c++进阶--智能指针
大家好,今天我们来学习一下c++中的智能指针部分。
智能指针的使⽤及其原理
1. 智能指针的使⽤场景分析
下⾯程序中我们可以看到,new了以后,我们也delete了,但是因为抛异常导,后⾯的delete没有得到执⾏,所以就内存泄漏了,所以我们需要new以后捕获异常,捕获到异常后delete内存,再把异常抛出,但是因为new本⾝也可能抛异常,连续的两个new和下⾯的Divide都可能会抛异常,让我们处理起来很⿇烦。智能指针放到这样的场景⾥⾯就让问题简单多了。
double Divide(int a, int b)
{// 当b == 0时抛出异常if (b == 0){throw "Divide by zero condition!";}else{return (double)a / (double)b;}
}void Func()
{// 这⾥可以看到如果发⽣除0错误抛出异常,另外下⾯的array和array2没有得到释放。// 所以这⾥捕获异常后并不处理异常,异常还是交给外⾯处理,这⾥捕获了再重新抛出去。// 但是如果array2new的时候抛异常呢,就还需要套⼀层捕获释放逻辑,这⾥更好解决⽅案// 是智能指针,否则代码太戳了int* array1 = new int[10];int* array2 = new int[10]; // 抛异常呢try{int len, time;cin >> len >> time;cout << Divide(len, time) << endl;}catch (...){cout << "delete []" << array1 << endl;cout << "delete []" << array2 << endl;delete[] array1;delete[] array2;throw; // 异常重新抛出,捕获到什么抛出什么}// ...cout << "delete []" << array1 << endl;delete[] array1;cout << "delete []" << array2 << endl;delete[] array2;
}int main()
{try{Func();}catch (const char* errmsg){cout << errmsg << endl;}catch (const exception& e){cout << e.what() << endl;}catch (...){cout << "未知异常" << endl;}return 0;
}
我们在上节异常最后时说到,当我们抛出异常后,那些在函数调用链中申请的资源有可能不会被释放,这时需要catch( . . . )来捕获异常,将资源释放掉之后再将异常重新抛出。
此时我们在func中申请了两个数组,但new也是可以抛出异常的,若在申请array1时抛出异常,则不用管,若是在申请array2时抛出异常,则需要将array1的资源进行释放,所以要对array2再进行一次捕获异常判断,在申请的资源很多时这种方法明显是不可取的,所以要使用更好的方法。
2. RAII和智能指针的设计思路
1. RAII是Resource Acquisition Is Initialization的缩写,他是⼀种管理资源的类的设计思想,本质是⼀种利⽤对象⽣命周期来管理获取到的动态资源,避免资源泄漏,这⾥的资源可以是内存、⽂件指针、⽹络连接、互斥锁等等。RAII在获取资源时把资源委托给⼀个对象,接着控制对资源的访问,资源在对象的⽣命周期内始终保持有效,最后在对象析构的时候释放资源,这样保障了资源的正常释放,避免资源泄漏问题。2. 智能指针类除了满⾜RAII的设计思路,还要⽅便资源的访问,所以智能指针类还会想迭代器类⼀样,重载 operator*/operator->/operator[] 等运算符,⽅便访问资源。
template<class T>
class SmartPtr
{
public:// RAIISmartPtr(T* ptr):_ptr(ptr){}~SmartPtr(){cout << "delete[] " << _ptr << endl;delete[] _ptr;}// 重载运算符,模拟指针的⾏为,⽅便访问资源T& operator*(){return *_ptr;}T* operator->(){return _ptr;}T& operator[](size_t i){return _ptr[i];}private:T* _ptr;
};double Divide(int a, int b)
{// 当b == 0时抛出异常if (b == 0){throw "Divide by zero condition!";}else{return (double)a / (double)b;}
}void Func()
{// 这⾥使⽤RAII的智能指针类管理new出来的数组以后,程序简单多了SmartPtr<int> sp1 = new int[10];SmartPtr<int> sp2 = new int[10];for (size_t i = 0; i < 10; i++){sp1[i] = sp2[i] = i;}int len, time;cin >> len >> time;cout << Divide(len, time) << endl;
