行单机redis
一、实验环境 操作系统:CentOS7.5 Minimal docker版本:18.06-ce redis版本:6.0.6 二、安装docker 关闭selinux # setenforce 0 # sed -i s/^SELINUX.*/SELINUXpermissive/g /etc/selinux/config 下载docker二进制安装包 # yum -y install…...
游戏引擎学习第247天:简化DEBUG_VALUE
欢迎。关于纹理传输的详细情况。 上周我们刚刚完成了纹理下载的相关工作,但实际上并没有完全解决这个问题。问题的核心是,当前关于纹理下载的正确方式仍然存在较大的不确定性。尽管我们在进行纹理下载的工作时已有一定进展,但依旧有不少模糊…...
Super Sample Tasker 学习-1
一、Super-Simple Tasker (SST) 是一个基于事件的、抢占式的、优先级基础的实时操作系统(RTOS)内核,完全符合 Rate Monotonic Analysis/Scheduling (RMA/RMS) 的要求。 此STT RTOS主要分成两大类,分别是抢占式SST和非抢占式STT0&…...
【C++】类和对象【中上】
目录 一、类与对象1、构造函数2、析构函数3、拷贝构造函数 个人主页<—请点击 C专栏<—请点击 一、类与对象 默认成员函数就是用户没有显式实现,编译器会自动生成的成员函数称为默认成员函数。⼀个类,我们不写的情况下编译器会默认生成以下6个默…...
概率论与统计(不确定性分析)主要应用在什么方面?涉及到具体知识是什么?
用户问的是概率论与统计(不确定性分析)的主要应用方面,涉及的具体知识以及具体公式。首先,我需要确定概率论与统计在哪些领域有应用,比如工程、金融、医学、数据科学等等。然后,具体知识部分应该包括概率论…...
java面向对象编程【高级篇】之多态
目录 🚀前言🤔什么是多态?🌟多态的优缺点💯优点💯缺点 🌟类型转换💯自动类型转换💯强制类型转换 🚀前言 大家好!我是 EnigmaCoder。 本文介绍java…...
低压电工常见知识点
一.工厂用电 1.工厂一般有电源380V和220V。 三相:黄绿红 蓝 双色 助记符:王力宏 分别对应第一相(R),第二相(S),第三相(T),零线(N),地线(PE) 单相:红 黑 对应火线(L) 零线(N) 左零右火 二.人体安全电压是36V 三.变压器的讲解 变压器的符号…...
【Android】硬件合成器 HWC
硬件合成器(HWC) 深度解析 一、HWC 基本概念 硬件合成器(Hardware Composer, HWC)是Android显示系统的核心组件,负责高效管理图形层的合成与显示。作为SurfaceFlinger的关键模块,HWC通过硬件加速实现图层合成,显著提升性能并降低功耗。 二…...
【Android】dialogX对话框框架
文章目录 DialogX一、引入二、基础对话框 MessageDialog 和 输入对话框 InputDialog2.1.0 显示一个简单对话框2.1.1 构造对话框2.1.2 按钮点击回调2.2 输入对话框按钮点击回调2.3自定义布局2.4自定义进入和关闭动画 三、等待框WaitDialog和提示框TipDialog3.1 等待框3.2 提示框…...
解决 Elasticsearch 启动错误:failed to obtain node locks
1.遇到的问题: 在使用 Elasticsearch 时,可能会遇到以下错误: java.lang.IllegalStateException: failed to obtain node locks, tried [[path_to_data]] with lock id [0]; maybe these locations are not writable or multiple nodes were…...
DeepSeek:重构人类文明的智能引擎
一、技术革命:从通用智能到认知跃迁 1.1 架构创新:混合专家系统的突破 DeepSeek的混合专家(MoE)架构实现了对传统Transformer的颠覆性革新。其256个专家模块通过动态路由算法,在处理文本、图像、代码等多模态数据时&…...
(云计算HCIP)HCIP全笔记(九)本篇介绍操作系统基础,内容包含:操作系统组成、分类和定义,Linux的特性结构和Linux版本分类
1. 操作系统基础 1.1 操作系统的定义 操作系统(Operating System,简称OS),是管理和控制计算机硬件与软件资源的计算机程序(系统软件)。 1.2 操作系统的组成 通常站在用户角度,操作系统由内核和…...
Nginx的默认主配置文件 “/etc/nginx/nginx.conf“ 解读
安装Nginx后的默认主配置文件 “/etc/nginx/nginx.conf” 解读 详见如下配置及注释: # 指定 Nginx 工作进程运行的用户和用户组。这里指定以www - data用户来运行 Nginx 工作进程。 # 在基于 Debian 和 Ubuntu 的系统中,www-data 用户是默认存在的&…...
【AI模型学习】GPT——从v1到v3
文章目录 GPT-1GPT vs BERTGPT-2GPT-3Ai代码 GPT-1 GPT-1(Generative Pretrained Transformer 1)是 OpenAI 在2018年发布的第一个大规模预训练生成模型。它开创了基于 Transformer 的 预训练-微调 (pretraining-finetuning) 框架,在自然语言…...
用Function Calling让GPT查询数据库(含示例)
在本文中,我们通过一个简单的示例,介绍了 GPT模型结合Function Calling技术查询数据库 的基本流程。 Function Calling 是OpenAI推出的一项功能,允许大模型根据用户提问,自动生成函数调用指令,并由程序端实际执行外部操…...
DHCP 服务器运行流程图
以常见的 DHCP v4 为例,其完整流程如下: 一、客户端请求 IP 地址阶段 DHCPDiscover:客户端启动后,会以广播的形式发送 DHCPDiscover 报文,目的是在网络中寻找可用的 DHCP 服务器。该报文中包含客户端的 MAC 地址等信息,以便服务器能够识别客户端。DHCPOffer:网络中的 D…...
3. 使用idea将一个git分支的部分提交记录合并到另一个git分支
目录 1. 需求: 2. 操作步骤: (1)步骤一:idea切换项目分支到test上 (2)步骤二:在log窗口筛选出dev分支的提交记录 (3)步骤三:选中需要合并的记…...
GAEA情感坐标的技术架构与系统集成
为构建 AI 情感数据层,GAEA 整合了DePIN 网络、GODHOOD ID和情感坐标系三大核心组件,有效安全地整合用户数据,确保数据处理透明、高效、去中心化。架构如下: DePIN 网络:该去中心化基础设施为安全的数据传输和存储提供…...
04.通过OpenAPI-Swagger规范让Dify玩转Agent
dify安装 cd dify cd docker cp .env.example .env docker compose up -d准备自定义工具 我自建的PowerDNS,它的swagger如下: https://github.com/PowerDNS/pdns/blob/master/docs/http-api/swagger/authoritative-api-swagger.yaml 但需要加上&#x…...