当前位置: 首页 > news >正文

How AI could empower any business - Andrew Ng

How AI could empower any business - Andrew Ng

  • References

人工智能如何为任何业务提供支持

empower /ɪmˈpaʊə(r)/ vt. 授权;给 (某人) ...的权力;使控制局势;增加 (某人的) 自主权

When I think about the rise of AI, I’m reminded by the rise of literacy. A few hundred years ago, many people in society thought that maybe not everyone needed to be able to read and write. Back then, many people were tending fields or herding sheep, so maybe there was less need for written communication. And all that was needed was for the high priests and priestesses and monks to be able to read the Holy Book, and the rest of us could just go to the temple or church or the holy building and sit and listen to the high priest and priestesses read to us. Fortunately, it was since figured out that we can build a much richer society if lots of people can read and write.
当我想到 AI (Artificial intelligence) 的崛起之时,我联想了读写能力的崛起。几百年前,社会上的很多人觉得也许不是每个人都得会读会写。那时候,很多人从事农业或者牧羊,对书面交流的需求没有那么多。只有主教和僧侣需要读得懂《圣经》和最高经典,其他人只要去寺庙、教堂或者圣所坐等主教读给我们听就行了。幸运的是,人们后来发现如果很多人能读能写,我们的社会会富裕得多。

Today, AI is in the hands of the high priests and priestesses. These are the highly skilled AI engineers, many of whom work in the big tech companies. And most people have access only to the AI that they build for them. I think that we can build a much richer society if we can enable everyone to help to write the future. But why is AI largely concentrated in the big tech companies? Because many of these AI projects have been expensive to build.
如今,AI 被掌握在“主教”手中。这些主教就是那些技术高超的 AI 工程师,其中很多就职于科技巨头公司。很多人只能接触到为他们设计的 AI。我认为,如果我们能让每个人参与谱写未来,我们就能创造一个更富裕的社会。但是为什么大部分 AI 技术都集中在科技巨头手中呢?因为开发这些 AI 项目太贵了。

They may require dozens of highly skilled engineers, and they may cost millions or tens of millions of dollars to build an AI system. And the large tech companies, particularly the ones with hundreds of millions or even billions of users, have been better than anyone else at making these investments pay off because, for them, a one-size-fits-all AI system, such as one that improves web search or that recommends better products for online shopping, can be applied to [these] very large numbers of users to generate a massive amount of revenue. But this recipe for AI does not work once you go outside the tech and internet sectors to other places where, for the most part, there are hardly any projects that apply to 100 million people or that generate comparable economics.
这些项目需要一大群技术高超的工程师,要开发一个 AI 系统可能要花上几百万几千万美元。这些大型科技公司,尤其是手握几亿几十亿用户的公司,最擅长套回这些投入,因为对于它们来说,一个普适的 AI 系统,比如优化搜索引擎或者为网购推荐更佳商品的系统,可以直接适用于庞大的用户群体,产生巨额收益。但是一旦你走出科技互联网行业,去向别的领域,这个 AI 的秘方可能就不会奏效,因为在大多数情况下,几乎没有一个项目可以覆盖一亿人,或产生相当的经济效益。

revenue /ˈrevənjuː/ n. 收入;收益;财政收入;税收收入

Let me illustrate an example. Many weekends, I drive a few minutes from my house to a local pizza store to buy a slice of Hawaiian pizza from the gentleman that owns this pizza store. And his pizza is great, but he always has a lot of cold pizzas sitting around, and every weekend some different flavor of pizza is out of stock. But when I watch him operate his store, I get excited, because by selling pizza, he is generating data. And this is data that he can take advantage of if he had access to AI.
我来举一个例子。我总会在周末从家里开车去当地一家披萨店向店主买一块夏威夷披萨。他的披萨很不错,但是总是有一大堆披萨滞销到冷掉,每个周末都会有几个口味的披萨缺货。但是当我看着他运营他的小店的时候,我激动万分,因为在他卖披萨的过程中,也产生了数据。如果他能用上 AI,就可以从这些数据中获益。