}int main()
{try{Func();}catch (const char* errmsg){cout << errmsg << endl;}catch (const exception& e){cout << e.what() << endl;}catch (...){cout << "未知异常" << endl;}return 0;
}
智能指针就是通过使用一个模拟指针的类来进行资源的申请,因为类中的资源在出作用域的时候会调用析构函数,申请的资源会释放。
由于智能指针模拟的是指针的行为,所以要支持 * 和 - > [ ] 这些运算符重载。
3. C++标准库智能指针的使⽤
1. C++标准库中的智能指针都在<memory>这个头⽂件下⾯,我们包含<memory>就可以是使⽤了,智能指针有好⼏种,除了weak_ptr他们都符合RAII和像指针⼀样访问的⾏为,原理上⽽⾔主要是解决智能指针拷⻉时的思路不同。2. auto_ptr是C++98时设计出来的智能指针,他的特点是拷⻉时把被拷⻉对象的资源的管理权转移给拷⻉对象,这是⼀个⾮常糟糕的设计,因为他会到被拷⻉对象悬空,访问报错的问题,C++11设计出新的智能指针后,强烈建议不要使⽤auto_ptr。其他C++11出来之前很多公司也是明令禁⽌使⽤这个智能指针的。3. unique_ptr是C++11设计出来的智能指针,他的名字翻译出来是唯⼀指针,他的特点的不⽀持拷⻉,只⽀持移动。如果不需要拷⻉的场景就⾮常建议使⽤他。4. shared_ptr是C++11设计出来的智能指针,他的名字翻译出来是共享指针,他的特点是⽀持拷⻉,也⽀持移动。如果需要拷⻉的场景就需要使⽤他了。底层是⽤引⽤计数的⽅式实现的。5. weak_ptr是C++11设计出来的智能指针,他的名字翻译出来是弱指针,他完全不同于上⾯的智能指针,他不⽀持RAII,也就意味着不能⽤它直接管理资源,weak_ptr的产⽣本质是要解决shared_ptr的⼀个循环引⽤导致内存泄漏的问题。具体细节下⾯我们再细讲。6. 智能指针析构时默认是进⾏delete释放资源,这也就意味着如果不是new出来的资源,交给智能指针管理,析构时就会崩溃。智能指针⽀持在构造时给⼀个删除器,所谓删除器本质就是⼀个可调⽤对象,这个可调⽤对象中实现你想要的释放资源的⽅式,当构造智能指针时,给了定制的删除器,在智能指针析构时就会调⽤删除器去释放资源。因为new[]经常使⽤,所以为了简洁⼀点,unique_ptr和shared_ptr都特化了⼀份[]的版本,使⽤时 unique_ptr<Date[]> up1(new Date[5]);shared_ptr<Date[]> sp1(new Date[5]); 就可以管理new []的资源。7. template <class T, class... Args> shared_ptr<T> make_shared (Args&&... args);8. shared_ptr 除了⽀持⽤指向资源的指针构造,还⽀持 make_shared ⽤初始化资源对象的值直接构造。9. shared_ptr 和 unique_ptr 都⽀持了operator bool的类型转换,如果智能指针对象是⼀个空对象没有管理资源,则返回false,否则返回true,意味着我们可以直接把智能指针对象给if判断是否为空。10. shared_ptr 和 unique_ptr 都得构造函数都使⽤explicit 修饰,防⽌普通指针隐式类型转换成智能指针对象。
struct Date
{int _year;int _month;int _day;Date(int year = 1, int month = 1, int day = 1):_year(year), _month(month), _day(day){}~Date(){cout << "~Date()" << endl;}
};int main()
{auto_ptr<Date> ap1(new Date);// 拷⻉时,管理权限转移,被拷⻉对象ap1悬空auto_ptr<Date> ap2(ap1);// 空指针访问,ap1对象已经悬空//ap1->_year++;unique_ptr<Date> up1(new Date);// 不⽀持拷⻉//unique_ptr<Date> up2(up1);// ⽀持移动,但是移动后up1也悬空,所以使⽤移动要谨慎unique_ptr<Date> up3(move(up1));shared_ptr<Date> sp1(new Date);// ⽀持拷⻉shared_ptr<Date> sp2(sp1);shared_ptr<Date> sp3(sp2);cout << sp1.use_count() << endl;sp1->_year++;cout << sp1->_year << endl;cout << sp2->_year << endl;cout << sp3->_year << endl;// ⽀持移动,但是移动后sp1也悬空,所以使⽤移动要谨慎shared_ptr<Date> sp4(move(sp1));return 0;
}
auto_ptr 使用时可以进行拷贝,但拷贝是将权限直接转交给另一个指针,在拷贝之后它对资源就没有权限了。
unique_ptr 使用时不能进行拷贝,但能进行移动,同理,在移动后它也会失去对资源的权限。
