当前位置: 首页 > news >正文

【随笔】地理探测器原理与运用

文章目录

  • 一、作者与下载
    • 1.1 软件作者
    • 1.2 软件下载
  • 二、原理简述
    • 2.1 空间分异性与地理探测器的提出
    • 2.2 地理探测器的数学模型
      • 2.21 分异及因子探测
      • 2.22 交互作用探测
      • 2.23 风险区与生态探测
  • 三、使用:excel

一、作者与下载

1.1 软件作者

作者:
在这里插入图片描述
DOI: 10.11821/dlxb201701010

文献:地理探测器:原理与展望。直接看这个文献也可以。

1.2 软件下载

主页:http://www.geodetector.cn/Download.html

分别是excel宏、R包、QGIS和ArcGIS Pro工具箱。

excel的都带有示例数据,不过第三个和第一个的数据是相同的(可能是网站文件设置错误,截至我发文日期)。
在这里插入图片描述

二、原理简述

2.1 空间分异性与地理探测器的提出

空间分异性的科学意义:

空间分异性(空间分层异质性)表现为地理现象在子区域内的方差小于总区域方差,例如气候带、土地利用分区等。地理探测器通过量化这一分异性,为揭示其驱动因子提供了统计学工具。

地理探测器的核心优势:

  1. 无需线性假设:适用于非线性关系分析。
  2. 物理含义明确:通过方差分解直接量化因子解释力。
  3. 多类型数据兼容:支持类型量(如分类地图)和离散化数值量的分析。

基本逻辑:

  • 分异性检验:若子区域方差和( S S W SSW SSW)小于总方差( S S T SST SST),则存在空间分异。
  • 因子关联性:若两变量空间分布一致,则存在统计关联。

2.2 地理探测器的数学模型

2.21 分异及因子探测

q统计量用于度量因子解释力:
q = 1 − ∑ h = 1 L N h σ h 2 N σ 2 = 1 − S S W S S T q = 1 - \frac{\sum_{h=1}^{L} N_h \sigma_h^2}{N\sigma^2} = 1 - \frac{SSW}{SST} q=1Nσ2h=1LNhσh2=1SSTSSW
式中:

  • L L L为分层数, N h N_h Nh N N N为子区域与全区域样本数。
  • σ h 2 \sigma_h^2 σh2 σ 2 \sigma^2 σ2为子区域与总体方差。

在这里插入图片描述

显著性检验通过非中心F分布实现:
F = N − L L − 1 ⋅ q 1 − q ∼ F ( L − 1 , N − L ; λ ) F = \frac{N-L}{L-1} \cdot \frac{q}{1-q} \sim F(L-1, N-L; \lambda) F=L1NL1qqF(L1,NL;λ)
其中非中心参数 λ \lambda λ为:
λ = 1 σ 2 [ ∑ h = 1 L Y ˉ h 2 − 1 N ( ∑ h = 1 L N h Y ˉ h ) 2 ] \lambda = \frac{1}{\sigma^2} \left[ \sum_{h=1}^{L} \bar{Y}_h^2 - \frac{1}{N} \left( \sum_{h=1}^{L} N_h \bar{Y}_h \right)^2 \right] λ=σ21 h=1LYˉh2N1(h=1LNhYˉh)2

某个因子的q值越大,他对因变量的解释力就越强。显著性检验的p值,就不用说了吧,比如小于0.01,就代表xxx.


2.22 交互作用探测

通过比较单因子与多因子叠加的 q q q值,判断交互作用类型:

  1. 非线性增强 q ( X 1 ∩ X 2 ) > q ( X 1 ) + q ( X 2 ) q(X_1 \cap X_2) > q(X_1) + q(X_2) q(X1X2)>q(X1)+q(X2)
  2. 双因子增强 q ( X 1 ∩ X 2 ) > max ⁡ ( q ( X 1 ) , q ( X 2 ) ) q(X_1 \cap X_2) > \max(q(X_1), q(X_2)) q(X1X2)>max(q(X1),q(X2))
  3. 单因子主导 max ⁡ ( q ( X 1 ) , q ( X 2 ) ) < q ( X 1 ∩ X 2 ) < q ( X 1 ) + q ( X 2 ) \max(q(X_1), q(X_2)) < q(X_1 \cap X_2) < q(X_1) + q(X_2) max(q(X1),q(X2))<q(X1X2)<q(X1)+q(X2)
  4. 独立作用 q ( X 1 ∩ X 2 ) = q ( X 1 ) + q ( X 2 ) q(X_1 \cap X_2) = q(X_1) + q(X_2) q(X1X2)=q(X1)+q(X2)
  5. 非线性减弱 q ( X 1 ∩ X 2 ) < min ⁡ ( q ( X 1 ) , q ( X 2 ) ) q(X_1 \cap X_2) < \min(q(X_1), q(X_2)) q(X1X2)<min(q(X1),q(X2))

