STM32 开发 - stm32f10x.h 头文件(内存映射、寄存器结构体与宏、寄存器位定义、实现点灯案例)
概述
STM32F10x.h
是 STM32F1 系列微控制器的核心头文件,提供了所有外设寄存器的定义和内存映射
一、内存映射
#define PERIPH_BASE ((uint32_t)0x40000000)
#define APB1PERIPH_BASE PERIPH_BASE
#define APB2PERIPH_BASE (PERIPH_BASE + 0x10000)
#define AHBPERIPH_BASE (PERIPH_BASE + 0x20000)
-
PERIPH_BASE
是片上外设的起始地址,对于STM32系列是0x40000000
-
根据这个基础地址,APB1、APB2、AHB 外设的地址空间是依次偏移的,分别为
+0x00000
、0x10000
、0x20000
#define GPIOA_BASE (APB2PERIPH_BASE + 0x0800)
#define GPIOB_BASE (APB2PERIPH_BASE + 0x0C00)
#define GPIOC_BASE (APB2PERIPH_BASE + 0x1000)
#define GPIOD_BASE (APB2PERIPH_BASE + 0x1400)
#define GPIOE_BASE (APB2PERIPH_BASE + 0x1800)
#define GPIOF_BASE (APB2PERIPH_BASE + 0x1C00)
#define GPIOG_BASE (APB2PERIPH_BASE + 0x2000)
-
访问 GPIO 外设的基地址定义,它们基于 APB2PERIPH_BASE
-
GPIO 的地址按端口(GPIOA、GPIOB…)依次偏移
0x400
二、寄存器结构体与宏
1、复位和时钟控制 RCC
typedef struct
{__IO uint32_t CR; // 时钟控制寄存器__IO uint32_t CFGR; // 时钟配置寄存器__IO uint32_t CIR; // 时钟中断寄存器__IO uint32_t APB2RSTR; // APB2 外设复位寄存器__IO uint32_t APB1RSTR; // APB1 外设复位寄存器__IO uint32_t AHBENR; // AHB 外设时钟使能寄存器__IO uint32_t APB2ENR; // APB2 外设时钟使能寄存器__IO uint32_t APB1ENR; // APB1 外设时钟使能寄存器__IO uint32_t BDCR; // 备份域控制寄存器__IO uint32_t CSR; // 控制 / 状态寄存器#ifdef STM32F10X_CL __IO uint32_t AHBRSTR;__IO uint32_t CFGR2;
#endif#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) uint32_t RESERVED0;__IO uint32_t CFGR2;
#endif
} RCC_TypeDef;
#define RCC ((RCC_TypeDef *) RCC_BASE)
2、通用输入输出 GPIO
typedef struct
{__IO uint32_t CRL; // 端口配置低寄存器__IO uint32_t CRH; // 端口配置高寄存器__IO uint32_t IDR; // 输入数据寄存器__IO uint32_t ODR; // 输出数据寄存器__IO uint32_t BSRR; // 位设置/清除寄存器__IO uint32_t BRR; // 位清除寄存器__IO uint32_t LCKR; // 配置锁定寄存器
} GPIO_TypeDef;
#define GPIOA ((GPIO_TypeDef *) GPIOA_BASE)
#define GPIOB ((GPIO_TypeDef *) GPIOB_BASE)
#define GPIOC ((GPIO_TypeDef *) GPIOC_BASE)
#define GPIOD ((GPIO_TypeDef *) GPIOD_BASE)
#define GPIOE ((GPIO_TypeDef *) GPIOE_BASE)
#define GPIOF ((GPIO_TypeDef *) GPIOF_BASE)
#define GPIOG ((GPIO_TypeDef *) GPIOG_BASE)
三、寄存器位定义
1、RCC_APB2RSTR
寄存器位定义
#define RCC_APB2ENR_AFIOEN ((uint32_t)0x00000001) /*!< Alternate Function I/O clock enable */
#define RCC_APB2ENR_IOPAEN ((uint32_t)0x00000004) /*!< I/O port A clock enable */
#define RCC_APB2ENR_IOPBEN ((uint32_t)0x00000008) /*!< I/O port B clock enable */
#define RCC_APB2ENR_IOPCEN ((uint32_t)0x00000010) /*!< I/O port C clock enable */
#define RCC_APB2ENR_IOPDEN ((uint32_t)0x00000020) /*!< I/O port D clock enable */
#define RCC_APB2ENR_ADC1EN ((uint32_t)0x00000200) /*!< ADC 1 interface clock enable */#if !defined (STM32F10X_LD_VL) && !defined (STM32F10X_MD_VL) && !defined (STM32F10X_HD_VL)
#define RCC_APB2ENR_ADC2EN ((uint32_t)0x00000400) /*!< ADC 2 interface clock enable */
