当前位置: 首页 > news >正文

C++之unordered封装

目录

一、哈希表的修改

1.1、哈希表节点结构

1.2、迭代器

1.3、哈希表结构

1.4、完整代码

二、unordered_map的实现

二、unordered_set的实现


一、哈希表的修改

注意:这里我们使用哈希桶来封装unordered_map和unordered_set。

1.1、哈希表节点结构

template<class T>
struct HashNode
{T _data;HashNode<T>* _next;HashNode(const T& data):_data(data), _next(nullptr){}
};

因为我们要复用哈希表,即使用同一份哈希表代码来封装unordered_map和unordered_set,所以这里将模版参数改为T,T即要存储的数据类型,对于unordered_set而言,T直接就是要存储的数据类型;对于unordered_map而言,T是pair类型的。

在插入方法中,我们使用有参构造,在创建节点时直接将数据通过构造函数赋值进去,所以这里还实现了一个构造函数。

1.2、迭代器

iterator核心源码:

template <class Value, class Key, class HashFcn,class ExtractKey, class EqualKey, class Alloc>struct __hashtable_iterator {typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>hashtable;typedef __hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>iterator;typedef __hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>const_iterator;typedef __hashtable_node<Value> node;typedef forward_iterator_tag iterator_category;typedef Value value_type;node* cur;hashtable* ht;__hashtable_iterator(node* n, hashtable* tab) : cur(n), ht(tab) {}__hashtable_iterator() {}reference operator*() const { return cur->val; }#ifndef __SGI_STL_NO_ARROW_OPERATORpointer operator->() const { return &(operator*()); }#endif /* __SGI_STL_NO_ARROW_OPERATOR */
iterator& operator++();iterator operator++(int);bool operator==(const iterator& it) const { return cur == it.cur; }bool operator!=(const iterator& it) const { return cur != it.cur; }
};template <class V, class K, class HF, class ExK, class EqK, class A>
__hashtable_iterator<V, K, HF, ExK, EqK, A>&
__hashtable_iterator<V, K, HF, ExK, EqK, A>::operator++()
{const node* old = cur;cur = cur->next;if (!cur) {size_type bucket = ht->bkt_num(old->val);while (!cur && ++bucket < ht->buckets.size())cur = ht->buckets[bucket];}return *this;
}

iterator实现思路分析:

  • iterator实现的⼤框架跟list的iterator思路是⼀致的,⽤⼀个类型封装结点的指针,再通过重载运算 符实现,迭代器像指针⼀样访问的⾏为,要注意的是哈希表的迭代器是单向迭代器。
  • 这⾥的难点是operator++的实现。iterator中有⼀个指向结点的指针,如果当前桶下⾯还有结点, 则结点的指针指向下⼀个结点即可。如果当前桶⾛完了,则需要想办法计算找到下⼀个桶。这⾥的难点是反⽽是结构设计的问题,参考上面源码,我们可以知道iterator中除了有结点的指针,还有哈希表对象的指针,这样当前桶⾛完了,要计算下⼀个桶就相对容易多了,⽤key值计算出当前桶位置,依次往后找下⼀个不为空的桶即可。
  • begin()返回第⼀个不为空的桶中第⼀个节点指针构造的迭代器,这⾥end()返回迭代器可以⽤空指针表⽰。
  • unordered_map的iterator不⽀持修改key但是可以修改value,我们把unordered_map的第⼆个模板参数pair的第⼀个参数改成const K即可,HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;(不允许修改Key是因为数据在哈希表中存储的地址是通过Key映射的,如果修改Key,破坏了哈希表的结构)。
  • unordered_set的iterator也不⽀持修改,我们把unordered_set的第⼆个模板参数改成const K即可,HashTable<K, const K, SetKeyOfT, Hash> _ht;(和unordered_map同理)。

具体代码:

	// 前置声明template<class K, class T, class KeyOfT, class Hash>class HashTable;template<class K, class T, class Ptr, class Ref, class KeyOfT, class Hash>struct HTIterator{typedef HashNode<T> Node;typedef HTIterator<K, T, Ptr, Ref, KeyOfT, Hash> Self;Node* _node;const HashTable<K, T, KeyOfT, Hash>* _pht;HTIterator(Node* node, const HashTable<K, T, KeyOfT, Hash>* pht):_node(node),_pht(pht){}Self& operator++(){if (_node->_next){//当前桶还有节点_node = _node->_next;}else{//当前桶走完了,找下一个不为空的桶KeyOfT kot;Hash hs;size_t hashi = hs(kot(_node->_data)) % _pht->_tables.size();++hashi;while (hashi < _pht->_tables.size()){if (_pht->_tables[hashi]){break;}++hashi;}if (hashi == _pht->_tables.size()){_node = nullptr; //end()}else{_node = _pht->_tables[hashi];}}return *this;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const Self& s){return _node != s._node;}};