在这里插入图片描述
这里的叠加,不是把各个因子相加,而是相交,简单来说就是分类增加了。看下图就明白了:
在这里插入图片描述

2.23 风险区与生态探测

  1. 风险区差异检验(t检验):
    t Y ˉ h = 1 − Y ˉ h = 2 = Y ˉ h = 1 − Y ˉ h = 2 Var ( Y ˉ h = 1 ) n h = 1 + Var ( Y ˉ h = 2 ) n h = 2 t_{\bar{Y}_{h=1} - \bar{Y}_{h=2}} = \frac{\bar{Y}_{h=1} - \bar{Y}_{h=2}}{\sqrt{\frac{\text{Var}(\bar{Y}_{h=1})}{n_{h=1}} + \frac{\text{Var}(\bar{Y}_{h=2})}{n_{h=2}}}} tYˉh=1Yˉh=2=nh=1Var(Yˉh=1)+nh=2Var(Yˉh=2) Yˉh=1Yˉh=2
    自由度 d f df df为:
    d f = ( Var ( Y ˉ h = 1 ) n h = 1 + Var ( Y ˉ h = 2 ) n h = 2 ) 2 1 n h = 1 − 1 ( Var ( Y ˉ h = 1 ) n h = 1 ) 2 + 1 n h = 2 − 1 ( Var ( Y ˉ h = 2 ) n h = 2 ) 2 df = \frac{\left( \frac{\text{Var}(\bar{Y}_{h=1})}{n_{h=1}} + \frac{\text{Var}(\bar{Y}_{h=2})}{n_{h=2}} \right)^2}{\frac{1}{n_{h=1}-1} \left( \frac{\text{Var}(\bar{Y}_{h=1})}{n_{h=1}} \right)^2 + \frac{1}{n_{h=2}-1} \left( \frac{\text{Var}(\bar{Y}_{h=2})}{n_{h=2}} \right)^2} df=nh=111(nh=1Var(Yˉh=1))2+nh=211(nh=2Var(Yˉh=2))2(nh=1Var(Yˉh=1)+nh=2Var(Yˉh=2))2

  2. 生态探测(F检验):
    F = N X 1 ( N X 2 − 1 ) S S W X 1 N X 2 ( N X 1 − 1 ) S S W X 2 F = \frac{N_{X1}(N_{X2}-1)SSW_{X1}}{N_{X2}(N_{X1}-1)SSW_{X2}} F=NX2(NX11)SSWX2NX1(NX21)SSWX1
    其中 S S W X 1 SSW_{X1} SSWX1 S S W X 2 SSW_{X2} SSWX2为两因子分层后的层内方差和。


三、使用:excel

以excel版本为例,R语言和GIS版本的也是类似的,R语言看它的help有函数说明的。

直接打开excel版本的xlsm文件,你可能无法使用,因为这是带宏的表格,系统会阻止运行。

在xlsm文件上右键–>属性:在最下面的位置会有一个解除阻止运行之类的选项(名字忘了),设置一下即可。图中我已经解除限制了,没有显示。
在这里插入图片描述

🟢打开表格:里面的数据可以删除换成自己的。自变量需要设置为分类变量。比如一个自变量是全国各个城市的GDP,你可以使用各自算法将数据分为几类,比如使用分位数,分为高中低三类,再编码为1、2、3这种。这个不会的话问AI即可。

接着读取数据到GUI界面,设置自变量、因变量,运行。

在这里插入图片描述
运行后会生成几个sheet:一般只使用交互效应和因子探测的表格,环境和风险的不常用。
在这里插入图片描述


🟢 数据说明:

他需要你提供一个“表格”形式的数据,比如ArcGIS的属性表。

数据量不要太大了:

  • 第一是数据量大,你电脑内存可能不足,比如一个像元一个值,几十米分辨率,你的研究区可能就会有几十亿个像元,存为csv需要几十GB,运行的时候内存通常不足;
  • 第二是运行时间太久,这个不用多说;
  • 第三是使用excel的情况下,excel就支持几百万行数据。实际上几万行数据,这个程序就会溢出的。
  • 第四十结果q值会非常小,因为这个计算出来的方差会非常小,那个比值接近1,q就接近0了。

建议的数据示例:每个城市的数据(因变量+自变量),这样就只有几百或者几十行数据。

另外一点是,自变量的分类(离散化)可能会影响结果:因为这个地理探测器的原理可以看作是,找到一条或者几条分界线,使得自变量和因变量都是用这一组分界线,能将数据很好的区分(当然这个比喻并不是是否准确)。这个分界线其实就相当于你对自变量的分类


参考文献:

王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134 https://doi.org/10.11821/dlxb201701010
Jinfeng WANG, Chengdong XU. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134 https://doi.org/10.11821/dlxb201701010

相关文章:

【随笔】地理探测器原理与运用

文章目录 一、作者与下载1.1 软件作者1.2 软件下载 二、原理简述2.1 空间分异性与地理探测器的提出2.2 地理探测器的数学模型2.21 分异及因子探测2.22 交互作用探测2.23 风险区与生态探测 三、使用&#xff1a;excel 一、作者与下载 1.1 软件作者 作者&#xff1a; DOI: 10.…...

补码底层逻辑探讨

在计算机里面以二进制进行存储&#xff0c;二进制并不能区分正负数 为了处理负数&#xff0c;人们想了很多办法 1.原码 首先&#xff0c;很直观的区分方法就是设置一个flag 在二进制前面加一个符号位&#xff0c;0是正、1是负 但是在电路里面处理这样的信号却很复杂&#…...

第二大脑-个人知识库

原文链接:https://i68.ltd/notes/posts/20250407-llm-person-kb/ Quivr-第二大脑一样的个人助手&#xff0c;利用AI技术增强个人生产力 将 GenAI 集成到您的应用程序中的个性化 RAG,专注于您的产品而非 RAG项目仓库:https://github.com/QuivrHQ/quivr Star:37.7k官网:https:/…...

泰勒展开概念解释(图优化SLAM中非线性系统的线性处理)

1. 泰勒展开 泰勒展开是一种用多项式近似复杂函数的数学方法,其核心思想是通过函数在某一点的各阶导数信息,构建一个多项式来逼近原函数,即通过函数在某一点x0的各阶导数值,构造一个多项式 P(x),使得该多项式在 x0 附近与原函数 f(x) 的值及其导数尽可能匹配,数学形式为…...

CANape与MATLAB数据接口技术详解

目录 CANape与MATLAB数据接口技术详解 一、数据互操作背景与意义 1.1 汽车电子开发中的测量需求 1.2 技术标准演进分析 二、CANape数据导出深度解析 2.1 MDF文件结构说明 2.2 转换流程优化建议 三、MATLAB数据处理进阶技术 3.1 数据质量评估脚本 3.2 数据可视化增强方…...

per-task affinity 是什么?

Per-Task Affinity&#xff08;任务级CPU亲和性&#xff09;详解 Per-Task Affinity 是 Linux 调度器提供的一种机制&#xff0c;允许将单个任务&#xff08;进程/线程&#xff09;绑定到特定的 CPU 核心&#xff08;或核心集合&#xff09;上运行&#xff0c;从而优化性能、减…...

基于先进MCU的机器人运动控制系统设计:理论、实践与前沿技术

摘要&#xff1a;随着机器人技术的飞速发展&#xff0c;对运动控制系统的性能要求日益严苛。本文聚焦于基于先进MCU&#xff08;微控制单元&#xff09;的机器人运动控制系统设计&#xff0c;深入剖析其理论基础、实践方法与前沿技术。以国科安芯的MCU芯片AS32A601为例&#xf…...

Network.framework 的引入,不是为了取代 URLSession

Network.framework 的引入&#xff0c;不是为了取代 URLSession 如果你感觉 Network.framework 的引入, 可能是为了取代 URLSession, 那你就大错特错了&#xff01;这里需要非常准确地区分一下&#xff1a; &#x1f535; Network.framework 不是为了取代 URLSession。 &…...

gradle-缓存、依赖、初始化脚本、仓库配置目录详解

1.启用init.gradle文件的方法 在命令置顶文件&#xff0c;例如gradle --init-script yourdir/init.gradle -q taskName,你可以多次输入此命令来制定多个init文件把init.gradle文件放到USER_HOME/.gradle/目录下把以.gradle结尾的文件放到USER_HOME/.gradle/.init.d/目录下把以…...