#endif#define RCC_APB2ENR_TIM1EN ((uint32_t)0x00000800) /*!< TIM1 Timer clock enable */
#define RCC_APB2ENR_SPI1EN ((uint32_t)0x00001000) /*!< SPI 1 clock enable */
#define RCC_APB2ENR_USART1EN ((uint32_t)0x00004000) /*!< USART1 clock enable */#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)
#define RCC_APB2ENR_TIM15EN ((uint32_t)0x00010000) /*!< TIM15 Timer clock enable */
#define RCC_APB2ENR_TIM16EN ((uint32_t)0x00020000) /*!< TIM16 Timer clock enable */
#define RCC_APB2ENR_TIM17EN ((uint32_t)0x00040000) /*!< TIM17 Timer clock enable */
#endif#if !defined (STM32F10X_LD) && !defined (STM32F10X_LD_VL)#define RCC_APB2ENR_IOPEEN ((uint32_t)0x00000040) /*!< I/O port E clock enable */
#endif /* STM32F10X_LD && STM32F10X_LD_VL */#if defined (STM32F10X_HD) || defined (STM32F10X_XL)#define RCC_APB2ENR_IOPFEN ((uint32_t)0x00000080) /*!< I/O port F clock enable */#define RCC_APB2ENR_IOPGEN ((uint32_t)0x00000100) /*!< I/O port G clock enable */#define RCC_APB2ENR_TIM8EN ((uint32_t)0x00002000) /*!< TIM8 Timer clock enable */#define RCC_APB2ENR_ADC3EN ((uint32_t)0x00008000) /*!< DMA1 clock enable */
#endif#if defined (STM32F10X_HD_VL)#define RCC_APB2ENR_IOPFEN ((uint32_t)0x00000080) /*!< I/O port F clock enable */#define RCC_APB2ENR_IOPGEN ((uint32_t)0x00000100) /*!< I/O port G clock enable */
#endif#ifdef STM32F10X_XL#define RCC_APB2ENR_TIM9EN ((uint32_t)0x00080000) /*!< TIM9 Timer clock enable */#define RCC_APB2ENR_TIM10EN ((uint32_t)0x00100000) /*!< TIM10 Timer clock enable */#define RCC_APB2ENR_TIM11EN ((uint32_t)0x00200000) /*!< TIM11 Timer clock enable */
#endif
宏定义 | 值 | 说明 |
---|---|---|
RCC_APB2ENR_AFIOE | 0x00000001 | 复位 AFIO |
RCC_APB2ENR_IOPAEN | 0x00000004 | 使能 GPIOA |
RCC_APB2ENR_IOPBEN | 0x00000008 | 使能 GPIOB |
RCC_APB2ENR_IOPCEN | 0x00000010 | 使能 GPIOC |
RCC_APB2ENR_IOPDEN | 0x00000020 | 使能 GPIOD |
RCC_APB2ENR_ADC1EN | 0x00000200 | 使能 ADC1 |
RCC_APB2ENR_TIM1EN | 0x00000800 | 使能高级定时器 TIM1 |
RCC_APB2ENR_SPI1EN | 0x00001000 | 使能 SPI1 |
RCC_APB2ENR_USART1EN | 0x00004000 | 使能 USART1 |
2、GPIO_CRL
寄存器位定义
#define GPIO_CRL_MODE ((uint32_t)0x33333333) /*!< Port x mode bits */#define GPIO_CRL_MODE0 ((uint32_t)0x00000003) /*!< MODE0[1:0] bits (Port x mode bits, pin 0) */
#define GPIO_CRL_MODE0_0 ((uint32_t)0x00000001) /*!< Bit 0 */
#define GPIO_CRL_MODE0_1 ((uint32_t)0x00000002) /*!< Bit 1 */#define GPIO_CRL_MODE1 ((uint32_t)0x00000030) /*!< MODE1[1:0] bits (Port x mode bits, pin 1) */
#define GPIO_CRL_MODE1_0 ((uint32_t)0x00000010) /*!< Bit 0 */
#define GPIO_CRL_MODE1_1 ((uint32_t)0x00000020) /*!< Bit 1 */#define GPIO_CRL_MODE2 ((uint32_t)0x00000300) /*!< MODE2[1:0] bits (Port x mode bits, pin 2) */
#define GPIO_CRL_MODE2_0 ((uint32_t)0x00000100) /*!< Bit 0 */