注意:这里需要对哈希表进行前置声明,因为在迭代器中用到了哈希表,但是编译器编译时是向上查找,而哈希表在下面,会因为找不到而报错,将哈希表放到上面也不行,因为哈希表里也会封装迭代器,如果哈希表在上面向上查找时就会找不到迭代器,总之必须有一个进行前置声明。另外,迭代器中重载++运算符时为了确定当前节点的位置访问了哈希表的私有成员,所以后面在哈希表中还需要进行友元声明。

1.3、哈希表结构

	template<class K, class T, class KeyOfT, class Hash>class HashTable{// 友元声明template<class K, class T, class Ptr, class Ref, class KeyOfT, class Hash>friend struct HTIterator;typedef HashNode<T> Node; //节点不想让外界访问public:typedef HTIterator<K, T, T*, T&, KeyOfT, Hash> Iterator; //迭代器需要让外界访问typedef HTIterator<K, T, const T*, const T&, KeyOfT, Hash> ConstIterator;Iterator Begin(){if (_n == 0) //没有有效数据{return End();}for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];if (cur){return Iterator(cur, this);}}return End();}Iterator End(){return Iterator(nullptr, this);}ConstIterator Begin() const{if (_n == 0)return End();for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];if (cur){return ConstIterator(cur, this);}}return End();}ConstIterator End() const{return ConstIterator(nullptr, this);}HashTable(){_tables.resize(10, nullptr);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}pair<Iterator,bool> Insert(const T& data){KeyOfT kot;Iterator it = Find(kot(data));//去重if (it != End()){return make_pair(it,false);}Hash hs;size_t hashi = hs(kot(data)) % _tables.size();//负载因子==1  扩容if (_n == _tables.size()){// 需要新建节点和释放旧节点,效率较低//	HashTable<K, V, Hash> newHT;//	for (size_t i = 0; i < _tables.size(); i++)//	{//		Node* cur = _tables[i];//		while (cur)//		{//			newHT.Insert(cur->_kv);//			cur = cur->_next;//		}//	}//	_tables.swap(newHT._tables);vector<Node*> newtables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//旧表中的节点重新映射在新表中的位置size_t hashi = hs(kot(cur->_data)) % newtables.size();cur->_next = newtables[hashi];newtables[hashi] = cur;cur = next;}//节点都挪到新表上了,旧表置空_tables[i] = nullptr;}_tables.swap(newtables);}//头插Node* newnode = new Node(data);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return make_pair(Iterator(newnode,this),true);}Iterator Find(const K& key){KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){return Iterator(cur,this);}cur = cur->_next;}return End();}bool Erase(const K& key){KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables; //指针数组size_t _n; //表中存储数据个数};}

为什么需要KeyOfT模版参数:

跟map和set相⽐⽽⾔unordered_map和unordered_set的模拟实现类结构更复杂⼀点,但是⼤框架和思路是完全类似的。因为HashTable实现了泛型不知道T参数是K,还是pair, 那么insert内部进⾏插⼊时要⽤K对象转换成整形取模和K⽐较相等(去重),因为pair的value不需要参与计算取模,且pair默认⽀持的是key和value⼀起⽐较相等,但实际上我们需要的是任何时候只需要⽐较K对象,所以我们在unordered_map和unordered_set层分别实现⼀个MapKeyOfT和SetKeyOfT的仿函数传给 HashTable的KeyOfT,然后HashTable中通过KeyOfT仿函数取出T类型对象中的K对象,再转换成整形取模和K⽐较相等。

返回值的修改:

这里为了符合unordered_map和unordered_set的使用将Find方法的返回值改为迭代器,为了实现unordered_map的 [ ] 运算符重载,将Insert方法的返回值该为pair类型,其中返回的pair对象的first属性的值是新插入节点/原有节点的迭代器,second属性的值是bool类型,代表是否插入成功。