提示词的神奇魔力——如何通过它改变AI的输出

一、引言&#xff1a;初识AI的惊艳与迷茫 最近这段时间&#xff0c;我像很多人一样&#xff0c;一头扎进了生成式AI的世界&#xff0c;尝试使用各种工具&#xff0c;从文字助手到图像生成器。一开始&#xff0c;我被它们的能力深深震撼&#xff0c;感觉就像突然拥有了一个无所…...

零基础上手Python数据分析 (24):Scikit-learn 机器学习初步 - 让数据预测未来!

写在前面 在前面的学习中,我们已经掌握了使用 Python、Pandas、NumPy、Matplotlib 和 Seaborn 进行数据处理、分析和可视化的全套核心技能。我们学会了如何从数据中提取信息、清洗数据、整合数据、探索数据模式并将其可视化呈现。 现在,我们站在了一个新的起点。数据分析不仅…...

React 与 Vue 虚拟 DOM 实现原理深度对比:从理论到实践

在现代前端开发中&#xff0c;React 和 Vue 作为最流行的两大框架&#xff0c;都采用了虚拟 DOM&#xff08;Virtual DOM&#xff09; 技术来优化渲染性能。虚拟 DOM 的核心思想是通过 JavaScript 对象模拟真实 DOM&#xff0c;减少直接操作 DOM 的开销&#xff0c;从而提高页面…...

结合五层网络结构讲一下用户在浏览器输入一个网址并按下回车后到底发生了什么?

文章目录 实际应用第一步&#xff1a;用户在浏览器输入 www.baidu.com 并按下回车1. 浏览器触发域名解析&#xff08;DNS查询&#xff09; 第二步&#xff1a;DNS请求的逐层封装与传输1. 应用层&#xff08;DNS协议&#xff09;2. 传输层&#xff08;UDP协议&#xff09;3. 网络…...

关于Code_流苏:商务合作、产品开发、计算机科普、自媒体运营,一起见证科技与艺术的交融!

Code_流苏 &#x1f33f; 名人说&#xff1a;路漫漫其修远兮&#xff0c;吾将上下而求索。—— 屈原《离骚》 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; &#x1f31f; 欢迎来到Code_流苏的CSDN主页 —— 与我一起&…...

Webpack模块打包工具

1. 认识webpack的基本用法步骤创建项目->下载webpack webpack-cli -> npm init -y -> package.json的scripts中配置webpack默认打包入口&#xff1a;src/index.js默认打包出口: dist/main.js2. 认识webpack.config.js的基本配置loader -> 打包css&#xff0c;less…...

crossOriginLoading使用说明

1. 说明 此配置用于控制 Webpack 动态加载的代码块&#xff08;chunk&#xff09;&#xff08;例如代码分割或懒加载的模块&#xff09;在跨域&#xff08;不同域名&#xff09;加载时的行为。它通过为动态生成的 <script>标签添加 crossorigin 属性&#xff0c;确保符合…...

Linux系统性能调优技巧分享

在数字化时代,Linux 系统以其开源、稳定、高效的特性,成为服务器、云计算、物联网等领域的核心支撑。然而,随着业务规模的扩大和负载的增加,系统性能问题逐渐凸显。掌握 Linux 系统性能调优技巧,不仅能提升系统运行效率,还能降低运维成本。下面从多个方面介绍实用的性能调…...

在Windows11中配置Git+SSH环境,本此实践使用Gitee(码云),方法同样适用于其它绝大部分Git服务

1.下载并安装Git 进入官网下载 Git - Downloading Package 选择下载Standalone Installer安装包&#xff0c;看自己电脑是64-bit还是32-bit&#xff08;一般都是64-bit&#xff09; 双击安装包进行安装&#xff0c;Next 这里可以自定义安装路径 这里可以勾选添加桌面快捷方式…...