#define GPIO_CRL_MODE2_1 ((uint32_t)0x00000200) /*!< Bit 1 */#define GPIO_CRL_MODE3 ((uint32_t)0x00003000) /*!< MODE3[1:0] bits (Port x mode bits, pin 3) */
#define GPIO_CRL_MODE3_0 ((uint32_t)0x00001000) /*!< Bit 0 */
#define GPIO_CRL_MODE3_1 ((uint32_t)0x00002000) /*!< Bit 1 */#define GPIO_CRL_MODE4 ((uint32_t)0x00030000) /*!< MODE4[1:0] bits (Port x mode bits, pin 4) */
#define GPIO_CRL_MODE4_0 ((uint32_t)0x00010000) /*!< Bit 0 */
#define GPIO_CRL_MODE4_1 ((uint32_t)0x00020000) /*!< Bit 1 */#define GPIO_CRL_MODE5 ((uint32_t)0x00300000) /*!< MODE5[1:0] bits (Port x mode bits, pin 5) */
#define GPIO_CRL_MODE5_0 ((uint32_t)0x00100000) /*!< Bit 0 */
#define GPIO_CRL_MODE5_1 ((uint32_t)0x00200000) /*!< Bit 1 */#define GPIO_CRL_MODE6 ((uint32_t)0x03000000) /*!< MODE6[1:0] bits (Port x mode bits, pin 6) */
#define GPIO_CRL_MODE6_0 ((uint32_t)0x01000000) /*!< Bit 0 */
#define GPIO_CRL_MODE6_1 ((uint32_t)0x02000000) /*!< Bit 1 */#define GPIO_CRL_MODE7 ((uint32_t)0x30000000) /*!< MODE7[1:0] bits (Port x mode bits, pin 7) */
#define GPIO_CRL_MODE7_0 ((uint32_t)0x10000000) /*!< Bit 0 */
#define GPIO_CRL_MODE7_1 ((uint32_t)0x20000000) /*!< Bit 1 */#define GPIO_CRL_CNF ((uint32_t)0xCCCCCCCC) /*!< Port x configuration bits */#define GPIO_CRL_CNF0 ((uint32_t)0x0000000C) /*!< CNF0[1:0] bits (Port x configuration bits, pin 0) */
#define GPIO_CRL_CNF0_0 ((uint32_t)0x00000004) /*!< Bit 0 */
#define GPIO_CRL_CNF0_1 ((uint32_t)0x00000008) /*!< Bit 1 */#define GPIO_CRL_CNF1 ((uint32_t)0x000000C0) /*!< CNF1[1:0] bits (Port x configuration bits, pin 1) */
#define GPIO_CRL_CNF1_0 ((uint32_t)0x00000040) /*!< Bit 0 */
#define GPIO_CRL_CNF1_1 ((uint32_t)0x00000080) /*!< Bit 1 */#define GPIO_CRL_CNF2 ((uint32_t)0x00000C00) /*!< CNF2[1:0] bits (Port x configuration bits, pin 2) */
#define GPIO_CRL_CNF2_0 ((uint32_t)0x00000400) /*!< Bit 0 */
#define GPIO_CRL_CNF2_1 ((uint32_t)0x00000800) /*!< Bit 1 */#define GPIO_CRL_CNF3 ((uint32_t)0x0000C000) /*!< CNF3[1:0] bits (Port x configuration bits, pin 3) */
#define GPIO_CRL_CNF3_0 ((uint32_t)0x00004000) /*!< Bit 0 */
#define GPIO_CRL_CNF3_1 ((uint32_t)0x00008000) /*!< Bit 1 */#define GPIO_CRL_CNF4 ((uint32_t)0x000C0000) /*!< CNF4[1:0] bits (Port x configuration bits, pin 4) */
#define GPIO_CRL_CNF4_0 ((uint32_t)0x00040000) /*!< Bit 0 */
#define GPIO_CRL_CNF4_1 ((uint32_t)0x00080000) /*!< Bit 1 */#define GPIO_CRL_CNF5 ((uint32_t)0x00C00000) /*!< CNF5[1:0] bits (Port x configuration bits, pin 5) */
#define GPIO_CRL_CNF5_0 ((uint32_t)0x00400000) /*!< Bit 0 */
#define GPIO_CRL_CNF5_1 ((uint32_t)0x00800000) /*!< Bit 1 */#define GPIO_CRL_CNF6 ((uint32_t)0x0C000000) /*!< CNF6[1:0] bits (Port x configuration bits, pin 6) */