1.4、完整代码

namespace hash_bucket
{template<class T>struct HashNode{T _data;HashNode<T>* _next;HashNode(const T& data):_data(data), _next(nullptr){}};// 前置声明template<class K, class T, class KeyOfT, class Hash>class HashTable;template<class K, class T, class Ptr, class Ref, class KeyOfT, class Hash>struct HTIterator{typedef HashNode<T> Node;typedef HTIterator<K, T, Ptr, Ref, KeyOfT, Hash> Self;Node* _node;const HashTable<K, T, KeyOfT, Hash>* _pht;HTIterator(Node* node, const HashTable<K, T, KeyOfT, Hash>* pht):_node(node),_pht(pht){}Self& operator++(){if (_node->_next){//当前桶还有节点_node = _node->_next;}else{//当前桶走完了,找下一个不为空的桶KeyOfT kot;Hash hs;size_t hashi = hs(kot(_node->_data)) % _pht->_tables.size();++hashi;while (hashi < _pht->_tables.size()){if (_pht->_tables[hashi]){break;}++hashi;}if (hashi == _pht->_tables.size()){_node = nullptr; //end()}else{_node = _pht->_tables[hashi];}}return *this;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const Self& s){return _node != s._node;}};template<class K, class T, class KeyOfT, class Hash>class HashTable{// 友元声明template<class K, class T, class Ptr, class Ref, class KeyOfT, class Hash>friend struct HTIterator;typedef HashNode<T> Node; //节点不想让外界访问public:typedef HTIterator<K, T, T*, T&, KeyOfT, Hash> Iterator; //迭代器需要让外界访问typedef HTIterator<K, T, const T*, const T&, KeyOfT, Hash> ConstIterator;Iterator Begin(){if (_n == 0) //没有有效数据{return End();}for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];if (cur){return Iterator(cur, this);}}return End();}Iterator End(){return Iterator(nullptr, this);}ConstIterator Begin() const{if (_n == 0)return End();for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];if (cur){return ConstIterator(cur, this);}}return End();}ConstIterator End() const{return ConstIterator(nullptr, this);}HashTable(){_tables.resize(10, nullptr);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}pair<Iterator,bool> Insert(const T& data){KeyOfT kot;Iterator it = Find(kot(data));//去重if (it != End()){return make_pair(it,false);}Hash hs;size_t hashi = hs(kot(data)) % _tables.size();//负载因子==1  扩容if (_n == _tables.size()){// 需要新建节点和释放旧节点,效率较低//	HashTable<K, V, Hash> newHT;//	for (size_t i = 0; i < _tables.size(); i++)//	{//		Node* cur = _tables[i];//		while (cur)//		{//			newHT.Insert(cur->_kv);//			cur = cur->_next;//		}//	}//	_tables.swap(newHT._tables);vector<Node*> newtables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//旧表中的节点重新映射在新表中的位置size_t hashi = hs(kot(cur->_data)) % newtables.size();cur->_next = newtables[hashi];newtables[hashi] = cur;cur = next;}//节点都挪到新表上了,旧表置空_tables[i] = nullptr;}_tables.swap(newtables);}//头插Node* newnode = new Node(data);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return make_pair(Iterator(newnode,this),true);}Iterator Find(const K& key){KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){return Iterator(cur,this);}cur = cur->_next;}return End();}bool Erase(const K& key){KeyOfT kot;Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables; //指针数组size_t _n; //表中存储数据个数};}

二、unordered_map的实现

这里的实现没有什么困难,就是直接套一层壳,所有的调用最终还是去调哈希表的方法,所以这里就不在赘述了,直接上代码。

#include"HashTable.h"namespace bit
{template<class K, class V, class Hash = HashFunc<K>>class unordered_map{struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::Iterator iterator;typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::ConstIterator const_iterator;iterator begin(){return _ht.Begin();}iterator end(){return _ht.End();}const_iterator begin() const{return _ht.Begin();}const_iterator end() const{return _ht.End();}V& operator[](const K& key){pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));return ret.first->second;}pair<iterator, bool> insert(const pair<K, V>& kv){return _ht.Insert(kv);}iterator find(const K& key){return _ht.Find(key);}bool erase(const K& key){return _ht.Erase(key);}private:hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;};void test_map(){unordered_map<string, string> dict;dict.insert({ "sort", "排序" });dict.insert({ "left", "左边" });dict.insert({ "right", "右边" });dict["left"] = "左边,剩余";dict["insert"] = "插入";dict["string"];unordered_map<string, string>::iterator it = dict.begin();while (it != dict.end()){// 不能修改first,可以修改second//it->first += 'x';it->second += 'x';cout << it->first << ":" << it->second << endl;++it;}cout << endl;}
}