shared_ptr 使用时可以进行拷贝也可以进行移动,拷贝之后它不会失去对资源的权限,而在移动后会失去对资源的权限。
下面我们再来看看智能指针删除时的用法:
template<class T>
void DeleteArrayFunc(T* ptr)
{delete[] ptr;
}template<class T>
class DeleteArray
{
public:void operator()(T* ptr){delete[] ptr;}
};class Fclose
{
public:void operator()(FILE* ptr){cout << "fclose:" << ptr << endl;fclose(ptr);}
};int main()
{// 这样实现程序会崩溃// unique_ptr<Date> up1(new Date[10]);// shared_ptr<Date> sp1(new Date[10]);// 解决⽅案1// 因为new[]经常使⽤,所以unique_ptr和shared_ptr// 实现了⼀个特化版本,这个特化版本析构时⽤的delete[]unique_ptr<Date[]> up1(new Date[5]);shared_ptr<Date[]> sp1(new Date[5]);// 解决⽅案2// 仿函数对象做删除器//unique_ptr<Date, DeleteArray<Date>> up2(new Date[5], DeleteArray<Date>());// unique_ptr和shared_ptr⽀持删除器的⽅式有所不同// unique_ptr是在类模板参数⽀持的,shared_ptr是构造函数参数⽀持的// 这⾥没有使⽤相同的⽅式还是挺坑的// 使⽤仿函数unique_ptr可以不在构造函数传递,因为仿函数类型构造的对象直接就可以调⽤// 但是下⾯的函数指针和lambda的类型不可以unique_ptr<Date, DeleteArray<Date>> up2(new Date[5]);shared_ptr<Date> sp2(new Date[5], DeleteArray<Date>());// 函数指针做删除器unique_ptr<Date, void(*)(Date*)> up3(new Date[5], DeleteArrayFunc<Date>);shared_ptr<Date> sp3(new Date[5], DeleteArrayFunc<Date>);// lambda表达式做删除器auto delArrOBJ = [](Date* ptr) {delete[] ptr; };unique_ptr<Date, decltype(delArrOBJ)> up4(new Date[5], delArrOBJ);shared_ptr<Date> sp4(new Date[5], delArrOBJ);// 实现其他资源管理的删除器shared_ptr<FILE> sp5(fopen("Test.cpp", "r"), Fclose());shared_ptr<FILE> sp6(fopen("Test.cpp", "r"), [](FILE* ptr) {cout << "fclose:" << ptr << endl;fclose(ptr);});return 0;
}
new和delete在申请和释放资源时对于数组有不同的写法,对于代码中给出的shared_ptr<Date> sp1(new Date[10]);这样写是不行的,因为申请的是Date类型的数组,在释放时应该用delete[ ]来进行释放,但智能指针默认是delete删除,不能释放数组资源。
在这里给出了两种方法,一是智能指针模板提供了一个特化版本,专门用于数组的申请和释放;二是使用仿函数对象做删除器,我们可以提供一个删除方法,这样也能释放数组的资源。但对于unique_ptr和shared_ptr两种智能指针的写法不同。
对于unique_ptr 是把删除器写道模板参数列表里,二对于shared_ptr 是把删除器写道构造函数里,在构造的时候传入。
4. 智能指针的原理
1. 下⾯我们模拟实现了auto_ptr和unique_ptr的核⼼功能,这两个智能指针的实现⽐较简单,⼤家了解⼀下原理即可。auto_ptr的思路是拷⻉时转移资源管理权给被拷⻉对象,这种思路是不被认可的,也不建议使⽤。unique_ptr的思路是不⽀持拷⻉。2. ⼤家重点要看看shared_ptr是如何设计的,尤其是引⽤计数的设计,主要这⾥⼀份资源就需要⼀个引⽤计数,所以引⽤计数才⽤静态成员的⽅式是⽆法实现的,要使⽤堆上动态开辟的⽅式,构造智能指针对象时来⼀份资源,就要new⼀个引⽤计数出来。多个shared_ptr指向资源时就++引⽤计数,shared_ptr对象析构时就--引⽤计数,引⽤计数减到0时代表当前析构的shared_ptr是最后⼀个管理资源的对象,则析构资源。
对于引用计数,这里不能使用int类型的变量作为引用计数,当进行拷贝时两个智能指针的引用计数都会+1,在析构的时候引用计数都-1也不能使引用计数为0,不能释放资源。
同理,引用计数也不能为静态成员变量,类的静态成员变量是属于类的所有对象的,当我们申请了多个资源时,引用计数就不对等了,所以也不行。