#define GPIO_CRL_CNF6_0 ((uint32_t)0x04000000) /*!< Bit 0 */
#define GPIO_CRL_CNF6_1 ((uint32_t)0x08000000) /*!< Bit 1 */#define GPIO_CRL_CNF7 ((uint32_t)0xC0000000) /*!< CNF7[1:0] bits (Port x configuration bits, pin 7) */
#define GPIO_CRL_CNF7_0 ((uint32_t)0x40000000) /*!< Bit 0 */
#define GPIO_CRL_CNF7_1 ((uint32_t)0x80000000) /*!< Bit 1 */
宏定义 | 值(十六进制) | 值(二进制) | 功能描述 |
---|---|---|---|
GPIO_CRL_MODE | 0x33333333 | ... 00110011 | 所有引脚的 MODE 位掩码(复位值) |
GPIO_CRL_MODE0 | 0x00000003 | ... 00000011 | 引脚 0 的 MODE 位 0、1 |
GPIO_CRL_MODE0_0 | 0x00000001 | ... 00000001 | 引脚 0 的 MODE 位 0 |
GPIO_CRL_MODE0_1 | 0x00000002 | ... 00000010 | 引脚 0 的 MODE 位 1 |
GPIO_CRL_MODE1 | 0x00000030 | ... 00110000 | 引脚 1 的 MODE 位 4 、5 |
GPIO_CRL_MODE1_0 | 0x00000010 | ... 00010000 | 引脚 1 的 MODE 位 4 |
GPIO_CRL_MODE1_1 | 0x00000020 | ... 00100000 | 引脚 1 的 MODE 为 5 |
… | … | … | … |
宏定义 | 值(十六进制) | 值(二进制) | 功能描述 |
---|---|---|---|
GPIO_CRL_CNF | 0xCCCCCCCC | ... 11001100 | 所有引脚的 CNF 位掩码(复位值) |
GPIO_CRL_CNF0 | 0x0000000C | ... 00001100 | 引脚 0 的 CNF 位 2、3 |
GPIO_CRL_CNF0_0 | 0x00000004 | ... 00000100 | 引脚 0 的 CNF 位 2 |
GPIO_CRL_CNF0_1 | 0x00000008 | ... 00001000 | 引脚 0 的 CNF 位 3 |
GPIO_CRL_CNF1 | 0x000000C0 | ... 11000000 | 引脚 1 的 CNF 位 6、7 |
GPIO_CRL_CNF1_0 | 0x00000040 | ... 01000000 | 引脚 1 的 CNF 位 6 |
GPIO_CRL_CNF1_1 | 0x00000080 | ... 10000000 | 引脚 1 的 CNF 位 7 |
… | … | … | … |
3、GPIO_ODR
寄存器位定义
#define GPIO_ODR_ODR0 ((uint16_t)0x0001) /*!< Port output data, bit 0 */
#define GPIO_ODR_ODR1 ((uint16_t)0x0002) /*!< Port output data, bit 1 */
#define GPIO_ODR_ODR2 ((uint16_t)0x0004) /*!< Port output data, bit 2 */
#define GPIO_ODR_ODR3 ((uint16_t)0x0008) /*!< Port output data, bit 3 */
#define GPIO_ODR_ODR4 ((uint16_t)0x0010) /*!< Port output data, bit 4 */
#define GPIO_ODR_ODR5 ((uint16_t)0x0020) /*!< Port output data, bit 5 */
#define GPIO_ODR_ODR6 ((uint16_t)0x0040) /*!< Port output data, bit 6 */
#define GPIO_ODR_ODR7 ((uint16_t)0x0080) /*!< Port output data, bit 7 */
#define GPIO_ODR_ODR8 ((uint16_t)0x0100) /*!< Port output data, bit 8 */
#define GPIO_ODR_ODR9 ((uint16_t)0x0200) /*!< Port output data, bit 9 */
#define GPIO_ODR_ODR10 ((uint16_t)0x0400) /*!< Port output data, bit 10 */
#define GPIO_ODR_ODR11 ((uint16_t)0x0800) /*!< Port output data, bit 11 */
#define GPIO_ODR_ODR12 ((uint16_t)0x1000) /*!< Port output data, bit 12 */
#define GPIO_ODR_ODR13 ((uint16_t)0x2000) /*!< Port output data, bit 13 */
#define GPIO_ODR_ODR14 ((uint16_t)0x4000) /*!< Port output data, bit 14 */
#define GPIO_ODR_ODR15 ((uint16_t)0x8000) /*!< Port output data, bit 15 */
宏定义 | 值(十六进制) | 二进制值 | 说明 |
---|---|---|---|
GPIO_ODR_ODR0 | 0x0001 | ... 00000001 | 设置引脚 0 |
GPIO_ODR_ODR1 | 0x0002 | ... 00000010 | 设置引脚 1 |