【软考-架构】14、软件可靠性基础

✨资料&文章更新✨ GitHub地址&#xff1a;https://github.com/tyronczt/system_architect 文章目录 软件可靠性基本概念软件可靠性建模软件可靠性管理软件可靠性设计N版本程序设计恢复块设计&#xff08;动态冗余&#xff09;双机容错技术、集群技术负载均衡软件可靠性测试…...

怎样理解ceph?

Ceph 是一个开源的、高度可扩展的 分布式存储系统&#xff0c;设计用于提供高性能、高可靠性的对象存储&#xff08;Object&#xff09;、块存储&#xff08;Block&#xff09;和文件存储&#xff08;File&#xff09;服务。它的核心思想是通过去中心化的架构和智能的数据分布策…...

《AI大模型趣味实战》智能Agent和MCP协议的应用实例:搭建一个能阅读DOC文件并实时显示润色改写过程的Python Flask应用

智能Agent和MCP协议的应用实例&#xff1a;搭建一个能阅读DOC文件并实时显示润色改写过程的Python Flask应用 引言 随着人工智能技术的飞速发展&#xff0c;智能Agent与模型上下文协议(MCP)的应用场景越来越广泛。本报告将详细介绍如何基于Python Flask框架构建一个智能应用&…...

Pygame字体与UI:打造游戏菜单和HUD界面

Pygame字体与UI:打造游戏菜单和HUD界面 在现代游戏中,用户界面(UI)是玩家与游戏互动的重要桥梁。一个精心设计的UI不仅能够提升游戏的视觉效果,还能增强玩家的游戏体验。Pygame作为一个强大的游戏开发库,提供了丰富的工具和方法来创建和管理UI元素。本文将详细介绍如何使…...

游戏引擎学习第246天:将 Worker 上下文移到主线程创建

回顾并为今天的工作做准备 关于GPU驱动bug的问题&#xff0c;目前本地机器上没有复现。如果有问题&#xff0c;昨天的测试就应该已经暴露出来了。当前演示的是游戏的过场动画&#xff0c;运行正常&#xff0c;使用的是硬件渲染。 之前使用软件渲染时没有遇到太多问题&#xff…...

系统设计(2)—Redis—消息队列—数据库—熔限降

Redis 缓存设计 在高并发系统中&#xff0c;缓存是提升性能、减轻后端负载的杀手锏。Redis 作为内存级的高性能缓存数据库&#xff0c;被广泛应用于各类系统设计中。利用 Redis&#xff0c;将热点数据存储在内存中&#xff0c;可以加速读写并大幅降低对后端关系型数据库的直接…...

第十六届蓝桥杯大赛软件赛省赛第二场 C/C++ 大学 A 组

比赛还没有开始&#xff0c;竟然忘记写using namespace std; //debug半天没看明白 (平时cv多了 然后就是忘记那个编译参数&#xff0c;&#xff08;好惨的开局 编译参数-stdc11 以下都是赛时所写代码&#xff0c;赛时无聊时把思路都打上去了&#xff08;除了倒数第二题&#…...

HiSpark Studio如何使用Trae(Marscode)插件

引言 我现在非常喜欢使用编程辅助插件&#xff0c;用的最多的是Trae&#xff08;以前叫Marscode&#xff09;。以前华为的DevEco Device Tools是基于VSCode的&#xff0c;直接使用官方的插件市场就可以安装了。现在海思提供了自己的HiSpark Studio&#xff0c;比原来的Device …...

Netmiko连接池与长连接优化

背景与原理 在网络自动化中&#xff0c;频繁创建和断开 SSH 连接会带来以下问题&#xff1a; 性能损耗&#xff1a;每次连接需经历 TCP 握手、SSH 协商、用户认证等流程&#xff0c;耗时约 1~3 秒。资源浪费&#xff1a;设备端可能限制并发连接数&#xff0c;频繁连接易触发阈…...

10:00面试,10:08就出来了,面试问的问题太。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40%,这…...

从基础到实战的量化交易全流程学习:1.2 金融市场基础

从基础到实战的量化交易全流程学习&#xff1a;1.2 金融市场基础 在量化交易领域&#xff0c;扎实的金融市场基础是策略开发与风险控制的核心支撑。本文将从交易品种、市场机制、监管合规三方面展开&#xff0c;结合市场特性、真实数据案例及实践要点进行系统化解析&#xff0c…...