二、unordered_set的实现

这里和unordered_map一样,就是直接套一层壳,所有的调用最终还是去调哈希表的方法,所以这里就不在赘述了,直接上代码。

#include"HashTable.h"namespace bit
{template<class K, class Hash = HashFunc<K>>class unordered_set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::Iterator iterator;typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::ConstIterator const_iterator;iterator begin(){return _ht.Begin();}iterator end(){return _ht.End();}const_iterator begin() const{return _ht.Begin();}const_iterator end() const{return _ht.End();}pair<iterator, bool> insert(const K& key){return _ht.Insert(key);}iterator find(const K& key){return _ht.Find(key);}bool erase(const K& key){return _ht.Erase(key);}private:hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;};void Print(const unordered_set<int>& s){unordered_set<int>::const_iterator it = s.begin();while (it != s.end()){// *it += 1;cout << *it << " ";++it;}cout << endl;}struct Date{int _year;int _month;int _day;bool operator==(const Date& d) const{return _year == d._year&& _month == d._month&& _day == d._day;}};struct HashDate{size_t operator()(const Date& key){// 112// 121return (key._year * 31 + key._month) * 31 + key._day;}};void test_set(){unordered_set<int> s;int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14, 3,3,15 };for (auto e : a){s.insert(e);}for (auto e : s){cout << e << " ";}cout << endl;unordered_set<int>::iterator it = s.begin();while (it != s.end()){//*it += 1;cout << *it << " ";++it;}cout << endl;unordered_set<Date, HashDate> us;us.insert({ 2024, 7, 25 });us.insert({ 2024, 7, 26 });Print(s);}
}

相关文章:

C++之unordered封装

目录 一、哈希表的修改 1.1、哈希表节点结构 1.2、迭代器 1.3、哈希表结构 1.4、完整代码 二、unordered_map的实现 二、unordered_set的实现 一、哈希表的修改 注意&#xff1a;这里我们使用哈希桶来封装unordered_map和unordered_set。 1.1、哈希表节点结构 templa…...

Pycharm(九)函数的闭包、装饰器

目录 一、函数参数 二、闭包 三、装饰器 一、函数参数 def func01():print("func01 shows as follows") func01() # 函数名存放的是函数所在空间的地址 print(func01)#<function func01 at 0x0000023BA9FC04A0> func02func01 print(func02)#<function f…...

7. 栈与队列(随想录)

1.栈实现队列 2.用队列实现栈 3.有效的括号 4.删除字符串中的所有相邻重复项 5.逆波兰表达式 6.滑动窗口最大值 7.前k个高频元素...

GPU软硬件架构协同设计解析

GPU软硬件架构协同设计解析 ​ GPU(图形处理器)的软硬件协同设计是其在通用计算和高性能计算(HPC)领域取得突破的核心原因。以下从硬件架构、软件架构、协同设计的关键技术及典型案例展开深度解析。 一、硬件架构的核心设计原则 流式多处理器(SM)的模块化设计 计算单元…...

【软考】论NoSQL数据库技术及其应用示例

论NoSQL数据库技术及其应用 随着互联网web2.0网站的兴起&#xff0c;传统关系数据库在应对web2.0 网站&#xff0c;特别是超大规模和高并发的web2.0纯动态SNS网站上已经显得力不从心&#xff0c;暴露了很多难以克服的问题&#xff0c;而非关系型的数据库则由于其本身的特点得到…...

特伦斯智慧钢琴评测:如何用科技重塑钢琴学习新体验

对于渴望学习钢琴的爱好者而言&#xff0c;传统钢琴的笨重体积、高昂成本与扰民问题往往成为绊脚石。而智能电钢琴的出现&#xff0c;正以轻量化设计、沉浸式体验与智能化功能打破这些壁垒。特伦斯智慧钢琴凭借其专业级硬件配置与创新教学系统&#xff0c;成为市场中兼具性能与…...

UML 状态图:解锁电子图书馆管理系统的高效设计

目录 一、UML 状态图的核心要素 状态&#xff1a;系统行为的 “栖息地” 转换&#xff1a;连接状态的 “桥梁” 动作&#xff1a;赋予功能的 “实践者” 二、电子图书馆管理系统状态图解析 系统空闲状态&#xff1a;一切的起点 读者登录与身份验证&#xff1a;安全的 “…...