在这里,我们把引用计数也动态申请,在智能指针中存放它的地址,当进行拷贝时,引用计数+1,当析构时,引用计数-1,当引用计数为0时,再把资源释放。
template<class T>
class auto_ptr
{
public:auto_ptr(T* ptr):_ptr(ptr){}auto_ptr(auto_ptr<T>& sp):_ptr(sp._ptr){// 管理权转移sp._ptr = nullptr;}auto_ptr<T>& operator=(auto_ptr<T>& ap){// 检测是否为⾃⼰给⾃⼰赋值if (this != &ap){// 释放当前对象中资源if (_ptr)delete _ptr;// 转移ap中资源到当前对象中_ptr = ap._ptr;ap._ptr = NULL;}return *this;}~auto_ptr(){if (_ptr){cout << "delete:" << _ptr << endl;delete _ptr;}}// 像指针⼀样使⽤T& operator*(){return *_ptr;}T* operator->(){return _ptr;}private:T* _ptr;
};template<class T>
class unique_ptr
{
public:explicit unique_ptr(T* ptr):_ptr(ptr){}~unique_ptr(){if (_ptr){cout << "delete:" << _ptr << endl;delete _ptr;}}// 像指针⼀样使⽤T& operator*(){return *_ptr;}T* operator->(){return _ptr;}unique_ptr(const unique_ptr<T>&sp) = delete;unique_ptr<T>& operator=(const unique_ptr<T>&sp) = delete;unique_ptr(unique_ptr<T> && sp):_ptr(sp._ptr){sp._ptr = nullptr;}unique_ptr<T>& operator=(unique_ptr<T> && sp){delete _ptr;_ptr = sp._ptr;sp._ptr = nullptr;}private:T* _ptr;
};template<class T>
class shared_ptr
{
public:explicit shared_ptr(T* ptr = nullptr): _ptr(ptr), _pcount(new int(1)){}template<class D>shared_ptr(T* ptr, D del): _ptr(ptr), _pcount(new int(1)), _del(del){}shared_ptr(const shared_ptr<T>& sp):_ptr(sp._ptr), _pcount(sp._pcount), _del(sp._del){++(*_pcount);}void release(){if (--(*_pcount) == 0){// 最后⼀个管理的对象,释放资源_del(_ptr);delete _pcount;_ptr = nullptr;_pcount = nullptr;}}shared_ptr<T>& operator=(const shared_ptr<T>& sp){if (_ptr != sp._ptr){release();_ptr = sp._ptr;_pcount = sp._pcount;++(*_pcount);_del = sp._del;}return *this;}~shared_ptr(){release();}T* get() const{return _ptr;}int use_count() const{return *_pcount;}T& operator*(){return *_ptr;}T* operator->(){return _ptr;}private:T* _ptr;int* _pcount;//atomic<int>* _pcount;function<void(T*)> _del = [](T* ptr) {delete ptr; };
};// 需要注意的是我们这⾥实现的shared_ptr和weak_ptr都是以最简洁的⽅式实现的,
// 只能满⾜基本的功能,这⾥的weak_ptr lock等功能是⽆法实现的,想要实现就要
// 把shared_ptr和weak_ptr⼀起改了,把引⽤计数拿出来放到⼀个单独类型,shared_ptr
// 和weak_ptr都要存储指向这个类的对象才能实现,有兴趣可以去翻翻源代码
template<class T>
class weak_ptr
{
public:weak_ptr(){}weak_ptr(const shared_ptr<T>& sp):_ptr(sp.get()){}weak_ptr<T>& operator=(const shared_ptr<T>& sp){_ptr = sp.get();return *this;}private:T* _ptr = nullptr;
};int main()