AI systems are good at spotting patterns when given access to the right data, and perhaps an AI system could spot if Mediterranean pizzas sell really well on a Friday night, maybe it could suggest to him to make more of it on a Friday afternoon. Now you might say to me, “Hey, Andrew, this is a small pizza store. What’s the big deal?” And I say, to the gentleman that owns this pizza store, something that could help him improve his revenues by a few thousand dollars a year, that will be a huge deal to him. I know that there is a lot of hype about AI’s need for massive data sets, and having more data does help. But contrary to the hype, AI can often work just fine even on modest amounts of data, such as the data generated by a single pizza store.
如果输入了合适的数据,AI 系统就会很善于识别规律,也许能有一个 AI 系统识别出周五晚上地中海披萨卖得特别好,也许这就能告诉他周五下午多做一点地中海披萨。你有可能想这么对我说:“嘿,Andrew,这只是个小披萨店。有什么了不起的?”而我想说,对于店主来说,如果有什么可以帮他每年多赚几千美元,那就很了不起了。我知道,人们普遍认为 AI 需要大量数据集,有了更多数据确实会有帮助。但是如果没有大量数据,AI 通常也可以在只有少量数据的情况下正常运作,比如一家披萨店产生的数据。

So the real problem is not that there isn’t enough data from the pizza store. The real problem is that the small pizza store could never serve enough customers to justify the cost of hiring an AI team. I know that in the United States there are about half a million independent restaurants. And collectively, these restaurants do serve tens of millions of customers. But every restaurant is different with a different menu, different customers, different ways of recording sales that no one-size-fits-all AI would work for all of them. What would it be like if we could enable small businesses and especially local businesses to use AI?
真正的问题不是披萨店没有足够的数据。真正的问题是这小小的披萨店没有足够的客源平衡雇佣一组 AI 人员的支出。我知道美国有大约 50 万家独立餐厅。这些餐厅总计服务了几亿顾客。但是每一家餐厅都是不同的,有着不同的菜单,不同的顾客,不同的记账方式,没有一个通用的 AI 系统可以适用于全部的餐厅。如果我们可以让小型企业尤其是本土企业都能用上 AI,会怎么样呢?

Let’s take a look at what it might look like at a company that makes and sells T-shirts. I would love if an accountant working for the T-shirt company can use AI for demand forecasting. Say, figure out what funny memes to prints on T-shirts that would drive sales, by looking at what’s trending on social media. Or for product placement, why can’t a front-of-store manager take pictures of what the store looks like and show it to an AI and have an AI recommend where to place products to improve sales? Supply chain. Can an AI recommend to a buyer whether or not they should pay 20 dollars per yard for a piece of fabric now, or if they should keep looking because they might be able to find it cheaper elsewhere? Or quality control.
我们来看看 AI 应用于一家制造、销售 T 恤的公司会是什么样的情形。如果这家 T 恤公司的会计可以用 AI 预测需求,那就会很不错。比如,通过研究社交媒体上的潮流,锁定一些印在 T 恤上增加销量的好玩表情包。就上架策略而言,门店经理可以拍下店铺情况,提交给 AI,让 AI 推荐商品的摆放位置,提高销量。供应链。AI 是不是可以推荐买家是否应该以 20 美元一码的价格购入一块布料,还是应该货比三家,因为别家的价格有可能会更低廉呢?质量管理。

fabric /ˈfæbrɪk/ n. 织物;(建筑物的) 结构 (如墙、地面、屋顶);布料

A quality inspector should be able to use AI to automatically scan pictures of the fabric they use to make T-shirts to check if there are any tears or discolorations in the cloth. Today, large tech companies routinely use AI to solve problems like these and to great effect. But a typical T-shirt company or a typical auto mechanic or retailer or school or local farm will be using AI for exactly zero of these applications today.
一名质检员应该能够使用 AI自动扫描 T 恤的面料照片,检查布料是否有裂缝或褪色。如今,AI 已经成为大型科技公司处理此类问题的常规手段,成果显著。但是现在没有一家普通的T 恤公司、普通的汽修店、零售店、学校、本地农场会用 AI 运营。

Every T-shirt maker is sufficiently different from every other T-shirt maker that there is no one-size-fits-all AI that will work for all of them. And in fact, once you go outside the internet and tech sectors in other industries, even large companies such as the pharmaceutical companies, the car makers, the hospitals, also struggle with this. This is the long-tail problem of AI. If you were to take all current and potential AI projects and sort them in decreasing order of value and plot them, you get a graph that looks like this.
每一家 T 恤制造商的情况都是截然不同的,没有一个通用的 AI 系统可以适用于全部商家。其实,如果不看互联网和科技领域,去看一些别的领域,就算是一些大公司,比如医药公司、汽车制造商、医院,都会饱受这个问题的困扰。这就是 AI 的长尾效应。你可以把所有已有和潜在的 AI 项目以价值降序排列后作图,就会得到这样一张图。