UML 状态图:陪伴机器人系统示例

目录 一、状态图的基本概念 1.1 状态 1.2 转换 1.3 动作 二、陪伴机器人系统状态图解析 2.1 初始与待机状态 2.2 情绪检测中状态 2.3 陪伴模式下的细分 2.4 疏导模式的严谨流程 2.5 安抚模式的关键作用 三、状态图绘画 四、UML 状态图的强大 4.1 直观呈现系统行为…...

超详细实现单链表的基础增删改查——基于C语言实现

文章目录 1、链表的概念与分类1.1 链表的概念1.2 链表的分类 2、单链表的结构和定义2.1 单链表的结构2.2 单链表的定义 3、单链表的实现3.1 创建新节点3.2 头插和尾插的实现3.3 头删和尾删的实现3.4 链表的查找3.5 指定位置之前和之后插入数据3.6 删除指定位置的数据和删除指定…...

分布式光纤测温技术让森林火灾预警快人一步

2025年春季&#xff0c;多地接连发生森林火灾&#xff0c;累计过火面积超 3万公顷。春季历来是森林草原火灾易发、多发期&#xff0c;加之清明节已到来&#xff0c;生产生活用火活跃&#xff0c;民俗祭祀用火集中&#xff0c;森林火灾风险进一步加大。森林防火&#xff0c;人人…...

判断链表是否为环(Java版本自己用)

141. 环形链表 核心代码版本&#xff1a; public class Solution {public boolean hasCycle(ListNode head) {if (head null) {return false;}ListNode slow head;ListNode fast head.next;while (fast ! null && fast.next ! null) {if (slow fast) {return true…...

leetcode 516. Longest Palindromic Subsequence

题目描述&#xff1a; 代码&#xff1a; class Solution { public:int longestPalindromeSubseq(string s) {int n s.size();//i<j,dp[i][j]表示s[i,j]的最长回文子串的长度,按照这个定义dp[0][n-1]就是答案,i>j的dp[i][j]不定义vector<vector<int>> dp(n,…...

关于敏感文件或备份 安全配置错误 禁止通过 URL 访问 Vue 项目打包后的 .gz 压缩文件

要禁止通过 URL 访问 Vue 项目打包后的 .gz 压缩文件&#xff08;如 sc.6abb69d9.css.gz&#xff09;或其他敏感文件&#xff0c;可以通过 Nginx 配置和 Tomcat 配置双重防护来实现。以下是具体解决方案&#xff1a; 方法 1&#xff1a;通过 Nginx 配置禁止访问 .gz 文件 在 N…...

Linux系统启动全流程解析:从BIOS到用户登录

摘要 深度解析Linux系统启动五阶段&#xff1a;内核加载→init进程初始化→系统服务启动→终端创建→用户登录&#xff0c;涵盖SysV/Systemd差异及运行级别管理&#xff0c;提供故障排查指南。 一、启动流程全景概览 Linux系统启动过程严格遵循5个阶段顺序执行&#xff0c;每…...

unity动态骨骼架设+常用参数分享(包含部分穿模解决方案)

Unity骨骼物理模拟插件Dynamic Bone Dynamic Bone 可用于对角色的骨骼&#xff08;bones&#xff09;或者铰链系统&#xff08;joints&#xff09;施加物理效果。 物理效果可以使得游戏角色的头发、衣服、胸部或者是其他的任何部位&#xff0c;都可以以近似真实的状态运动。 …...

【云原生】k8s集群部署最新版ELFK日志采集平台

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Golang开…...

基于瑞芯微RK3576国产ARM八核2.2GHz A72 工业评估板——ROS2系统使用说明

前 言 本文主要介绍创龙科技TL3576-MiniEVM评估板演示基于Ubuntu的ROS系统(版本:ROS2 Foxy)使用说明,包括镜像编译、镜像替换,以及ROS系统测试的方法。适用开发环境如下。 Windows开发环境:Windows 10 64bit Linux虚拟机环境:VMware16.2.5、Ubuntu22.04.5 64bit U-B…...

android studio sdk unavailable和Android 安装时报错:SDK emulator directory is missing

md 网上说的都是更换proxy代理什么的&#xff0c;还有一些二其他乱七八糟的&#xff0c;根本没用&#xff0c;感觉很多就是解决不了问题&#xff0c;还贼多贼一致&#xff0c;同质化&#xff0c;感觉很坑人&#xff0c;让人觉得他们和我的一样的&#xff0c;大家都是按他们说的…...

qemu构建arm环境(AI生成)

要编译 qemu-system-arm&#xff0c;你需要安装一些依赖库&#xff0c;配置编译环境&#xff0c;并执行编译过程。以下是一般步骤&#xff0c;适用于大多数基于Linux的系统。 1. 安装依赖 首先&#xff0c;你需要安装一些必要的开发工具和库。你可以使用包管理器来安装这些依…...