游戏状态管理:用Pygame实现场景切换与暂停功能

游戏状态管理:用Pygame实现场景切换与暂停功能 在开发游戏时,管理游戏的不同状态(如主菜单、游戏进行中、暂停等)是非常重要的。这不仅有助于提升玩家的游戏体验,还能使代码结构更加清晰。本文将通过一个简单的示例,展示如何使用Pygame库来实现游戏中的场景切换和暂停功…...

数据资产价值及其实现路径-简答题回顾

1. 简述数据资产的定义及其特征。 答案&#xff1a;数据资产是指企业或组织所拥有的、具有经济价值的数据资源。它具有以下特征&#xff1a;可复制性&#xff08;数据可以多次使用&#xff09;、价值潜力&#xff08;数据经过处理、分析可以创造经济价值&#xff09;、流动性&…...

Docker化HBase排错实录:从Master hflush启动失败到Snappy算法未支持解决

前言 在容器化时代&#xff0c;使用 Docker 部署像 HBase 这样复杂的分布式系统也比较方便。社区也提供了许多方便的 HBase Docker 镜像&#xff0c;没有找到官方的 apache的&#xff0c;但有包含许多大数据工具的 harisekhon/hbase 或用于学习目的的 bigdatauniversity/hbase…...

端到端自动驾驶的数据规模化定律

25年4月来自Nvidia、多伦多大学、NYU和斯坦福大学的论文“Data Scaling Laws for End-to-End Autonomous Driving”。 自动驾驶汽车 (AV) 栈传统上依赖于分解方法&#xff0c;使用单独的模块处理感知、预测和规划。然而&#xff0c;这种设计在模块间通信期间会引入信息丢失&am…...

桌面端开发技术栈选型:开启高效开发之旅

在数字化浪潮中&#xff0c;桌面端应用依然占据重要地位&#xff0c;而选择合适的技术栈是打造优质桌面端应用的关键一步。以下是多种主流桌面端开发技术栈的介绍与对比&#xff0c;希望能为大家提供有价值的参考。 基于 Web 技术的跨平台框架 • Electron&#xff1a; • 特…...

C++模拟Java C#的 finally

在 Java 和 C# 中&#xff0c;finally 是一个与异常处理&#xff08;try-catch&#xff09;配合使用的关键字&#xff0c;用于确保一段代码无论是否发生异常都会被执行。它通常用于释放资源&#xff08;如文件句柄、数据库连接、锁等&#xff09;&#xff0c;避免内存泄漏或状态…...

Spring Boot安装指南

&#x1f516; Spring Boot安装指南 &#x1f331; Spring Boot支持两种使用方式&#xff1a; 1️⃣ 可作为常规Java开发工具使用 2️⃣ 可作为命令行工具安装 ⚠️ 安装前提&#xff1a; &#x1f4cc; 系统需安装 Java SDK 17 或更高版本 &#x1f50d; 建议先运行检查命令…...

zephyr架构下Bluetooth advertising接口

目录 概述 1 函数接口 2 主要函数介绍 2.1 bt_le_adv_start函数 2.1.1 函数功能介绍 2.1.2 典型使用示例 2.1.3 广播间隔 2.1.4 注意事项 2.2 bt_le_adv_stop 函数 2.2.1 函数功能 2.2.2 使用方法介绍 2.2.3 实际应用示例 2.2.4 关键注意事项 2.2.5 常见问题解决 …...

Oracle官宣 MySQL+APEX+AI三认证限时免费

1 MySQL8 OCP 考试代码 1Z0-908 免费时间&#xff1a;2025年4月20日至7月31日 https://education.oracle.com/mysql-promo 2 APEX云开发专家 考试代码 1Z0-771 免费时间&#xff1a;2025年5月15日截止&#xff01; https://mylearn.oracle.com/ou/learning-path/become…...

深入理解N皇后问题:从DFS到对角线优化

N皇后问题是一个经典的算法问题&#xff0c;要求在NN的棋盘上放置N个皇后&#xff0c;使得它们互不攻击。本文将全面解析该问题的解法&#xff0c;特别聚焦于DFS算法和对角线优化的数学原理。 问题描述 在NN的国际象棋棋盘上放置N个皇后&#xff0c;要求&#xff1a; 任意两个…...