Maybe the single most valuable AI system is something that decides what ads to show people on the internet. Maybe the second most valuable is a web search engine, maybe the third most valuable is an online shopping product recommendation system. But when you go to the right of this curve, you then get projects like T-shirt product placement or T-shirt demand forecasting or pizzeria demand forecasting. And each of these is a unique project that needs to be custom-built. Even T-shirt demand forecasting, if it depends on trending memes on social media, is a very different project than pizzeria demand forecasting, if that depends on the pizzeria sales data.
也许最有价值的 AI 系统决定了在网上给人们展示什么广告。也许第二有价值的系统是网络搜索引擎,第三有价值的系统是网购商品推荐系统。但是如果你看向曲线的右侧,就会看到像 T 恤商品陈列、T 恤需求预测和披萨店需求预测这样的项目。每一个这样的项目都需要定制。就算是 T 恤需求预测,如果它由社交媒体上的流行表情包决定,也与披萨店需求预测是两种泾渭分明的项目,披萨店的预测由销售数据决定。

So today there are millions of projects sitting on the tail of this distribution that no one is working on, but whose aggregate value is massive. So how can we enable small businesses and individuals to build AI systems that matter to them? For most of the last few decades, if you wanted to build an AI system, this is what you have to do. You have to write pages and pages of code. And while I would love for everyone to learn to code, and in fact, online education and also offline education are helping more people than ever learn to code, unfortunately, not everyone has the time to do this. But there is an emerging new way to build AI systems that will let more people participate.
如今成千上万的项目就处于这个无人问津的分布长尾上,但是它们的合计价值是不可小觑的。我们该如何让小型企业和个人有能力搭建对他们十分重要的 AI 系统呢?在过去的几十年中,如果你想搭建一个 AI 系统,你需要做这些事。你需要写长篇累牍的代码。虽然我觉得人人都该学写代码,线上和线下教育也确实让学习编程的人数达到了高峰,不幸的是,不是人人都有时间学习编程。但是,我们现在有了一个全新的方式,创造 AI 系统,让更多人参与编程。

Just as pen and paper, which are a vastly superior technology to stone tablet and chisel, were instrumental to widespread literacy, there are emerging new AI development platforms that shift the focus from asking you to write lots of code to asking you to focus on providing data. And this turns out to be much easier for a lot of people to do. Today, there are multiple companies working on platforms like these. Let me illustrate a few of the concepts using one that my team has been building. Take the example of an inspector wanting AI to help detect defects in fabric. An inspector can take pictures of the fabric and upload it to a platform like this, and they can go in to show the AI what tears in the fabric look like by drawing rectangles.
就像纸笔是比石板和凿子先进得多的科技,在普及读写的过程中功不可没,现在也有一些新的 AI 开发平台不再让你写一大堆代码,而是只让你提供数据。这对大规模人群来说更容易实现。现在有很多公司在做这样的平台。我的团队也在做这类平台,我来给大家介绍其中一个。举个例子,检测员需要 AI 的帮助检测布料瑕疵。检测员可以拍下布料的照片,上传到这样的平台上,然后他们可以用矩形做标记,告诉 AI 布料裂缝长什么样。

And they can also go in to show the AI what discoloration on the fabric looks like by drawing rectangles. So these pictures, together with the green and pink rectangles that the inspector’s drawn, are data created by the inspector to explain to AI how to find tears and discoloration. After the AI examines this data, we may find that it has seen enough pictures of tears, but not yet enough pictures of discolorations. This is akin to if a junior inspector had learned to reliably spot tears, but still needs to further hone their judgment about discolorations.
他们也可以通过标记矩形,告诉 AI 布料褪色长什么样。这些图片与检测员标记的绿色和粉色矩形框就是检测员创建的数据,告诉 AI 如何检测裂缝和褪色。AI 检查了数据之后,我们会发现,AI 已经读取了足够的裂缝图片,但是没有足够的褪色图片。这就类似于一个初级检测员已经学会了如何准确地识别裂缝,但是还得再磨练一下对褪色的判断。

So the inspector can go back and take more pictures of discolorations to show to the AI, to help it deepen this understanding. By adjusting the data you give to the AI, you can help the AI get smarter. So an inspector using an accessible platform like this can, in a few hours to a few days, and with purchasing a suitable camera set up, be able to build a custom AI system to detect defects, tears and discolorations in all the fabric being used to make T-shirts throughout the factory. And once again, you may say, “Hey, Andrew, this is one factory. Why is this a big deal?”
这个检测员可以回去再拍几张褪色的照片,提交给 AI,加深它对褪色的理解。通过调整输入 AI 的数据,你可以让 AI 变得更聪明。检测员使用这样容易操作的平台,在几小时至几天内,再采购一套合适的摄影设备,就能在搭建起一个定制化 AI 系统,检测工厂中所有 T 恤面料上的瑕疵、裂缝和褪色情况。你可能又想说:“嘿,安德鲁,这就是一家工厂,有什么了不起的?”