10天学会嵌入式技术之51单片机-day-4

第十二章 中断系统 中断系统是单片机用于处理外部紧急事件的一种机制。中断系统工作的大致流程如下 图所示&#xff1a;当 CPU 正在处理某项任务时&#xff0c;外部发生了某个紧急事件&#xff0c;此时 CPU 会暂停当前 的工作&#xff0c;转而去处理这个紧急事件&#xff0c;处…...

spark—SQL3

连接方式 内嵌Hive&#xff1a; 使用时无需额外操作&#xff0c;但实际生产中很少使用。 外部Hive&#xff1a; 在虚拟机下载相关配置文件&#xff0c;在spark-shell中连接需将hive-site.xml拷贝到conf/目录并修改url、将MySQL驱动copy到jars/目录、把core-site.xml和hdfs-sit…...

CENTOS 7 安装VNC

一、VNC简介 VNC&#xff08;Virtual Network Computing&#xff09;&#xff0c;为一种使用RFB协议的屏幕画面分享及远程操作软件。此软件借由网络&#xff0c;可发送键盘与鼠标的动作及即时的屏幕画面。 VNC与操作系统无关&#xff0c;因此可跨平台使用&#xff0c;例如可用…...

第42讲:走进智慧农业的“感知神经系统”——农田遥感 + 边缘计算的融合实践

目录 ✨一、为什么要融合遥感与边缘计算? 🧪二、典型应用场景案例 ✅ 案例 1:棉花田的智能水分监测系统 ✅ 案例 2:水稻纹枯病自动识别与预警系统 💻三、关键技术框架与实现思路 🚦 1. 系统架构流程图: 📦 2. 模型部署建议: 💡四、未来发展趋势展望 �…...

Dify忘记管理员密码,重置的问题

今天本地win10电脑&#xff0c;使用源码启动dify&#xff0c;忘记了管理员账号和密码&#xff0c;于是网上查找解决办法。 1.有的网上资料说是去数据库删除用户表&#xff0c;于是进入数据库&#xff1a; docker exec -it docker-db-1 psql -U postgres -d dify 找到postgre…...

C#—Lazy<T> 类型(延迟初始化/懒加载模式)

C# 的 Lazy<T> 类型 Lazy<T> 是 C# 中的一个类&#xff0c;用于实现延迟初始化&#xff08;懒加载&#xff09;模式。它提供了一种线程安全的方式来延迟创建大型或资源密集型对象&#xff0c;直到第一次实际需要时才进行初始化。 主要特点 延迟初始化&#xff1a…...

unity打包安卓时的签名文件jks转换keystore

前言 unity打包安卓时需要的签名文件格式默认是keystore&#xff0c;而有时我们拿到的是jks格式的签名文件&#xff0c;就需要把jks格式文件转换成keystore格式文件。 其实在windows下也可以不转换&#xff0c;在选择签名文件的文件选择框时&#xff0c;把文件扩展名筛选项&a…...

Android audio_policy_configuration.xml加载流程

目录 一、audio_policy_configuration.xml文件被加载流程 1、AudioPolicyService 创建阶段 2、createAudioPolicyManager 实现 3、AudioPolicyManager 构造 4、配置文件解析 loadConfig 5、核心解析逻辑 PolicySerializer::deserialize 二、AudioPolicyConfig类解析 1、…...

AOSP Android14 Launcher3——远程窗口动画关键类SurfaceControl详解

在 Launcher3 执行涉及其他应用窗口&#xff08;即“远程窗口”&#xff09;的动画时&#xff0c;例如“点击桌面图标启动应用”或“从应用上滑回到桌面”的过渡动画&#xff0c;SurfaceControl 扮演着至关重要的角色。它是实现这些跨进程、高性能、精确定制动画的核心技术。 …...

iframe下系统访问跨域问题解决办法

问题描述&#xff1a;iframe下嵌入web页面&#xff0c;访问后端接口跨域&#xff0c;导致接口调不通。 产生原因&#xff1a;iframe下&#xff0c;web端访问后端接口时&#xff0c;会优先向后端发送请求方法为OPTIONS的预检测请求&#xff0c;该请求调用不通&#xff0c;导致真…...