GPIO_ODR_ODR2 | 0x0004 | ... 00000100 | 设置引脚 2 |
GPIO_ODR_ODR3 | 0x0008 | ... 00001000 | 设置引脚 3 |
… | … | … | … |
实现点灯案例
#include "stm32f10x.h"int main()
{// RCC APB2 使能RCC->APB2ENR |= RCC_APB2ENR_IOPBEN;// 清除 PB5 的配置位 [23:20]// GPIO_CRL_MODE5 为 00000000 00110000 00000000 00000000// GPIO_CRL_CNF5 为 00000000 11000000 00000000 00000000// GPIO_CRL_MODE5 | GPIO_CRL_CNF5 得到 00000000 11110000 00000000 00000000// ~(GPIO_CRL_MODE5 | GPIO_CRL_CNF5) 得到 11111111 00001111 11111111 11111111GPIOB->CRL &= ~(GPIO_CRL_MODE5 | GPIO_CRL_CNF5);// 设置 PB5 为推挽输出模式,最大速度为 50MH// GPIO_CRL_MODE5_0 为 00000000 00010000 00000000 00000000// GPIO_CRL_MODE5_1 为 00000000 00100000 00000000 00000000// GPIO_CRL_MODE5_0 | GPIO_CRL_MODE5_1 得到 00000000 00110000 00000000 00000000GPIOB->CRL |= GPIO_CRL_MODE5_0 | GPIO_CRL_MODE5_1;// 点亮 PB5// GPIO_ODR_ODR5 为 00000000 00000000 00000000 00010000// ~GPIO_ODR_ODR5 得到 11111111 11111111 11111111 11101111GPIOB->ODR &= ~GPIO_ODR_ODR5;while (1){}
}
相关文章:
STM32 开发 - stm32f10x.h 头文件(内存映射、寄存器结构体与宏、寄存器位定义、实现点灯案例)
概述 STM32F10x.h 是 STM32F1 系列微控制器的核心头文件,提供了所有外设寄存器的定义和内存映射 一、内存映射 #define PERIPH_BASE ((uint32_t)0x40000000)#define APB1PERIPH_BASE PERIPH_BASE #define APB2PERIPH_BASE (PERIPH_BASE 0x…...
UniApp 的现状与 WASM 支持的迫切性
一、UniApp 的跨平台优势与性能瓶颈 UniApp 凭借“一次开发,多端发布”的核心理念,已成为跨平台开发的主流框架之一。然而,随着移动应用场景的复杂化(如 3D 渲染、音视频处理、AI 推理),传统的 JavaScript…...
Prometheus、Zabbix和Nagios针对100个节点的部署设计架构图
一、Prometheus 架构图(联邦集群+分布式存储) graph TD;subgraph 全局监控层GlobalProm[Prometheus Server] -->|联邦查询| RegionalProm1[区域Prometheus]GlobalProm -->|联邦查询| RegionalProm2[区域Prometheus]GlobalProm -->|联邦查询| RegionalProm3[区域Pro…...
坚果派已适配的鸿蒙版flutter库【持续更新】
坚果派已适配的鸿蒙版flutter库 序号原仓版本适配仓文章解读是否完成1https://pub.dev/packages/fluttertoast8.2.12https://gitcode.com/nutpi/FlutterToasthttps://www.nutpi.net/thread?topicId1575是2https://pub.dev/packages/flutter_udid4.0.0https://gitcode.com/nut…...
代码随想录打卡|Day28 动态规划(理论基础、斐波那契数列、爬楼梯、使用最小花费爬楼梯)
动态规划 Part01 理论基础 代码随想录讲解链接 视频讲解链接 斐波那契数 力扣题目链接 代码随想录链接 视频讲解链接 题目描述: 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一…...
《USB技术应用与开发》第四讲:实现USB鼠标
一、标准鼠标分析 1.1简介 1.2页面显示 其中页面显示的“”不用管它,因为鼠标作为物理抓包,里面有时候会抓到一些错误,不一定是真正的通讯错误,很可能是本身线路接触质量不好等原因才打印出来的“”。 1.3按下鼠标左键 &#x…...
elk中kibana一直处于可用和降级之间且es群集状态并没有问题的解决方法
前言 在公司部elk的时候发现kibana的web界面一直很卡,数据量为0也会很卡,es群集状态正常,资源足够。 报错信息 [2025-03-17T09:54:50.19400:00][INFO ][status] Kibana is now available (was degraded) [2025-03-17T09:55:03.28000:00][I…...
2025.4.26总结
今天把马良老师的《职场十二法则》看完后,感触极大,这们课程就是一场职场启蒙课。 虽然看过不少关于职场的书籍,但大多数是关于职场进阶,方法方面的。并没有解答“面对未来二三十年的职场生涯,我该怎么去看待自己的工…...
一、UI自动化测试01--认识和元素定位方法
目录 一、自动化测试1. 自动化应用场景2. ⾃动化测试的优缺点3. ⾃动化测试的分类 二、UI ⾃动测试1. 适合使用的项目2. 实现时机3. 常⻅的UI⾃动化测试⼯具4. Selenium 框架5. Web ⾃动化环境部署6. Web ⾃动化基本代码 二、元素定位1. 浏览器开发者⼯具⽅法1: 直接获取信息⽅…...