And I say to you, this is a big deal to that inspector whose life this makes easier and equally, this type of technology can empower a baker to use AI to check for the quality of the cakes they’re making, or an organic farmer to check the quality of the vegetables, or a furniture maker to check the quality of the wood they’re using. Platforms like these will probably still need a few more years before they’re easy enough to use for every pizzeria owner. But many of these platforms are coming along, and some of them are getting to be quite useful to someone that is tech savvy today, with just a bit of training.
我想告诉你,对那个减负的检测员来说,这很了不起,同样,这项技术可以让一名烘焙师使用 AI检查手中蛋糕的质量,让一名有机农场主检查蔬菜的质量,让一个家具制造商检查木材原料的质量。这类平台也许还需要一些时间将操作难易度调节至适用于每一个披萨店店主。但是很多平台都在进步,有些平台只需要少量培训,就已经对如今懂技术的人来说非常有帮助了。

But what this means is that, rather than relying on the high priests and priestesses to write AI systems for everyone else, we can start to empower every accountant, every store manager, every buyer and every quality inspector to build their own AI systems. I hope that the pizzeria owner and many other small business owners like him will also take advantage of this technology because AI is creating tremendous wealth and will continue to create tremendous wealth. And it’s only by democratizing access to AI that we can ensure that this wealth is spread far and wide across society. Hundreds of years ago. I think hardly anyone understood the impact that widespread literacy will have.
这也就意味着,我们不需要再依赖于主教为所有人编写 AI 系统,我们的每位会计、每位门店经理、每位买家、每位质检员都有能力搭建自己的 AI 系统。我希望披萨店店主和其他像他这样的小型企业主都可以用上这项技术,因为 AI 创造着巨大财富,也将在未来持续创造巨大财富。只有让人人都有机会用上 AI,我们才能将这样的财富播撒到社会的每个角落。几百年前。我觉得几乎没有人懂得普及读写的重要性。

Today, I think hardly anyone understands the impact that democratizing access to AI will have. Building AI systems has been out of reach for most people, but that does not have to be the case. In the coming era for AI, we’ll empower everyone to build AI systems for themselves, and I think that will be incredibly exciting future. Thank you very much.
我认为现在几乎没有人懂得让每个人有机会用上 AI 的重要性。大多数人没有机会搭建 AI 系统,但是未来不一定会是如此。在接下来的 AI 时代中,我们会让每一个人有能力为自己搭建 AI 系统,我觉得这就是我们振奋人心的未来。谢谢。

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

相关文章:

How AI could empower any business - Andrew Ng

How AI could empower any business - Andrew Ng References 人工智能如何为任何业务提供支持 empower /ɪmˈpaʊə(r)/ vt. 授权;给 (某人) ...的权力;使控制局势;增加 (某人的) 自主权When I think about the rise of AI, I’m reminded …...

SpringBoot-基础特性

1.SpringApplication 1.1.自定义banner 类路径添加banner.txt或设置spring.banner.location就可以定制 banner 1.2.自定义 SpringApplication import org.springframework.boot.Banner; import org.springframework.boot.SpringApplication; import org.springframework.bo…...

系统环境变量有什么实际作用,为什么要配置它

系统环境变量有什么实际作用,为什么要配置它 系统环境变量具有以下重要实际作用: 指定程序路径:操作系统通过环境变量来知晓可执行文件、库文件等的存储位置例如,当你在命令提示符或终端中输入一个命令时,系统会根据环境变量PATH中指定的路径去查找对应的可执行文件。如果…...

C++ | STL之list详解:双向链表的灵活操作与高效实践

引言 std::list 是C STL中基于双向链表实现的顺序容器,擅长高效插入和删除操作,尤其适用于频繁修改中间元素的场景。与std::vector不同,std::list的内存非连续,但提供了稳定的迭代器和灵活的元素管理。本文将全面解析std::list的…...

Spring Cloud 服务间调用深度解析

前言 在构建微服务架构时,服务间的高效通信是至关重要的。Spring Cloud 提供了一套完整的解决方案来实现服务间的调用、负载均衡、服务发现等功能。本文将深入探讨 Spring Cloud 中服务之间的调用机制,并通过源码片段和 Mermaid 图表帮助读者更好地理解…...