Kafka 如何理解Kafka的高可用

一、Kafka高可用核心思想&#xff1a;备胎的自我修养 核心口诀&#xff1a;“别把鸡蛋放在一个篮子里&#xff0c;除非你他妈有100个篮子&#xff01;” Kafka的高可用设计&#xff0c;本质上就是一场**“分布式备胎大战”**。它的核心逻辑是&#xff1a; “老子不信任任何单…...

11-DevOps-Jenkins Pipeline流水线作业

前面已经完成了&#xff0c;通过在Jenkins中创建自由风格的工程&#xff0c;在界面上的配置&#xff0c;完成了发布、构建的过程。 这种方式的缺点就是如果要在另一台机器上进行同样的配置&#xff0c;需要一项一项去填写&#xff0c;不方便迁移&#xff0c;操作比较麻烦。 解…...

C++学习之游戏服务器开发十一DOCKER的基本使用

目录 1.多实例部署方案 2.容器的概念 3.docker初识 4.docker仓库 5.docker镜像 6.docker容器 7.docker和虚拟机的区别 8.docker命令解释 9.dockerfile构建镜像 10.离线分发镜像 1.多实例部署方案 redis 命令&#xff08; redis-cli XXXX &#xff09; set key value:…...

docker学习笔记2-最佳实践

一、在容器中启动mysql的最佳实践 &#xff08;一&#xff09;查找目录 1、mysql的配置文件路径 /etc/mysql/conf.d 2、mysql的数据目录 /var/lib/mysql 3、环境变量 4、端口 mysql的默认端口3306。 &#xff08;二&#xff09;启动命令 docker run -d -p 3306:3306 …...

【TeamFlow】4.2 Yew库详细介绍

Yew 是一个用于构建高效、交互式前端 Web 应用程序的现代 Rust 框架&#xff0c;它借鉴了 React 和 Elm 等框架的设计理念&#xff0c;同时充分利用 Rust 的语言特性。 核心特性 基于组件的架构 Yew 采用组件化开发模式&#xff0c;类似于 React: 组件是可重用的 UI 构建块 …...

第六章.java集合与泛型

文章目录 1.集合框架1. Collection 接口存储一组不唯一,无序的对象2. Set接口存储一组唯一,无序的对象3. Map接口存储一组键值对象,提供key到value的映射 2.封装3.练习题 1.集合框架 java集合框架提供了一套性能优良,使用方便的接口和类,它们位于java.util中 1. Collection 接…...

elastic/go-elasticsearch与olivere/elastic

在 Go 语言中&#xff0c;与 Elasticsearch 交互的客户端库有多种选择&#xff0c;其中 github.com/elastic/go-elasticsearch/v8 和 github.com/olivere/elastic/v7 是两个常用的库。这两个库的功能和用途有一些差异&#xff0c;以下是它们的详细对比&#xff1a; 1. github.c…...

MYSQL之基础认识(卸载安装登录, 基本概念)

一. 卸载安装和登录 卸载 MYSQL 1. 查看有无mysql服务正在运行: ps ajx | grep mysql 2. 查看到 mysql 的服务名称: systemctl list-units --typeservice | grep mysql 3. 关闭 mysql 服务 4. 卸载 dpkg -l | grep mysql | awk {print $2} | xargs sudo apt remove --purg…...

Sentinel源码—7.参数限流和注解的实现一

大纲 1.参数限流的原理和源码 2.SentinelResource注解的使用和实现 1.参数限流的原理和源码 (1)参数限流规则ParamFlowRule的配置Demo (2)ParamFlowSlot根据参数限流规则验证请求 (1)参数限流规则ParamFlowRule的配置Demo 一.参数限流的应用场景 二.参数限流规则的属性 …...

JAVA:利用 Apache Tika 提取文件内容的技术指南

1、简述 Apache Tika 是一个强大的工具,用于从各种文件中提取内容和元数据。📄Tika 支持解析文档、📸图像、🎵音频、🎥视频文件以及其他多种格式,非常适合构建🔍搜索引擎、📂内容管理系统和📊数据分析工具。 样例代码:https://gitee.com/lhdxhl/springboot-…...

