从malloc到free:动态内存管理全解析
1.为什么要有动态内存管理
我们已经掌握的内存开辟方法有:
int main()
{int val = 20;//在栈空间上开辟四个字节char arr[20] = { 0 };//在栈空间上开辟10个字节的连续空间return 0;
}
上述开辟的内存空间有两个特点:
1.空间开辟的时候大小已经固定
2.数组在声明的时候,必须指定数组的长度,数组空间一旦确定了大小就不能调整
但是对于所需内存空间的需求,不仅仅是上述的情况,有时候我们需要的空间大小在程序运行时才能知道,那数组就不能满足我们的需求了。
C语言由此引入了动态内存开辟,让程序员可以自己申请和释放空间。
2.malloc和free
C语言提供了一个动态内存开辟的函数malloc,函数原型如下:
void* malloc(size_t size);
这个函数向内存申请⼀块连续可⽤的空间,并返回指向这块空间的指针。
• 如果开辟成功,则返回⼀个指向开辟好空间的指针。
• 如果开辟失败,则返回⼀个 NULL 指针,因此malloc的返回值⼀定要做检查。
• 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使⽤的时候使⽤者自己来决定。
• 如果参数 size 为0,malloc的⾏为是标准是未定义的,取决于编译器。
malloc详细解析网页
C语言还提供了一个函数free,专门用来做动态内存的释放和回收的,函数原型如下:
void* free(void* ptr);
free函数⽤来释放动态开辟的内存。
• 如果参数 ptr 指向的空间不是动态开辟的,那free函数的⾏为是未定义的。
• 如果参数 ptr 是NULL指针,则函数什么事都不做。
malloc和free都声明在 stdlib.h 头⽂件中。
free详细解析网页
学完了两个函数,我们来举一个例子帮助大家理解:
int main()
{int* pz = (int*)malloc(10 * sizeof(int));//注意,malloc自己返回的指针类型是void*的,所以需要强制转换为int*类型if (pz == NULL)//如果创建失败,返回的将是空指针{perror("malloc");//打印错误,为什么创建失败return 1;//结束程序}for (int i = 0; i < 10; i++){*(pz + i) = i + 1;}for (int i = 0; i < 10; i++){printf("%d ", *(pz + i));}free(pz);//动态内存使用完我们应该主动进行回收pz = NULL;//回收之后,内存空间将会释放,但是pz指针仍然会指向那个地址,我们需要将他置为空指针return 0;
}
观察结果,我们可以发现利用malloc创建的堆空间实现了与数组创建的栈空间一样的效果,它们都是一块连续的空间。上述是创建成功的示例,我们再来看一个失败的案例:
3.calloc和realloc
C语言还提供了一个函数叫calloc,他也是用来实现动态内存分配的,函数原型如下:
void* calloc(size_t num, size_t size);
• 函数的功能是为 num 个⼤⼩为 size 的元素开辟⼀块空间,并且把空间的每个字节初始化为0。
• 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为0
calloc详细解析网页
看代码:
int main()
{int* pz = (int*)calloc(10, sizeof(int));if (pz == NULL){perror("calloc");return 1;}for (int i = 0; i < 10; i++){printf("%d ", *(pz + i));}free(pz);pz = NULL;return 0;
}
近乎一样的代码,打印的结果完全不同,这就是malloc和calloc的区别。
接下来我们要学的最后一个函数是realloc,realloc函数的出现让动态内存管理更加灵活。有时会我们发现过去申请的空间太⼩了,有时候我们⼜会觉得申请的空间过⼤了,那为了合理的申请内存,我们⼀定会对内存的⼤⼩做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。他的函数原型如下:
void* realloc (void* ptr,size_t size);
• ptr 是要调整的内存地址
• size 调整之后新⼤⼩
• 返回值为调整之后的内存起始位置。
• 这个函数调整原内存空间⼤⼩的基础上,还会将原来内存中的数据移动到 新 的空间。
realloc详细解析网页