什么是时间复杂度和空间复杂度?

什么是时间复杂度和空间复杂度? 时间复杂度:衡量代码运行时间随输入规模增大而增长的速度。简单来说,就是“代码跑多快”。 空间复杂度:衡量代码运行时额外占用的内存空间随输入规模增大而增长的速度。简单来说,就是“代码用多少内存”。 我们通常用 大 O 表示法(Big O N…...

算法思想之分治-快排

欢迎拜访:雾里看山-CSDN博客 本篇主题:算法思想之分治-快排 发布时间:2025.4.15 隶属专栏:算法 目录 算法介绍核心步骤优化策略 例题颜色分类题目链接题目描述算法思路代码实现 排序数组题目链接题目描述算法思路代码实现 数组中的…...

25.4.15学习总结

问题: 邮箱验证码通过公钥加密后发到前端,在前端用私钥解密验证可行吗? 结论: 在前端使用私钥解密通过公钥加密的邮箱验证码在技术上是可行的,但存在严重的安全风险,不建议采用。 问题分析 非对称加密的…...

小程序获取用户总结(全)

获取方式 目前小程序获取用户一共有3中(自己接触到的),但由于这个API一直在改,所以不确定后期是否有变动,还是要多关注官方公告。 方式一 使用wx.getUserInfo 实例: wxml 文件<button open-type="getUserInfo" bindgetuserinfo="onGetUserInfo&quo…...

如何成为一名嵌入式软件工程师?

如何成为一名嵌入式软件工程师&#xff1f; 01明确岗位的角色与定位 嵌入式软件工程师主要负责开发运行在特定硬件平台上的软件&#xff0c;这些软件通常与硬件紧密集成&#xff0c;以实现特定的功能。 不仅需要精通编程语言&#xff08;如C/C、Java等&#xff09;和软件开发工…...

机器人发展未来两年会有突破吗?

未来两年,机器人技术将在芯片、编码器、材料、加工工艺和AI等核心领域迎来系统性突破,推动行业从专用化向通用化转型。以下从技术路径、产业动态和商业化前景三个维度展开分析,结合权威数据与技术趋势,构建机器人技术演进的全景框架。 一、芯片技术:3nm制程与存算一体架构…...

【grafana原生告警中心配置飞书机器人告警】

在grafana中的connect point中使用webhook的方式推送到飞书&#xff0c;始终无法触发告警&#xff0c;原因是grafana推送的格式飞书不识别&#xff0c;现有两种方式 1.使用中转服务 使用flask搭建一个服务&#xff0c;grafana告警先通过webhook发送到web服务中&#xff0c;格…...

HTTP HTTPS RSA

推荐阅读 小林coding HTTP篇 文章目录 HTTP 80HTTP 响应码1xx&#xff1a;信息性状态码&#xff08;Informational&#xff09;2xx&#xff1a;成功状态码&#xff08;Success&#xff09;3xx&#xff1a;重定向状态码&#xff08;Redirection&#xff09;4xx&#xff1a;客户端…...

【机器学习】如何正确下载sklearn包

TOC 直接pip install sklearn时&#xff0c;报错 sklearn的包&#xff0c;实际上叫scikit-learn pip install scikit-learn发现成功了&#xff1a; 总结 下载sklearn包的语句&#xff1a;pip install scikit-learn 完成。...

【Python进阶】断言(assert)的十大核心应用场景解析

目录 前言&#xff1a;技术背景与价值当前技术痛点解决方案概述目标读者说明 一、技术原理剖析核心概念图解核心作用讲解关键技术模块技术选型对比 二、实战演示环境配置要求核心代码实现&#xff08;10个案例&#xff09;案例1&#xff1a;参数合法性检查案例2&#xff1a;不变…...

关于汽车辅助驾驶不同等级、技术对比、传感器差异及未来发展方向的详细分析

以下是关于汽车辅助驾驶不同等级、技术对比、传感器差异及未来发展方向的详细分析&#xff1a; 一、汽车辅助驾驶等级详解 根据SAE&#xff08;国际自动机工程师学会&#xff09;的标准&#xff0c;自动驾驶分为 L0到L5 六个等级&#xff1a; 1. L0&#xff08;无自动化&…...

STM32 HAL库之WDG示例代码

独立看门狗&#xff08;IWDG&#xff09; 初始化独立看门狗&#xff0c;在main.c中的 MX_IWDG_Init();&#xff0c;也就是iwdg.c中的初始化代码 void MX_IWDG_Init(void) {/* USER CODE BEGIN IWDG_Init 0 *//* USER CODE END IWDG_Init 0 *//* USER CODE BEGIN IWDG_Init 1 …...