目标检测原理简介
目标检测是一类计算机视觉任务,简单来说,目标检测可被定义为在计算机中输入一张图像,计算机需要找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,如图一所示。目标检测是计算机视觉领域的核心问题之一,相较于最原始的将整张图片分类为某一类别,目标检测不光可…...
软件设计原则
开闭原则 对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。简言之,是为了使程序的扩展性好,易于维护和升级。 想要达到这样的效果,需要使用接口和抽象类。 因…...
Postman脚本处理各种数据的变量
一、变量是字符串里列表, 如 "["100","101","102","103","108"]" //把字符串的变量处理成列表 var myListJSON.parse(pm.environment.get(giftTabId)) #giftTabId变量名 //设置随机取值 var rando…...
嵌入式硬件开发工具---万用表---示波器---仿真器
万用表 主要功能: 测量交直流电压、电流 测量电阻、二级管及电路通断 其他----电容、频率、温度----特殊的万用表 * 检查电路是否正常 * 检查电路连接情况 示波器 主要功能: 以波形展示电信号随时间变化的关系 主要指标: 带宽---大…...
数据预处理之特征选择 (Feature Selection)
哈喽,大家好,我是我不是小upper~ 今天的文章和大家来聊聊数据与处理方法中常用的特征选择 在开始说特征选择前,咱们先搞清楚这个所谓的“特征”到底是啥玩意儿。 打个比方说,如果我们要训练一个模型来判断某个人是否会买一双运…...
Java基础 — 循环
介绍 Java基础循环是程序流程控制的核心结构,主要用于重复执行特定代码块。常见的循环包括for、while和do-while三种形式,开发者可根据不同场景灵活选择。 合理使用循环关键字能有效提升代码执行效率。掌握循环结构的核心在于理解执行流程与条件判断的时…...
参考平面的宽度-信号与电源完整性分析
参考平面的宽度: 计算特征阻抗时假设参考平面是无限宽的平面。在参考平面的宽度远大于线宽或介质厚度时,这种假设是正确的。但是PCB板上的参考平面经常被反焊盘掏空,当互连线经过参考平面掏空区域附近时,掏空的局部互连线参考平面变窄&#x…...
【Linux】Centos7 安装 Docker 详细教程
一、安装步骤 步骤一:确定你是Centos7及以上的版本 cat /etc/redhat-release 步骤二:卸载旧版本 查看官方文档:CentOS | Docker Docs 步骤三:安装GCC等工具 1.首先确保 CentOS7 能上外网 ping www.baidu.com 2.更新 Centos7…...
开源AI智能名片链动2+1模式S2B2C商城小程序源码赋能下的社交电商创业者技能跃迁与价值重构
摘要:在移动互联网深度重构商业生态的背景下,社交电商创业者面临流量成本攀升、用户粘性不足、供应链协同低效等核心痛点。本文以“开源AI智能名片链动21模式S2B2C商城小程序源码”技术体系为研究对象,通过分析其技术架构、商业逻辑及实战案例…...
计算机视觉与深度学习 | LSTM原理及与卡尔曼滤波的融合
长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),旨在解决传统RNN在处理长序列数据时出现的梯度消失和梯度爆炸问题。以下为你详细介绍其基本原理: 核心思想:LSTM的核心思想是引入记忆单元和门控机制来控制信息的流动,从而解决传统RNN的梯度消失问题。记忆单元类似…...
阿里云域名智能解析至国内外AWS的合规化部署指南
引言 随着全球化业务的发展,企业常面临地域合规性与用户体验优化的双重挑战。本文以阿里云域名解析为核心,结合AWS中国区(北京/宁夏)与Global区域部署,提供一套完整的解决方案,实现: 智能流量调度:国内用户访问AWS中国区,海外用户自动路由至AWS Global全链路合规:满…...
一、鸿蒙编译篇
一、下载源码和编译 https://blog.csdn.net/xusiwei1236/article/details/142675221 https://blog.csdn.net/xiaolizibie/article/details/146375750 https://forums.openharmony.cn/forum.php?modviewthread&tid897 repo init -u https://gitee.com/openharmony/mani…...
计算机网络 | 应用层(3)-- 因特网中的电子邮件
💓个人主页:mooridy 💓专栏地址:《计算机网络:自定向下方法》 大纲式阅读笔记 关注我🌹,和我一起学习更多计算机的知识 🔝🔝🔝 目录 3. 因特网中的电子邮件 …...