realloc在调整内存空间时存在两种情况:
◦ 情况1:原有空间之后有⾜够⼤的空间
◦ 情况2:原有空间之后没有⾜够⼤的空间
情况1
当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发⽣变化。
情况2
当是情况2 的时候,原有空间之后没有⾜够多的空间时,扩展的⽅法是:在堆空间上另找⼀个合适⼤⼩的连续空间来使⽤。这样函数返回的是⼀个新的内存地址。原有空间的数值会被存入新的空间内。
由于上述的两种情况,realloc函数的使⽤就要注意⼀些。
int main()
{int* pz1 = (int*)malloc(10 * sizeof(int));if (pz1 == NULL) {perror("malloc");return 1;}//业务处理//发现内存不够,需要扩充//方法1//pz1 = (int*)realloc(pz1, 20 * sizeof(int));//方法2int* pz2 = NULL;pz2 = (int*)realloc(pz1, 20 * sizeof(int));if (pz2 == NULL){perror("realloc");free(pz1);return 1;}pz1 = pz2;//业务处理free(pz1);pz1 = NULL;return 0;
}
方法一存在下面风险:
内存泄漏风险:
若 realloc 失败返回 NULL,原指针 pz1 会被直接覆盖为 NULL。
后果:原内存(10个int的空间)彻底丢失,无法再被释放,导致内存泄漏。空指针操作风险: 未检查返回值直接使用 pz1,若 realloc失败,后续操作 pz1 的行为会引发未定义行为(如访问空指针导致程序崩溃)。
使用方法二可以很好的避免发生这些错误。
4.常见的动态内存错误
4.1对NULL指针的解引用操作
int main()
{int* p = (int*)malloc(INT_MAX);*p = 10;printf("%d\n", *p);free(p);p = NULL;return 0;
}
上述代码我们没有检查malloc函数创建失败返回空指针的可能,实际上改代码p返回的就是空指针,而我们对空指针进行解引用操作的行为时错误的,所以大家在利用malloc等函数申请内存时一定要检查是否成功申请,否则返回的可能是空指针。
4.2对动态开辟空间的越界访问
int main()
{int* p = (int*)malloc(10 * sizeof(int));if (p == NULL){perror("malloc");return 1;}for (int i = 0; i < 12; i++){*(p + i) = i;//越界访问}free(p);p = NULL;return 0;
}
上述代码我们利用malloc函数像内存申请了40个字节的空间,但我们在for循环中却访问了48个字节的空间,在编译时程序肯定是会崩溃的,这属于越界访问。
4.3对非动态开辟内存使用free释放
int main()
{int a = 10;int* p = &a;free(p);p = NULL;return 0;
}
free函数只能释放动态开辟的内存,他不能释放栈空间的内存空间,上述代码也会报错。
4.4使用free释放一块动态开辟内存的一部分
int main()
{int* p = (int*)malloc(100);p++;free(p);p = NULL;return 0;
}
free函数不能这样释放内存,他的参数只能是开辟动态内存的起始地址,上述代码也会在编译时报错。
4.5对同一块动态内存多次释放
int main()
{int* p = (int*)malloc(100);free(p);free(p);return 0;
}
free函数是不能对一块动态内存进行重复释放,编译器会报错。
4.6动态开辟内存忘记释放(内存泄露)
void test()
{int* p = (int*)malloc(100);if (p != NULL){*p = 20;}
}int main()
{test();return 0;
}
上述代码在运行时编译器虽然不会直接报错,但他是极不安全的,存在内存泄漏问题。
切记:动态开辟的空间⼀定要释放,并且正确释放。
5.动态内存经典笔试题分析
5.1题目1:
void GetMemory(char* p)
{p = (char*)malloc(100);
}void Test(void)
{char* str = NULL;GetMemory(str);strcpy(str, "hello world");printf(str);
}
上述代码运行Test函数会产生什么样的结果?