【差分隐私相关概念】瑞丽差分隐私(RDP)命题10

命题10证明中的最后一个不等号成立&#xff0c;关键在于将事件 A A A上的积分与Rnyi散度 D α ( P ∥ Q ) D_\alpha(P \parallel Q) Dα​(P∥Q)的定义联系起来&#xff0c;并通过积分放缩得到上界。具体推导如下&#xff1a; Rnyi散度的定义&#xff1a; D α ( P ∥ Q ) 1 …...

Android 开发 如何生成系统签名

在源码中拿到安全文件 文件路径 lagvm/LINUX/android/build/target/product/security如下两个文件 platform.pk8 platform.x509.pem 使用Android studio生成一个jks Android studio 顶部 buildGenerate Signed Bundle or APKapkcrate new记住 记住alias 和password linux下…...

(EtherCAT 转 EtherNet/IP)EtherCAT/Ethernet/IP/Profinet/ModbusTCP协议互转工业串口网关

型号 协议转换通信网关 EtherCAT 转 EtherNet/IP MS-GW12 概述 MS-GW12 是 EtherCAT 和 EtherNet/IP 协议转换网关&#xff0c;为用户提供两种不同通讯协议的 PLC 进行数据交互的解决方案&#xff0c;可以轻松容易将 EtherNet/IP 网络接入 EtherCAT 网络中&#xff0c;方便…...

适合stm32 前端adc使用的放大器芯片

在 STM32 前端 ADC 应用中&#xff0c;合适的放大器芯片需具备低噪声、高精度、低失调电压等特性。以下为你推荐几款常用的放大器芯片&#xff1a; 低功耗、高精度型 OPA2333 特点&#xff1a;这是一款微功耗、零漂移运算放大器&#xff0c;失调电压极低&#xff0c;仅为 2.5…...

《Ethical Implications of ChatGPT in Higher Education: A Scoping Review》全文翻译

《Ethical Implications of ChatGPT in Higher Education: A Scoping Review》 ChatGPT在高等教育中的伦理影响&#xff1a;一项范围界定性综述 摘要 本范围界定性综述探讨了在高等教育中使用ChatGPT所引发的伦理挑战。通过回顾近期发表的英文、中文和日文的学术文章&#x…...

day26 学习笔记

文章目录 前言一、边缘填充1.边界复制2.边界反射3.边界常数4.边界包裹5.代码示例 二、透视变换三、颜色加法 前言 通过今天的学习&#xff0c;我掌握了OpenCV中有关边缘填充&#xff0c;透视变换以及颜色加法的相关概念和操作 一、边缘填充 当我们对图像进行仿射变换后往往会发…...

LVGL Animation Image(Animimg)控件详解

一、Animation Image&#xff08;Animimg&#xff09;控件详解 1. 概述 功能&#xff1a;Animimg 是 LVGL 中用于显示动画图像的控件。特点&#xff1a;支持从多个静态图像创建动画效果。 2. 创建和初始化 创建方法&#xff1a;lv_obj_t * lv_animimg_create(lv_obj_t * pa…...

【unity游戏开发入门到精通——UGUI】GraphicRaycaster图形射线投射器组件

注意&#xff1a;考虑到UGUI的内容比较多&#xff0c;我将UGUI的内容分开&#xff0c;并全部整合放在【unity游戏开发——UGUI】专栏里&#xff0c;感兴趣的小伙伴可以前往逐一查看学习。 文章目录 前言Graphic Raycaster参数1、Ignore Reversed Graphics&#xff1a;是否忽略反…...

WPF GDI 画 晶圆Mapping图

效果图 UI代码 <Window x:Class="WpfWaferMapping.Window3"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d="http://schemas.microsoft.com/expre…...

AI核心概念之“提示(Prompt)” - 来自DeepSeek

1. 表层理解&#xff1a;Prompt 是用户输入的文本指令 直观表现&#xff1a; 对于普通用户&#xff0c;Prompt 是输入到对话框的文本&#xff08;例如 ChatGPT 中的问题&#xff1a;“写一首关于秋天的诗”&#xff09;&#xff0c;点击发送后&#xff0c;模型返回结果。 常见…...