1软考系统架构设计师:第一章系统架构概述 - 超简记忆要点、知识体系全解、考点深度解析、真题训练附答案及解析

超简记忆要点 一、考试大纲 目标&#xff1a;架构设计能力&#xff08;需求→架构&#xff09;能力&#xff1a;技术/方法/行业科目&#xff1a;综合&#xff08;选择&#xff09;、案例&#xff08;问答&#xff09;、论文&#xff08;论述&#xff09; 二、架构核心 定义…...

MuJoCo 关节角速度记录与可视化,监控机械臂运动状态

视频讲解&#xff1a; MuJoCo 关节角速度记录与可视化&#xff0c;监控机械臂运动状态 代码仓库&#xff1a;GitHub - LitchiCheng/mujoco-learning 关节空间的轨迹优化&#xff0c;实际上是对于角速度起到加减速规划的控制&#xff0c;故一般来说具有该效果的速度变化会显得丝…...

如何打包python程序为可执行文件

将 Python 程序打包为可执行文件是一个常见需求&#xff0c;尤其是在希望将应用程序分享给不具备 Python 环境的用户时。以下是使用 PyInstaller 工具将 Python 程序打包为可执行文件的步骤。 步骤 1&#xff1a;安装 PyInstaller 如果您还没有安装 PyInstaller&#xff0c;请…...

产销协同是什么?产销协同流程有哪些?

目录 一、产销协同是什么 1.从市场需求的角度来看 2.企业内部运营的角度来看 3.从供应链的角度来看 二、实现产销协同的八大步骤 1. 市场需求预测 2. 销售计划制定 3. 生产能力评估 4. 生产计划制定 5. 库存管理 6. 信息共享与沟通 7. 订单执行与跟踪 8. 绩效评估…...

SQL 查询进阶:WHERE 子句与连接查询详解

SQL&#xff08;Structured Query Language&#xff09;是管理关系型数据库的核心语言&#xff0c;熟练掌握其查询功能对于数据处理至关重要。本文将深入探讨 SQL 中的两个关键概念&#xff1a;WHERE 子句和连接查询。我们将详细讲解 WHERE 子句中的模糊查询、IS NULL、IS NOT …...

【计算机视觉】CV实战项目- DFace: 基于深度学习的高性能人脸识别

图&#xff1a;MTCNN的三阶段网络结构&#xff08;P-Net、R-Net、O-Net&#xff09; DFace深度解析&#xff1a;基于深度学习的高性能人脸识别 深度解析DFace&#xff1a;基于PyTorch的实时人脸检测与识别系统技术背景与项目概述核心功能与特点实战部署指南环境准备硬件要求软…...

基于Docker、Kubernetes和Jenkins的百节点部署架构图及信息流描述

以下是基于Docker、Kubernetes和Jenkins的百节点部署架构图及信息流描述,使用文本和Mermaid语法表示: 架构图(Mermaid语法) #mermaid-svg-WWCAqL1oWjvRywVJ {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-WWCAq…...

百度搜索AI开放计划:让应用连接精准流量的秘诀

引言 在人工智能技术深刻改变各行各业的今天&#xff0c;每天都有许多AI应用诞生。然而无论是开发者还是用户依然会感到自己的应用鲜有人使用或是需求没有被充分满足。这种情况正说明了为什么我们需要SEO流量&#xff0c;而一个能够与AI应用直接相关的SEO平台更是呼之欲出。百度…...

Redis数据结构SDS,IntSet,Dict

1.字符串&#xff1a;SDS SDS的底层是C语言编写的构建的一种简单动态字符串 简称SDS&#xff0c;是redis比较常见的数据结构。 由于以下几种缺点&#xff0c;Redis并没有直接采用C语言的字符串。 1.获取长度需要计算 2.非二进制安全 &#xff1a;中间不能有 \0&#xff0c;…...

leetcode201.数字范围按位与

找到公共前缀部分&#xff0c;然后后面的部分全0 class Solution {public int rangeBitwiseAnd(int left, int right) {int offset 0;while (left ! right) {offset;left left >> 1;right right >> 1;}return right << offset;} }...

云服务器 —— 公有 IP 与 私有 IP

云服务器的 公有 IP 和 私有 IP 在网络架构中扮演不同的角色&#xff0c;具体用途和区别如下&#xff1a; 目录 1. 公有 IP&#xff08;Public IP&#xff09; 作用&#xff1a; 特点&#xff1a; 示例场景&#xff1a; 2. 私有 IP&#xff08;Private IP&#xff09; 作用…...