Missashe考研日记-day27
Missashe考研日记-day27 0 写在前面 博主昨晚有事所以没学专业课,白天学了其他科,但是觉得不太好写博客,就合在今天一起写好了。 1 专业课408 学习时间:3h30min学习内容: 今天把内存管理部分剩下的关于分页分段和段…...
【Castle-X机器人】五、物联网模块配置与调试
持续更新。。。。。。。。。。。。。。。 【Castle-X机器人】五、物联网模块配置与调试 五、物联网模块配置与调试5.1 物联网模块调试物联网模块测试:控制物联网模块:物联网模块话题五、物联网模块配置与调试 5.1 物联网模块调试 调试前需确保Castle-x与mqtt主机服务器处于同…...
FastAPI 零基础入门指南:10 分钟搭建高性能 API
一、为什么选择 FastAPI? 想象一下,用 Python 写 API 可以像搭积木一样简单,同时还能拥有媲美 Go 语言的性能,这个框架凭借三大核心优势迅速风靡全球: 开发效率提升 3 倍:类型注解 自动文档,…...
有关图的类型的题目(1)
1、图着色问题 #include<bits/stdc.h> using namespace std; const int N510,MN*N; int color[N]; vector<int> g[M]; int v,m,k,n;void add(int a,int b){g[a].push_back(b);g[b].push_back(a); } int judge(int cnt){if(cnt!k)return 0;for(int i1;i<v;i){fo…...
threejs 零基础学习day01
一、threejs本地环境搭建 1、下载源码 (1)进入threejs官网,把源码下载到本地访问。https://github.com/mrdoob/three.js (2)使用git命令的方式进行下载(优点是,threejs更新频繁,这…...
dubbo 异步化实践
DubboService public class AsyncOrderFacadeImpl implements AsyncOrderFacade {private Logger logger LoggerFactory.getLogger(AsyncOrderFacadeImpl.class);// 构建线程池ThreadPoolExecutor threadPoolExecutor new ThreadPoolExecutor(1000, 1000, 10, TimeUnit.SECOND…...
Web端ER可视化
背景介绍 因业务需要,团队决定对原ER图功能进行重构。重构来自两方面,一是功能上进行了细分,二是实现方式发生了变化。下面是重构前后对比: 重构前重构后功能方面只有逻辑模型层面的ER图包括概念模型、逻辑模型、物理模型3个层面的ER图实现方式单页面、antv/g6微前端、Rea…...
Java在云计算、大数据、云原生下的应用和优势 - 面试实战
Java在云计算、大数据、云原生下的应用和优势 - 面试实战 第一轮提问 面试官:马架构,请简单介绍一下Java在云计算中的主要应用场景有哪些? 马架构:Java在云计算中的主要应用场景包括微服务架构设计、容器化部署(如D…...
精益数据分析(27/126):剖析用户价值与商业模式拼图
精益数据分析(27/126):剖析用户价值与商业模式拼图 在创业和数据分析的领域中,每一次深入学习都是一次成长的契机。今天,我们继续秉持共同进步的理念,深入研读《精益数据分析》,剖析用户价值的…...
从 Lambda 到 DSL:Kotlin 接口实现的演进之路
Kotlin 中优化 Android 接口实现的几种方式 在 Android 开发中,Kotlin 提供了多种优雅的方式来优化接口实现。以下是几种优化方案: 1. 使用 SAM 转换简化单方法接口 对于单一抽象方法(Single Abstract Method, SAM)接口: // 优化前 butto…...
GitOps进化:深入探讨 Argo CD 及其对持续部署的影响
什么是 GitOps? 虽然软件开发生命周期的大部分已经实现自动化,但基础设施仍然在很大程度上依赖于人工,需要专业团队的参与。随着当今基础设施需求的不断增长,实施基础设施自动化变得越来越重要。现代基础设施需要具备弹性&#x…...
有源晶振与无源晶振详解:区别、应用与选型指南
一、基本定义 无源晶振(Crystal,晶体谐振器) 结构:仅包含石英晶体,无内置振荡电路。 工作原理:依赖外部电路(如MCU的振荡器)驱动,通过机械振动产生谐振频率。 核心公式…...
机器学习:逻辑回归实现二元分类
本例子以鸡蛋受精卵为例,假设未受精的鸡蛋在某个区域聚集,受精的在另一个区域。比如,用正态分布生成两个类别的数据,均值不同,方差相同或不同。例如,未受精的鸡蛋的特征均值为[1,1],受精的为[4,4],这样两类数据点可以在二维空间中被分开。 首先,生成数据。使用sklear…...