什么都不会打印。
看起来问题不大,其实错漏百出:
指针传递问题(最核心问题): GetMemory函数接收的是char* p的副本(值传递), 函数内修改的是副本指针,不影响外部的str 导致str在Test函数中始终为NULL ,参考传值调用
内存泄漏: malloc分配的内存没有被释放,而且由于指针问题,分配的内存甚至无法被访问
空指针解引用: strcpy试图向NULL指针写入数据,会导致程序崩溃
我们这里提供两种方法改进。
第一种,改用二级指针,类似传址调用。
第二种,函数返回指针。
exit(EXIT_FAILURE);包含在头文件#include<stdlib.h>
exit() 函数:立即终止程序,清理缓冲区并关闭所有打开的文件。
EXIT_FAILURE:标准宏(通常值为1),表示程序异常终止。
5.2题目2:
char* GetMemory(void)
{char p[] = "hello world";return p;
}void Test(void)
{char* str = NULL;str = GetMemory();printf(str);
}int main()
{Test();return 0;
}
打印结果:
这个代码犯了一个很严重的错误,p数组他是一个局部变量,他只能在GetMemory函数内使用,出了该函数它的内存空间就被释放掉了,该函数返回的也是悬空指针,建议使用动态分配堆内存代替数组。
> 记住,永远不要返回局部变量的地址
5.3题目3:
void GetMemory(char** p, int num)
{*p = (char*)malloc(num);
}void Test(void)
{char* str = NULL;GetMemory(&str, 100);strcpy(str, "hello");printf(str);
}int main()
{Test();return 0;
}
上述代码是可以打印正常结果的,但是还是我们上面所说的一些常见的动态内存错误,没有检查malloc返回的是否为空指针,没有释放动态开辟的内存,大家不要认为自己不会犯这种错误,作者反复提醒,望注意。
5.4题目4:
void Test(void)
{char* str = (char*)malloc(100);strcpy(str, "hello");free(str);if (str != NULL){strcpy(str, "world");printf(str);}
}int main()
{Test();return 0;
}
这个代码同样为检查malloc函数创建失败的可能,但这题还有更大的错误,str经free函数释放后,变成了一个悬空指针,对悬空指针进行再操作的行为是未定义的(可能导致崩溃和数据损坏),所以我们应该养成释放后即使置空指针的习惯。
6.柔性数组
6.1柔性数组的介绍
在C99中,结构体的最后一个元素允许是未知大小的数组,这就叫柔性数组成员,如下:
struct st_type
{int i;int arr[];
};
柔性数组的特点:
• 结构中的柔性数组成员前⾯必须⾄少存在⼀个其他成员。
• sizeof 返回的这种结构⼤⼩不包括柔性数组的内存。
• 包含柔性数组成员的结构⽤malloc ()函数进⾏内存的动态分配,并且分配的内存应该⼤于结构的⼤⼩,以适应柔性数组的预期⼤⼩。
看下面代码:
6.2柔性数组的使用
typedef struct st_type
{int i;int arr[];
}type_1;int main()
{type_1* pz = (type_1*)malloc(sizeof(type_1) + 20 * sizeof(int));pz->i = 100;for (int i = 0; i < 20; i++){pz->arr[i] = i;}free(pz);pz = NULL;return 0;
}
上述的代码也可以设计成下面的形式:
typedef struct st_type
{int i;int* ps;
}type_1;int main()
{type_1* pz = (type_1*)malloc(sizeof(type_1));pz->i = 100;pz->ps = (int*)malloc(20 * sizeof(int));for (int i = 0; i < 20; i++){pz->ps[i] = i;}free(pz->ps);pz->ps = NULL;free(pz);pz = NULL;return 0;
}
上述代码并没有检查malloc返回空指针的可能性,这是可以改进的一点。
除此以外,你认为代码一和代码二哪个更优秀呢?
代码一更优秀,理由有二:
第⼀个好处是:⽅便内存释放,如果我们的代码是在⼀个给别⼈⽤的函数中,你在⾥⾯做了⼆次内存分配,并把整个结构体返回给⽤⼾。⽤⼾调⽤free可以释放结构体,但是⽤⼾并不知道这个结构体内的成员也需要free,所以你不能指望⽤⼾来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存⼀次性分配好了,并返回给⽤⼾⼀个结构体指针,⽤⼾做⼀次free就可以把所有的内存也给释放掉。
第⼆个好处是:这样有利于访问速度,连续的内存有益于提⾼访问速度,也有益于减少内存碎⽚。
加深结构体中成员数组与指针理解阅读
7.总结C/C++语言程序内存区域划分
C/C++程序内存分配的⼏个区域:
- 栈区(stack):在执⾏函数时,函数内局部变量的存储单元都可以在栈上创建,函数执⾏结束时 这些存储单元⾃动被释放。栈内存分配运算内置于处理器的指令集中,效率很⾼,但是分配的内 存容量有限。栈区主要存放运⾏函数⽽分配的局部变量、函数参数、返回数据、返回地址等。
- 堆区(heap):⼀般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配⽅ 式类似于链表。
- 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
- 代码段:存放函数体(类成员函数和全局函数)的⼆进制代码。
相关文章:
从malloc到free:动态内存管理全解析
1.为什么要有动态内存管理 我们已经掌握的内存开辟方法有: int main() {int val 20;//在栈空间上开辟四个字节char arr[20] { 0 };//在栈空间上开辟10个字节的连续空间return 0; }上述开辟的内存空间有两个特点: 1.空间开辟的时候大小已经固定 2.数组…...