Golang|Kafka在秒杀场景中的应用

我们的程序在面对 kill -9 这样的指令的时候会直接退出&#xff0c;不能保证数据持久化到mysql完后再退出而且我们现在的并发量仍然不够&#xff0c;只能加机器&#xff0c;多机器并发写mysql可能导致mysql扛不住&#xff0c;mysql写的并发量不能根据我们机器的数量的增长而增长…...

【前端基础】--- HTML

个人主页  :  9ilk    专栏  :  前端基础 文章目录 &#x1f3e0; 初识HTML&#x1f3e0; HTML结构认识HTML标签HTML文件基本结构标签层次结构快速生成代码框架 &#x1f3e0; HTML常见标签注释标签标题标签 h1-h6段落标签 p换行标签 br格式化标签图片标签 img超链接标签…...

各证券公司QMT的本地VSCode开发环境配置指南

各证券公司QMT变种的本地开发环境配置指南 各大证券公司的量化交易平台&#xff08;如兴业证券的SMT-Q&#xff09;基本都是基于QMT开发的变种系统&#xff0c;它们的底层架构相似&#xff0c;但在接口和功能上可能有所差异。下面介绍如何使用本地Python、Anaconda和VSCode搭建…...

注意力机制的改进

Transformer架构中的注意力机制优化是提升模型效率和扩展处理长序列能力的关键。以下从多个维度详细解析注意力机制的优化方法&#xff1a; arXIv论文链接 1. 稀疏注意力&#xff08;Sparse Attention&#xff09; 通过限制每个位置仅关注特定区域&#xff0c;减少计算量&am…...

Golang|select

文章目录 多路监听超时控制 多路监听 如果selcet外面没有for循环&#xff0c;则只会监听一次&#xff0c;要实现一直监听的话要加for循环但是如果要设置退出条件的话&#xff0c;break语句只会退出这个select而不会退出for循环 select也可以有default&#xff0c;用于不用等cha…...

网络安全与信息安全的区别​及共通

在数字化时代&#xff0c;网络安全与信息安全已成为保障个人、企业乃至国家正常运转的重要防线。尽管二者紧密相关且常被混为一谈&#xff0c;但实则存在显著差异。当然&#xff0c;它们也有一些相同点&#xff0c;比如都以保障数字环境下的安全为核心目标&#xff0c;均需要通…...

【刷题2025】知识点梳理

1.常用操作 二进制异或 ans = a ^ b 向上取整 math.ceil(a/b) 向下取整 math.floor(a/b) 每次取最低字节:一个字节八位 while a > 0:aSum += a & 0xff # 累加最低字节的大小a >>= 8 # 一个字节八位, a右移八位, 将最低字节移除 正则匹配 # 编译正则表达式…...

# 从零开发小红书风格Flutter应用:图片上传功能实现踩坑记录

从零开发小红书风格Flutter应用&#xff1a;图片上传功能实现踩坑记录 作为第一次开发完整Flutter应用的经历&#xff0c;我在实现类似小红书的图片上传功能时遇到了不少挑战。本文将完整记录整个开发过程&#xff0c;包括技术选型、实现细节和遇到的问题。 技术栈选择 前端…...

Android studio配置Flutter遇到的问题总结

1、Android studio 安装cmdline-tools后 &#xff0c;cmd里运行flutter doctor,依旧报错 如何处理&#xff1a; 先执行&#xff1a; flutter config --android-sdk "E:\sdk\Sdk&#xff08;SDK路径&#xff09;" 再执行&#xff1a;flutter doctor --android-licen…...

__progname宏的用途(摘自DeepSeek)

__progname 宏解析 __progname 是一个在许多 Unix-like 系统中用于获取当前程序名称的宏或全局变量&#xff0c;主要用于错误报告、日志记录等场景。 基本定义 __progname 通常定义在标准库或系统头文件中 使用方法 基本用法 #include <stdio.h> #include <stdl…...

AI agents系列之智能体框架介绍

1. 引言 智能体AI Agents框架通过赋予自主系统动态感知、推理和行动的能力&#xff0c;彻底改变了AI领域。本节将探讨智能体框架的核心概念&#xff0c;并重点介绍为什么开源解决方案对现代AI开发的创新和可扩展性至关重要。 1.1 什么是智能体框架&#xff1f; 智能体框架代…...

(2025-04-12)向老主机箱中安装新买的显卡及固态硬盘

目录 1 引言2 显卡及其驱动的安装3 固态硬盘的安装及C盘扩容3.1 固态硬盘正确连接到主板上后&#xff0c;操作系统上面仍然不显示对应盘符怎么办&#xff1f;3.2 如何对C盘扩容&#xff1f;3.3 新问题&#xff1a;原有D盘程序不能运行 4 总结 1 引言 今天安装昨天买的新固态硬…...