Android学习总结之kotlin篇(一)
1. open 关键字的用法和作用深入源码分析 类的 open 修饰:在 Kotlin 字节码层面,对于一个open类,编译器会在生成的字节码中添加ACC_SUPER和ACC_OPEN标志。例如,定义一个open class TestOpenClass,反编译其字节码可以看…...
arcgis空间分析理论研究
arcgis的空间分析功能有(1)地形与地表分析;(2)距离与成本分析;(3)密度分析;(4)水文分析;(5)统计分析ÿ…...
70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。 示例 1: 输入: 2输出: 2解释: 有两种方法可以爬到楼顶。…...
Eigen核心矩阵/向量类 (Matrix, Vector, Array)
1. Matrix 类(稠密矩阵) 模板参数 cpp Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> Scalar: 元素类型(如 float, double, int)。 Rows/Cols: 行数和列数(Dynamic 表示动态大小)。 O…...
立创EDA
空格键:旋转 alt w : 布线 alt v : 放置过孔 shift x :先在原理图中框选,按下shiftx,批量选中pcd中的对应元件 shift h : 选中的网络持续高亮/取消高亮 更改位号:举例 框选要更改的电阻 右侧栏属性 --> 位号…...
计算机网络笔记(十二)——2.5数字传输系统
数字传输系统是光纤通信中实现高速数据传输的核心技术,解决了传统模拟传输的速率不统一、同步性差等问题。 一、早期数字传输的问题 速率标准不统一:北美(T1: 1.544Mbps)和欧洲(E1: 2.048Mbps)采用不同的…...
[FPGA Video IP] Video Processing Subsystem
Xilinx Video Processing Subsystem IP (PG231) 详细介绍 概述 Xilinx LogiCORE™ IP Video Processing Subsystem (VPSS)(PG231)是一个高度可配置的视频处理模块,设计用于在单一 IP 核中集成多种视频处理功能,包括缩放…...
java基础之枚举和注解
枚举 简介 枚举:enumeration,jdk1.5中引入的新特性,用于管理和使用常量 入门案例 第一步:定义枚举,这里定义一个动物类,里面枚举了多种动物 public enum AnimalEnum {CAT, // 猫DOG, // 狗PIG // …...
前端开发本地配置 HTTPS 全面详细教程
分为两步:生成证书、本地服务配置使用证书一、HTTPS 的基本概念 HTTPS 是一种安全的 HTTP 协议,它通过 SSL/TLS 对数据进行加密,确保数据在传输过程中不被窃取或篡改。在前端开发中,某些功能(如 Geolocation API、Web…...
C语言中宏的高级应用
一、宏的核心高级特性 1. 变参宏(Variadic Macros) 支持不定数量参数,用于灵活处理格式化字符串、日志输出等场景。 #include <stdio.h>// 定义支持可变参数的调试宏 #define DEBUG_LOG(format, ...) \printf("[DEBUG] %s:%d |…...
Simulink 数据字典(Data Dictionary)详解:使用场景、存储内容与调用方法
1. 引言 在 Simulink 建模中,随着模型复杂度增加,参数管理变得尤为重要。传统方法(如 MATLAB 工作区变量或脚本)在团队协作或大型项目中容易导致数据分散、版本混乱。数据字典(Data Dictionary) 提供了一种…...
部署yolo到k230教程
训练:K230 借助 AICube部署AI 视觉模型 YOLO等教程_嘉楠 ai cube多标签分类-CSDN博客K230模型训练ai cube报错生成部署文件异常_aicube部署模型显示生成部署文件异常-CSDN博客 部署: # 导入必要的库和模块 import os import ujson # 超快的JS…...
【高频考点精讲】第三方库安全审计:如何避免引入带漏洞的npm包
大家好,我是全栈老李。今天咱们聊一个前端工程师必须掌握的生存技能——如何避免把带漏洞的npm包引入项目。这可不是危言耸听,去年某大厂就因为在生产环境用了有漏洞的lodash版本,被黑客利用原型污染漏洞直接攻破后台系统。 为什么npm包会变成"定时炸弹"? npm生…...
【后端】主从单体数据库故障自动切换,容灾与高可用
在现代企业级应用中,数据库的高可用性和容灾能力是保障业务连续性的关键。尤其是在一些对稳定性要求较高的业务场景中,当主数据库发生故障时,如何快速切换到备用数据库并确保业务不受影响,成为了一个重要课题。本文将介绍一种基于 SpringBoot 和 Druid 数据源的解决方案,通…...
AI编程案例拆解|基于机器学习XX评分系统-后端篇
文章目录 5. 数据集生成使用KIMI生成数据集 6. 后端部分设计使用DeepSeek生成神经网络算法设计初始化项目在Cursor中生成并提问前后端交互运行后端命令 注意事项 关注不迷路,励志拆解100个AI编程、AI智能体的落地应用案例为了用户的隐私性,关键信息会全部…...