CSS值和单位
CSS值和单位 CSS 中的值和单位是构建样式的基础,它们定义了属性的具体表现方式。值用于定义样式属性的具体取值,而单位用于指定这些值的度量方式。CSS中常用的值和单位如下: 1.长度单位 px : 像素,绝对单位 em : 相对于元素的字…...
Redis高级篇之I/O多路复用的引入解析
文章目录 一、问题背景1. 高并发连接的管理2. 避免阻塞和延迟3. 减少上下文切换开销4. 高效的事件通知机制5. 简化编程模型6. 低延迟响应本章小节 二、I/O多路复用高性能的本质1. 避免无意义的轮询:O(1) 事件检测2. 非阻塞 I/O 零拷贝:最大化 CPU 利用率…...
FTP协议命令和响应码
文章目录 📦 一、什么是 FTP 协议?🧾 二、FTP 常见命令(客户端发送)📡 三、FTP 响应码(服务端返回)📌 响应码分类(第一位)✅ 常见成功响应码&…...
在win上安装Ubuntu安装Anaconda(linx环境)
一,安装Ubuntu 1. 在 Microsoft 商城去下载Ubuntu(LTS:是长期维护的版本) 2.安装完之后启动程序,再重新打开一个黑窗口: wsl --list --verbose 3.关闭Ubuntu wsl --shutdown Ubuntu-22.04 WSL2 Ubuntu-20.04文件太占c盘空间,…...
【Elasticsearch入门到落地】11、RestClient初始化索引库
接上篇《10、初始化RestClient》 上一篇我们已经完成了RestHighLevelClient的初始化工作,本篇将正式进入索引库的创建阶段。我们将使用Java代码来创建酒店数据的索引库。 一、准备工作 1. 创建常量类 首先,我们需要定义一个常量类来存放索引库的mappi…...
远程服务调用的一些注意事项
引言 最近工作中,遇到了一些关于远程服务调用的问题,背景是调用三方接口获取某些特征数据,但由于调用出现了超时,导致业务本身的接口的可用行降低。因此整理一些远程服务调用时的注意事项,通过不同维度的考虑来提高系…...
QML 样式库
在 QML 中,样式库(或 UI 框架)用于快速构建一致且美观的界面。Qt/QML 本身不提供内置的完整样式库,但可以通过以下方式实现样式管理或使用第三方库。 1. Qt Quick Controls 2 样式系统 Qt Quick Controls 2 是官方提供的 UI 组件…...
[RHEL8] 指定rpm软件包的更高版本模块流
背景:挂载RHEL ISO使用kickstart安装操作系统,安装包未指定安装perl,但是安装完可以查到其版本,且安装的是ISO中多个版本中的最低版本。 原因:(1)为什么没有装perl,perl -v可以看到版…...
使用Python可视化洛伦兹变换
引言 大家好!今天我们将探讨一个非常有趣且重要的物理概念—洛伦兹变换。它是相对论的核心内容之一,描述了在高速运动下,时间、长度以及其他物理量是如何发生变化的。通过使用 Python 进行可视化,我们不仅可以更好地理解这个概念,还能感受到物理世界中的奇妙之处。 什么…...
【二叉树专题】一道深入浅出的 DFS 题:求二叉树的直径(含通俗易懂讲解)
题目: 给你一棵二叉树的根节点,返回这棵树的 直径。 直径 是任意两个节点路径中,最长的一条路径所经过的边数。 比如下面这棵树: 1/ \2 3/ \ 4 5它的最长路径是:4 → 2 → 5 或者 4 → 2 → 1 → 3,…...
考研系列-计算机网络-第三章、数据链路层
一、数据链路层的功能 1.知识点总结 2.习题总结...
医药采购系统平台第10天02:按药品分类的统计按供货商统计按医院统计统计数据的导出DWR的配置和应用
如果想要获取相关的源码,笔记,和相关工具,对项目需求的二次开发,可以关注我并私信!!! 一 按药品分类的统计实现 1 按药品分类统计的需求 按药品统计:在指定时间段中采购量、采购金…...