从 Spring Boot 到 Django —— 后端开发技术类比学习

从 Spring Boot 到 Django —— 后端开发技术类比学习 引言&#xff08;从javaweb到pythonweb&#xff09; Django&#xff0c;一个成熟而简洁的 Web 框架时&#xff0c;我们在学习这个框架的过程中不仅可以体验 Python 的便捷生态&#xff0c;更能发现 Django 与 Spring Boo…...

外接键盘与笔记本命令键键位不同解决方案(MacOS)

文章目录 修改键位第一步&#xff1a;打开设置第二步&#xff1a;进入键盘快捷键第三步&#xff1a;修改修饰键设置第四步&#xff1a;调整键位第五步&#xff1a;保存设置tips ikbc c87键盘win键盘没反应的解决亲测的方法这是百度的答案标题常规组合键尝试‌&#xff1a;型号差…...

测试基础笔记第四天(html)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 html介绍1. 介绍2.骨架标签3.常用标签标题标签段落标签超链接标签图片标签换行和空格标签布局标签input标签&#xff08;变形金刚&#xff09;form标签列表标签 htm…...

爱普生SG2520VGN差分晶振5G基站的时钟解决方案

在 5G 通信时代&#xff0c;数据流量呈爆发式增长&#xff0c;5G 基站作为信号的核心中转枢纽&#xff0c;承载着前所未有的数据传输与处理重任。从海量的物联网设备连接&#xff0c;到高速移动用户的数据交互&#xff0c;每一个环节都对基站的性能提出了严苛要求。而精准稳定的…...

广汽滴滴Robotaxi首次亮相,中国自动驾驶加速领跑新赛道

作者 |张马也 编辑 |德新 4月12日&#xff0c;在广汽科技日上&#xff0c;广汽与滴滴合作的前装量产Robotaxi首次正式亮相。 这款车基于广汽埃安的纯电平台打造&#xff0c;搭载了滴滴自动驾驶的全套软硬件方案。滴滴自动驾驶全新一代的硬件平台&#xff0c; 包含激光雷达、…...

从拥堵到畅行,智慧城市如何实现交通魔法?

实时交通监控与数据分析 在智慧城市的建设中&#xff0c;实时交通监控是基础。它依赖于广泛部署的传感器网络&#xff0c;如摄像头、雷达、地磁感应器等&#xff0c;用于收集道路交通信息。这些设备将数据传输至中央管理系统&#xff0c;利用大数据处理技术进行分析&#xff0…...

边缘计算场景下的模型轻量化:TensorRT部署YOLOv7的端到端优化指南

一、边缘计算场景下的技术挑战与优化路径 在边缘设备&#xff08;如Jetson系列&#xff09;部署YOLOv7需兼顾模型精度、推理速度与功耗限制三重约束。TensorRT作为NVIDIA官方推理加速库&#xff0c;通过算子融合、量化压缩和内存复用等优化技术&#xff0c;可将模型推理速度提…...

flutter json解析增强

依赖:xxf_json 反序列化兼容特征一览表 类型\是否兼容 int double num string bool int yes yes yes yes yes double yes yes yes yes yes num yes yes yes yes yes string yes yes yes yes yes bool yes yes yes yes yes 专业词语 .g…...

职坐标解码互联网行业转型发展新动能

当前&#xff0c;互联网行业正以前所未有的速度重塑全球产业格局。工信部最新数据显示&#xff0c;我国互联网企业营收连续三年保持双位数增长&#xff0c;其中百强企业在人工智能、物联网等领域的投入强度同比提升40%&#xff0c;展现出强劲的技术引领力。与此同时&#xff0c…...

【软考-架构】13.4、质量属性-架构评估

✨资料&文章更新✨ GitHub地址&#xff1a;https://github.com/tyronczt/system_architect 文章目录 质量属性软件架构评估✨质量属性质量属性场景敏感点&权衡点三种常用的评估方式基于场景的架构分析方式SAAM✨架构权衡分析法ATAM成本效益收益法CBAM 考试真题其他评估…...

Gitlab SSH Jenkins Pipeline Supervisor部署

Gitlab SSH Jenkins Pipeline方式部署 准备搞一搞简单部署SpringBoot项目的一种方式&#xff0c;通过Gitlabssh Jenkins Pipeline的方式&#xff0c;简单学习下。 环境准备 本地域名ip地址安装软件作用server01192.168.110.110Gitlab代码托管server02192.168.110.111Jenkins…...