{auto_ptr<Date> ap1(new Date);// 拷⻉时,管理权限转移,被拷⻉对象ap1悬空auto_ptr<Date> ap2(ap1);// 空指针访问,ap1对象已经悬空//ap1->_year++;unique_ptr<Date> up1(new Date);// 不⽀持拷⻉//unique_ptr<Date> up2(up1);// ⽀持移动,但是移动后up1也悬空,所以使⽤移动要谨慎unique_ptr<Date> up3(move(up1));shared_ptr<Date> sp1(new Date);// ⽀持拷⻉shared_ptr<Date> sp2(sp1);shared_ptr<Date> sp3(sp2);cout << sp1.use_count() << endl;sp1->_year++;cout << sp1->_year << endl;cout << sp2->_year << endl;cout << sp3->_year << endl;return 0;
}
5. shared_ptr和weak_ptr
5.1 shared_ptr循环引⽤问题
shared_ptr⼤多数情况下管理资源⾮常合适,⽀持RAII,也⽀持拷⻉。但是在循环引⽤的场景下会导致资源没得到释放内存泄漏,所以我们要认识循环引⽤的场景和资源没释放的原因,并且学会使⽤weak_ptr解决这种问题。
如下图所述场景,n1和n2析构后,管理两个节点的引⽤计数减到11. 右边的节点什么时候释放呢,左边节点中的_next管着呢,_next析构后,右边的节点就释放了。2. _next什么时候析构呢,_next是左边节点的的成员,左边节点释放,_next就析构了。3. 左边节点什么时候释放呢,左边节点由右边节点中的_prev管着呢,_prev析构后,左边的节点就释放了。4. _prev什么时候析构呢,_prev是右边节点的成员,右边节点释放,_prev就析构了。⾄此逻辑上成功形成回旋镖似的循环引⽤,谁都不会释放就形成了循环引⽤,导致内存泄漏把ListNode结构体中的_next和_prev改成weak_ptr,weak_ptr绑定到shared_ptr时不会增加它的引⽤计数,_next和_prev不参与资源释放管理逻辑,就成功打破了循环引⽤,解决了这⾥的问题
struct ListNode
{int _data;std::shared_ptr<ListNode> _next;std::shared_ptr<ListNode> _prev;// 这⾥改成weak_ptr,当n1->_next = n2;绑定shared_ptr时// 不增加n2的引⽤计数,不参与资源释放的管理,就不会形成循环引⽤了/*std::weak_ptr<ListNode> _next;std::weak_ptr<ListNode> _prev;*/~ListNode(){cout << "~ListNode()" << endl;}
};int main()
{// 循环引⽤ -- 内存泄露std::shared_ptr<ListNode> n1(new ListNode);std::shared_ptr<ListNode> n2(new ListNode);cout << n1.use_count() << endl;cout << n2.use_count() << endl;n1->_next = n2;n2->_prev = n1;cout << n1.use_count() << endl;cout << n2.use_count() << endl;// weak_ptr不⽀持管理资源,不⽀持RAII// weak_ptr是专⻔绑定shared_ptr,不增加他的引⽤计数,作为⼀些场景的辅助管理//std::weak_ptr<ListNode> wp(new ListNode);return 0;
}
5.2 weak_ptr
1. weak_ptr不⽀持RAII,也不⽀持访问资源,所以我们看⽂档发现weak_ptr构造时不⽀持绑定到资源,只⽀持绑定到shared_ptr,绑定到shared_ptr时,不增加shared_ptr的引⽤计数,那么就可以解决上述的循环引⽤问题。2. weak_ptr也没有重载operator*和operator->等,因为他不参与资源管理,那么如果他绑定的shared_ptr已经释放了资源,那么他去访问资源就是很危险的。weak_ptr⽀持expired检查指向的资源是否过期,use_count也可获取shared_ptr的引⽤计数,weak_ptr想访问资源时,可以调⽤lock返回⼀个管理资源的shared_ptr,如果资源已经被释放,返回的shared_ptr是⼀个空对象,如果资源没有释放,则通过返回的shared_ptr访问资源是安全的。
int main()