Navicat、DataGrip、DBeaver在渲染 BOOLEAN 类型字段时的一种特殊“视觉风格”
文章目录 前言✅ 为什么 Boolean 字段显示为 [ ]?✅ 如何验证实际数据类型?✅ 小结 前言 看到的 deleted: [ ] 并不是 Prisma 的问题,而是数据库客户端(如 Navicat、DataGrip、DBeaver)在渲染 BOOLEAN 类型字段时的一种…...
(undone) 吴恩达版提示词工程 2. 指南
url: https://www.bilibili.com/video/BV1Z14y1Z7LJ?spm_id_from333.788.videopod.episodes&vd_source7a1a0bc74158c6993c7355c5490fc600&p2 别人的笔记 url: https://zhuanlan.zhihu.com/p/626966526 指导原则(Guidelines) 编写提示词有两个…...
VLC搭建本机的rtsp直播推流和拉流
媒体---流---捕获设备,选择摄像头,点击串流 x下一步 选择rtsp,点击添加 看到了端口,并设置路径: 选择Video -H 264 mp3(TS) 点击下一个, 点击流,就开始推流了 拉流,观看端&#x…...
Rocky Linux 9.1 修改网卡和DNS
在 Rocky Linux 9.1 中修改网卡和 DNS 配置可以通过 NetworkManager 工具实现(推荐)或直接编辑配置文件。以下是两种方法的详细步骤: 方法一:使用 nmcli 命令行工具(动态生效) 查看当前网络连接nmcli connection show # 输出示例: # NAME UUID …...
Web前端:常用的布局属性
常见的布局方式有哪些? float:浮动布局 position 定位布局 flex 弹性布局(display) table 表格布局(弃用) 一、HTML5 语义化布局标签 这些标签本身不提供布局能力,但能增强页面结构…...
XSS学习2
一、客户端的Cookie 1. 无状态的影响 无状态问题: HTTP协议的无状态特性导致每次请求都是独立的,无法保持会话。例如,在银行办理业务时,柜员不需要重复询问客户信息,但在计算机网络中,每次HTTP请求都需要重新认证用户…...
软件设计师/系统架构师---计算机网络
概要 什么是计算机网络? 计算机网络是指将多台计算机和其他设备通过通信线路互联,以便共享资源和信息的系统。计算机网络可以有不同的规模,从家庭网络到全球互联网。它们可以通过有线(如以太网)或无线(如W…...
Kubernetes(k8s)学习笔记(二)--k8s 集群安装
1、kubeadm kubeadm 是官方社区推出的一个用于快速部署 kubernetes 集群的工具。这个工具能通过两条指令完成一个 kubernetes 集群的部署: 1.1 创建一个 Master 节点$ kubeadm init 1.2 将一个 Node 节点加入到当前集群中$ kubeadm join <Master 节点的 IP 和…...
线性DP:最长上升子序列(子序列可不连续,子数组必须连续)
目录 Q1:简单遍历 Q2:变式(加大数据量) Q1:简单遍历 Dp问题 状态表示 f(i,j) 集合所有以第i个数结尾的上升子序列集合-f(i,j)的值存的是什么序列长度最大值max- 状态计算 (其实质是集合的划分)…...
SpringBoot 基本原理
SpringBoot 为我们做的自动配置,确实方便快捷,但一直搞不明白它的内部启动原理,这次就来一步步解开 SpringBoot 的神秘面纱,让它不再神秘。 目录 SpringBootApplication 背后的秘密 Configuration ComponentScan EnableAutoC…...
LeetCode第158题_用Read4读取N个字符 II
LeetCode 第158题:用Read4读取N个字符 II 题目描述 给你一个文件,并且该文件只能通过给定的 read4 方法来读取,请实现一个方法来读取 n 个字符。 read4 方法: API read4 可以从文件中读取 4 个连续的字符,并且将它…...
webgl入门实例-矩阵在图形学中的作用
矩阵在图形学中扮演着核心角色,几乎所有图形变换、投影和空间转换都依赖矩阵运算来实现高效计算。以下是矩阵在图形学中的主要作用及具体应用: 1. 几何变换 矩阵乘法可以高效表示物体的平移、旋转、缩放等基本变换,并通过矩阵连乘实现复合变…...