SVM(支持向量机)

SVM&#xff08;支持向量机&#xff09; 原理 SVM的核心目标是找到一个最大化分类间隔的超平面&#xff0c;将不同类别的样本分隔开。其原理可分为三部分&#xff1a; 线性可分情况 通过硬间隔最大化确定超平面&#xff0c;确保所有样本正确分类且间隔最大间隔定义为超平面到最…...

Spark,hadoop的组成

&#xff08;一&#xff09;Hadoop的组成 对普通用户来说&#xff0c; Hadoop就是一个东西&#xff0c;一个整体&#xff0c;它能给我们提供无限的磁盘用来保存文件&#xff0c;可以使用提供强大的计算能力。 在Hadoop3.X中&#xff0c;hadoop一共有三个组成部分&#…...

数据结构中的各种排序

排序之冒泡排序 原理&#xff1a;比较相邻的元素&#xff0c;将大的元素放右边&#xff0c;小的元素放左边。每一趟排的最后的元素一定是最大的元素&#xff0c;所有下一趟需要排列的元素可减少一个 public int[] bubbleSort(int[] attr) {for (int i 0; i < attr.length…...

Android 中实现 GIF 图片动画

在 Android 中&#xff0c;ImageView 从 Android 9.0&#xff08;API 级别 28&#xff09; 开始原生支持 GIF 动画&#xff0c;通过 AnimatedImageDrawable 类实现。在之前的版本中&#xff0c;ImageView 并不支持直接播放 GIF 动画&#xff0c;只能显示 GIF 的第一帧。 一、 …...

linux安装mysql数据库

1.判断系统是多少位的 file /sbin/init2.下载linux安装包 5.7.25.64位安装包链接&#xff1a;https://pan.baidu.com/s/13vFuRikwJaI96K0AmUQXzg提取码&#xff1a;ga7h其他版本安装 去官网下载&#xff1a;https://dev.mysql.com/downloads/mysql/3.创建mysql文件夹 mkdir /…...

基于SA模拟退火算法的车间调度优化matlab仿真,输出甘特图和优化收敛曲线

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于SA模拟退火算法的车间调度优化matlab仿真,输出甘特图和优化收敛曲线。输出指标包括最小平均流动时间&#xff0c;最大完工时间&#xff0c;最小间隙时间。 2…...

uniapp云打包针对谷歌视频图片权限的解决方案

谷歌在24年底推出把图片和视频细分为两个权限&#xff0c;uniapp使用uni.chooseImage云打包默认图片视频为一个权限,不符合谷歌要求会被下架 解决方法&#xff0c;在项目根目录下新建AndroidManifest.xml移除不必要的权限 <?xml version"1.0" encoding"utf…...

DSRAM介绍

DSRAM&#xff08;双端口静态随机存储器&#xff09;介绍 1. 基本概念 DSRAM&#xff08;Dual-Port Static Random Access Memory&#xff09;是一种双端口SRAM&#xff0c;支持两个独立的读写接口&#xff0c;允许两个设备&#xff08;如CPU、DMA、FPGA&#xff09;同时访问…...

【仿Mudou库one thread per loop式并发服务器实现】HTTP协议模块实现

HTTP协议模块实现 1. Util模块2. HttpRequest模块3. HttpResponse模块4. HttpContext模块5. HttpServer模块 1. Util模块 这个模块是一个工具模块&#xff0c;主要提供HTTP协议模块所用到的一些工具函数&#xff0c;比如url编解码&#xff0c;文件读写…等。 #include "s…...

教育行业网络安全:守护学校终端安全,筑牢教育行业网络安全防线!

教育行业面临的终端安全问题日益突出&#xff0c;主要源于教育信息化进程的加速、终端设备多样化以及网络环境的开放性。 以下是教育行业终端安全面临的主要挑战&#xff1a; 1、设备类型复杂化 问题&#xff1a;教育机构使用的终端设备包括PC、服务器等&#xff0c;操作系统…...

【网工第6版】第5章 网络互联②

目录 ■ IPV6 ▲ IPV6报文格式 ◎ IPV6扩展报头&#xff08;RFC2460&#xff09; ◎ IPv6相关协议 ▲ IPV6地址分类 ◎ IPv6地址基础 ◎ IPv6地址举例 ◎ IPv6地址分类 ◎ 特殊地址对比IPv4 vs IPv6 ▲ 过渡技术 本章重要程度&#xff1a;☆☆☆☆☆ ■ IPV6 与IPv4…...