{std::shared_ptr<string> sp1(new string("111111"));std::shared_ptr<string> sp2(sp1);std::weak_ptr<string> wp = sp1;cout << wp.expired() << endl;cout << wp.use_count() << endl;// sp1和sp2都指向了其他资源,则weak_ptr就过期了sp1 = make_shared<string>("222222");cout << wp.expired() << endl;cout << wp.use_count() << endl;sp2 = make_shared<string>("333333");cout << wp.expired() << endl;cout << wp.use_count() << endl;wp = sp1;//std::shared_ptr<string> sp3 = wp.lock();auto sp3 = wp.lock();cout << wp.expired() << endl;cout << wp.use_count() << endl;*sp3 += "###";cout << *sp1 << endl;return 0;
}
6. shared_ptr的线程安全问题
1. shared_ptr的引⽤计数对象在堆上,如果多个shared_ptr对象在多个线程中,进⾏shared_ptr的拷⻉析构时会访问修改引⽤计数,就会存在线程安全问题,所以shared_ptr引⽤计数是需要加锁或者原⼦操作保证线程安全的。2. shared_ptr指向的对象也是有线程安全的问题的,但是这个对象的线程安全问题不归shared_ptr管,它也管不了,应该有外层使⽤shared_ptr的⼈进⾏线程安全的控制。3. 下⾯的程序会崩溃或者A资源没释放,bit::shared_ptr引⽤计数从int*改成atomic<int>*就可以保证引⽤计数的线程安全问题,或者使⽤互斥锁加锁也可以。
struct AA
{int _a1 = 0;int _a2 = 0;~AA(){cout << "~AA()" << endl;}
};
int main()
{bit::shared_ptr<AA> p(new AA);const size_t n = 100000;mutex mtx;auto func = [&](){for (size_t i = 0; i < n; ++i){// 这⾥智能指针拷⻉会++计数bit::shared_ptr<AA> copy(p);{unique_lock<mutex> lk(mtx);copy->_a1++;copy->_a2++;}}};thread t1(func);thread t2(func);t1.join();t2.join();cout << p->_a1 << endl;cout << p->_a2 << endl;cout << p.use_count() << endl;return 0;
}
相关文章:
c++进阶--智能指针
大家好,今天我们来学习一下c中的智能指针部分。 智能指针的使⽤及其原理 1. 智能指针的使⽤场景分析 下⾯程序中我们可以看到,new了以后,我们也delete了,但是因为抛异常导,后⾯的delete没有得到执⾏,所以…...
五种常用的web加密算法
文章目录 五种常用Web加密算法实战及原理详解1. AES (高级加密标准)原理详解应用场景实战代码(Node.js) 2. RSA (非对称加密)原理详解应用场景实战代码(Node.js) 3. SHA-256 (安全哈希算法)原理详解应用场景实战代码(浏…...
LeetCode 题目 「二叉树的右视图」 中,如何从「中间存储」到「一步到位」实现代码的优化?
背景简介 在 LeetCode 的经典题目 「二叉树的右视图」 中,我们需要返回从右侧看一棵二叉树时所能看到的节点集合。每一层我们只能看到最右边的那个节点。 最初,我采用了一个常规思路:层序遍历 每层单独保存节点值 最后提取每层最后一个节…...
MySQL——存储过程、索引
一、存储过程 1、存储过程使用的场景 例如:有一个购物网站,要验证查询商品的性能,测试之前肯定要准备大量的测试数据,如果是通过 执行 insert 语句一条一条进行插入,效率很低。这种情况下,写一个存储过程…...
【项目管理】第9章 项目范围管理
相关文档,希望互相学习,共同进步 风123456789~-CSDN博客 (一)知识总览 项目管理知识域 知识点: (项目管理概论、立项管理、十大知识域、配置与变更管理、绩效域) 对应:第6章-第19章 (二)知识笔记 第9章 项目范围管理 1.管理基础 1.1 产品范围…...
无人机隐身技术难点要点!
全频段雷达隐身 频段覆盖挑战:传统隐身材料(如铁氧体、掺杂半导体)多针对特定频段(如X波段),难以应对米波至毫米波的宽频段探测。 低频段突破:低频雷达(如米波雷达)波长…...
gerrit配置及使用git-lfs
gerrit服务器端配置 下载git-lfs插件 登录Dashboard [Jenkins] (gerritforge.com),下载对应版本的插件 配置gerrit 将下载的lfs.jar插件放到${GERRIT_SITE}/plugins/下面为所有仓库启用git-lfs 此步骤需要修改 All-projects 仓库配置,步骤如下 1、克隆仓…...
基于DNS的负载均衡和反向代理负载均衡
基于 DNS 的负载均衡和反向代理负载均衡有一些相似之处,但实际上它们存在诸多区别,主要体现在以下几个方面: 工作原理 DNS 负载均衡:通过在 DNS 服务器中为同一主机名配置多个 IP 地址,DNS 服务器根据一定的算法&…...