基于Matlab求解矩阵电容等效容值
1需求 仿真测试8*10阶举证电容等效容值。 2模型搭建 2.1打开simscape 在打开simulink之后打开simscape库,Simscape库位置如下 2.2搭建模型 在库中寻找需要的元件搭建电路。 2.2.1基本元件 电阻电容电感等基础器件,搭建电路之后需要对其进行幅值&…...
铅酸电池充电器方案EG1253+EG4321
参考: 基于EG1253EG4321铅酸电池(48V20AH)三段式充电器 屹晶微高性价比的电瓶车充电器方案——EG1253 电瓶电压 48V电瓶锂电池,其充满约为55V~56V,因此充电器输出电压为55V~56V; 若是48V铅酸电池,标称电压为48V&…...
每天学一个 Linux 命令(26):less
可访问网站查看,视觉品味拉满: http://www.616vip.cn/26/index.html less 是 Linux 中一个强大的文件内容查看工具,用于分页显示文件内容,支持快速搜索、滚动浏览、跳转等操作。相比 more,less 功能更丰富且支持向前和向后翻页,适合查看大文件或日志。 命令格式 les…...
【网络】数据链路层知识梳理
全是通俗易懂的讲解,如果你本节之前的知识都掌握清楚,那就速速来看我的笔记吧~ 自己写自己的八股!让未来的自己看懂! (全文手敲,受益良多) 数据链路层 我们来重新理解一下这个图:…...
2.2 BackgroundWorker的使用介绍
BackgroundWorker 是 .NET Framework 中一个简化异步操作的组件,它位于 System.ComponentModel 命名空间下。它为开发人员提供了一种简单的方式在后台执行耗时操作,同时保持与 UI 线程的交互 主要属性以及任务如下: DoWork 事件:…...
Java从入门到“放弃”(精通)之旅——类和对象全面解析⑦
Java从入门到“放弃”(精通)之旅🚀——类和对象全面解析⑦ 一、面向对象初探 1.1 什么是面向对象? Java是一门纯面向对象的语言(OOP),在面向对象的世界里,一切皆为对象。面向对象是解决问题的一种思想&a…...
无回显RCE
在CTF和实战渗透中,不是每一个命令执行点都有回显,有时我们审了半天代码,却发现好不容易找到的命令执行没有回显,但是这并不代表这段代码不能被我们利用,在无回显的情况下也是可以利用的 首先我们来写一个最简单的php…...
DQN在Gym的MountainCar环境的实现
DQN on MountainCar 引言 在本次实验里,我构建了DQN和Dueling DQN,并在Gymnasium库的MountainCar环境中对它们展开测试。我通过调整训练任务的超参数,同时设计不同的奖励函数及其对应参数,致力于获取更优的训练效果。最后&#…...
typescript判断是否为空
1 判断数据类型 1.1 基础数据类型 比如number,string,boolean,使用typeof,返回值是string类型: 例如: if("number" typeof(item)) {egret.log("item的类型是number"); } else if(&…...
JavaScript forEach介绍(JS forEach、JS for循环)
文章目录 JavaScript forEach 方法全面解析基本概念语法详解参数说明 工作原理与其他循环方法的比较forEach vs for循环forEach vs map 实际应用场景DOM元素批量操作数据处理 性能考量常见陷阱与解决方案无法中断循环异步操作问题 高级技巧链式调用(不使用 forEach …...
C语言之图像文件的属性
🌟 嗨,我是LucianaiB! 🌍 总有人间一两风,填我十万八千梦。 🚀 路漫漫其修远兮,吾将上下而求索。 图像文件属性提取系统设计与实现 目录 设计题目设计内容系统分析总体设计详细设计程序实现…...
Java链表反转方法详解
一、理解链表结构 假设链表节点定义为: class ListNode {int val;ListNode next;ListNode(int x) { val x; } } 二、迭代法反转链表 核心思路 逐步反转每个节点的指针方向,最终使整个链表反向。 步骤拆解 初始化三个指针: prev…...
lmm-r1开源程序是扩展 OpenRLHF 以支持 LMM RL 训练,用于在多模态任务上重现 DeepSeek-R1
一、软件介绍 文末提供程序和源码下载学习 lmm-r1开源程序是扩展 OpenRLHF 以支持 LMM RL 训练,用于在多模态任务上重现 DeepSeek-R1。 二、简介 小型 3B 大型多模态模型(LMMs)由于参数容量有限以及将视觉感知与逻辑推理相结合的固有复杂性…...