Windows10 ssh无输出 sshd服务启动失败 1067报错 公钥无法认证链接 解决办法
背景描述 最近突然发现windows 10的ssh服务好像挂了,在系统设置-可选功能那里反复重新安装还是报错。命令行输入ssh按回车无输出(正常情况下应该输出一堆参数说明),但是Get-Command ssh 又可以找到system32下的ssh程序。任务管理…...
【图书管理系统】深入解析基于 MyBatis 数据持久化操作:全栈开发图书管理系统:查询图书属性接口(注解实现)、修改图书属性接口(XML 实现)
查询图书属性接口 约定前后端交互接口 约定前后端交互接口,进入修改页面,需要显示当前图书的信息; 请求 /book/queryBookById?bookId25 参数 无 响应 { "id": 25, "bookName": "图书21", "…...
消息队列(IPC技术)
目录 一、Linux 中主要的进程间通信方式如下: 二、消息队列函数 (1)msgget函数 功能概述 函数原型 参数解释 返回值 示例 结果 问题 (2) msgsnd函数 功能概述 函数原型 参数说明 返回值 示例 结果 (3࿰…...
分支语句和循环语句
什么是语句? C语言中由一个分号;隔开的就是一条语句。 比如: printf("haha");12;分支语句 if语句 if语句的语法结构: if(表达式)语句;if(表达式)语句1; else语句2;//多分支 if(表达式1)语句1; else if(表达式2)语句2; else语句3;在C语言…...
MySQL基础 [八] - 事务
目录 前言 什么是事务 事务的版本支持 事务的提交方式 事务的相关演示 并行事务引发的问题 脏读 dirty read 不可重复读 non-repeatable read 幻读 phantom read 事务的隔离级别 查看与设置隔离级别 读未提交(Read Uncommitted) 读提交&…...
深入理解Java反射
反射(Reflection)是Java语言的一个强大特性,它允许程序在运行时动态地获取类的信息并操作类或对象的属性、方法和构造器。就是在获取运行时的java字节码文件,通过各种方法去创建对象,反射是Java被视为动态语言的关键特性之一。 反射其实就是…...
【UE】渐变框材质
效果 步骤 新建一个材质,这里命名为“M_GlowingBorder”,打开“M_GlowingBorder”后,设置材质域为“用户界面”,混合模式为“半透明” 添加如下节点: 代码: Begin Object Class/Script/UnrealEd.Materia…...
2025年第十八届“认证杯”数学中国数学建模网络挑战赛【ABCD题】思路分析
首先,需要理解用户的需求。问题1需要数学模型来确定小行星的相对距离,而问题2需要预测短期轨道并计算特定时间的观测角度。这两个问题都需要结合天文学和数学建模的知识,涉及到轨道力学和几何定位的方法。 接下来,查阅提供的搜索…...
JavaScript 性能优化:突破瓶颈的实战指南
一、引言 在现代 Web 应用和 Node.js 服务端开发中,JavaScript 已成为核心编程语言。随着应用复杂度提升,性能问题愈发凸显。高延迟、卡顿甚至崩溃等现象,不仅影响用户体验,还可能导致业务流失。深入理解 JavaScript 性能瓶颈并…...
HarmonyOS:组件布局保存至相册
一,需求背景 有这样一个需求,将页面上的某个自定义组件以图片的形式保存至相册。 二,需求拆解 根据需求分析,可将需求拆解成两步: 1,将组件转换成图片资源; 2,将图片保存到相册…...
【langchain库名解析】
目录 一、from langchain_openai import ChatOpenAI 1. 核心功能 2. 典型使用场景 场景 1:直接生成对话回复 场景 3:流式输出(逐词显示结果) 3. 与其他 LangChain 组件的协同 结合提示模板(PromptTemplate&#…...
629SJBH图书管理系统设计与实现
一、 绪论 (一)课题的提出、现状及研究意义 图书馆是文献情报中心,是为教学和科研服务的学术性机构。它履行搜集、加工、存贮和传播知识信息的职能,与各系资料室互为补充,共同承担为教学和科研提供文献情报资料保障的…...
2025 年“认证杯”数学中国数学建模网络挑战赛 A题 小行星轨迹预测
近地小行星( Near Earth Asteroids, NEAs )是轨道相对接近地球的小行 星,它的正式定义为椭圆轨道的近日距不大于 1.3 天文单位( AU )的小行星。 其中轨道与地球轨道最近距离小于 0.05A 且直径大于 140 米的小行星被…...