Java学习笔记(数组,方法)
一,数组 1.数组初始化 1.1动态初始化 格式:数据类型[] 数组名 new 数据类型[数组长度]; int[] arr new int[3]; // 定义长度为3的int数组,元素默认值为0 double[] scores new double[5]; // 长度5,元素默认0.0 String[…...
嵌入式---零点漂移(Zero Drift)
一、零点漂移的定义与本质 零点漂移(简称“零漂”)指传感器在输入信号为零(或理论上应输出固定零值)时,输出信号随时间、温度、环境等因素变化而偏离初始零点的现象。 核心特征:无输入时输出非零且缓慢变…...
健身房管理系统设计与实现(springboot+ssm+vue+mysql)含万字详细文档
健身房管理系统设计与实现(springbootssmvuemysql)含万字详细文档 健身房管理系统是一个全面的解决方案,旨在帮助健身房高效管理日常运营。系统主要功能模块包括个人中心、会员管理、员工管理、会员卡管理、会员卡类型管理、教练信息管理、解聘管理、健身项目管理、…...
C语言if
一、题目引入 如果从键盘输入58,则以下程序输出的结果是多少? 二、运行结果 三、题目分析 因为这道题中的多个if是并列结构 所以只要条件满足都会执行 这一题58满足所有的条件 所以可以运行出来 也就是说每个if里面的条件都满足 所以都会打印出来 而下面的这种情况就是 if e…...
XSS学习1之http回顾
1. HTTP的基本结构与工作流程 HTTP是一个请求-响应协议,基于客户端与服务器之间的交互。每次用户通过浏览器请求某个资源时,HTTP协议都会完成一系列的步骤。 HTTP请求: HTTP请求由以下几个部分构成: 请求行: 请求方…...
小迪抓包技术算法加密(6-9天)
抓包技术 https://blog.csdn.net/2301_81015455/article/details/147014382 算法加密入门(了解) 在实际测试中安全性高一些得采用得都是AES等高安全加密,遇到这种,放弃你啥都不知道测个毛啊,所以直接run!!! 大部分解密时碰撞式…...
Tkinter与ttk模块对比:构建现代 Python GUI 的进化之路
在 Python GUI 开发中,标准库 tkinter 及其子模块 ttk(Themed Tkinter)常被同时使用。本文通过功能对比和实际案例,简单介绍这两个模块的核心差异。 1. 区别 Tkinter:Python 标准 GUI 工具包(1994年集成&…...
【数据结构入门训练DAY-18】信息学奥赛一本通T1331-后缀表达式的值
文章目录 前言一、题目二、解题思路总结 前言 本次训练内容: 栈的复习。栈模拟四则运算计算问题的练习。训练解题思维。 一、题目 从键盘读入一个后缀表达式(字符串),只含有0-9组成的运算数及加()、减…...
时序预测 | Transformer-LSTM-SVM时间序列预测(Matlab完整源码和数据,适合基础小白研究)
时序预测 | Transformer-LSTM-SVM时间序列预测(Matlab完整源码和数据,适合基础小白研究) 目录 时序预测 | Transformer-LSTM-SVM时间序列预测(Matlab完整源码和数据,适合基础小白研究)效果一览基本介绍代码…...
【HarmonyOS 5】makeObserved接口详解
【HarmonyOS 5】makeObserved接口详解 一、makeObserved接口是什么? makeObserved 接口(API version 12 起可用)用于将非观察数据转为可观察数据,适用于三方包类、Sendable 装饰的类、JSON.parse 返回的对象、collections.Array…...
色谱图QCPColorMap
一、QCPColorMap 概述 QCPColorMap 是 QCustomPlot 中用于绘制二维颜色图的类,可以将矩阵数据可视化为颜色图(热力图),支持自定义色标和插值方式。 二、主要属性 属性类型描述dataQCPColorMapData存储颜色图数据的对象interpol…...
【数据结构_12】二叉树(4)
一、二叉树的层序遍历 思路:可以按照先序的方式来遍历这个树,递归的时候,给递归方法,加上辅助的参数,level表示当前层数,递归过程中,根据level的值,决定当前整个节点要放到哪个list中…...