PhotoShop学习09
1.弯曲钢笔工具 PhotoShop提供了弯曲钢笔工具可以直观地创建路径,只需要对分段推拉就能够进行修改。弯曲港币工具位于工具面板中的钢笔工具里,它的快捷键为P。 在使用前,可以把填充和描边选为空颜色,并打开路径选项,勾…...
远程管理命令:关机和重启
关机/重启 序号命令对应英文作用01shutdown 选项 时间shutdown关机 / 重新启动 一、shutdown shutdown 命令可以安全关闭 或者 重新启动系统。 选项含义-r重新启动 提示: 不指定选项和参数,默认表示 1 分钟之后 关闭电脑远程维护服务器时࿰…...
用Perl和HTTP::Tiny库的爬虫
HTTP::Tiny是Perl的一个轻量级HTTP客户端,适合简单的请求,但不像LWP那样功能全面,不过对于基本需求应该足够了。 首先,我需要熟悉HTTP::Tiny的基本用法。比如如何发起GET请求,设置user-agent,处理响应。用…...
MPP 架构解析:原理、核心优势与对比指南
一、引言:大数据时代的数据处理挑战 全球数据量正以指数级增长。据 Statista 统计,2010 年全球数据量仅 2ZB,2025 年预计达 175ZB。企业面临的核心挑战已从“如何存储数据”转向“如何快速分析数据”。传统架构在处理海量数据时暴露明显瓶颈…...
2025.04.10-拼多多春招笔试第三题
📌 点击直达笔试专栏 👉《大厂笔试突围》 💻 春秋招笔试突围在线OJ 👉 笔试突围OJ 03. 数字重排最大化问题 问题描述 LYA是一位专业的数字设计师。她手中有两个数字序列 s 1 s_1...
前端-vue2核心
官网网址Vue2 安装 — Vue.js 搭建环境 第一种方式(刚开是接触Vue) 我们看官网,可以直接在script引入vue版本。这里有两个版本,开发版和生产版本。我们两个都下载。 然后创建一个项目,将下载的生产版本和开发版本粘…...
基于springboot的“协同过滤算法的高考择校推荐系统”的设计与实现(源码+数据库+文档+PPT)
基于springboot的“协同过滤算法的高考择校推荐系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:springboot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 局部E-R图 系统…...
制作前的关键筹备:考试考核系统之核心要点
明确系统使用目的 制作考试考核系统前,企业需明确系统使用目的,这是开发基石,不同目的决定系统功能特性。用于员工培训考核时,系统要与培训内容结合,能生成相应考题,检验员工知识掌握程度,具备…...
【动手学深度学习】现代卷积神经网络:ALexNet
【动手学深度学习】现代卷积神经网络:ALexNet 1,ALexNet简介2,AlexNet和LeNet的对比3, AlexNet模型详细设计4,AlexNet采用ReLU激活函数4.1,ReLU激活函数4.2,sigmoid激活函数4.3,为什…...
Linux自启动脚本 systemctl
1.编写好脚本 #!/bin/bash /home/china/Linux/code/a.out2. 创建 Systemd 服务文件 sudo gedit /etc/systemd/system/my_script.service3.编写服务配置 将以下内容写入文件(根据需求修改字段): [Unit] DescriptionMy Custom Shell Script…...
2024年KBS SCI1区TOP:信息增益比子特征分组赋能粒子群算法ISPSO,深度解析+性能实测
目录 1.摘要2.信息度量3.改进策略4.结果展示5.参考文献6.代码获取 1.摘要 特征选择是机器学习中的关键预处理步骤,广泛应用于实际问题。尽管粒子群算法(PSO)因其强大的全局搜索能力被广泛用于特征选择,但要开发一种高效的PSO方法…...
餐饮厨房开源监控安全系统的智能革命
面对日益严格的合规要求和消费者对卫生的信任危机,传统人工监督已力不从心:卫生死角难发现、违规操作难追溯、安全隐患防不胜防。如何让后厨更透明、更安全、更可信?餐饮厨房视频安全系统横空出世!这套系统融合实时监控与AI技术&a…...
Ansys Electronics 变压器 ACT
你好, 在本博客中,我将讨论如何使用 Ansys 电子变压器 ACT 自动快速地设计电力电子电感器或变压器。我将逐步介绍设计和创建电力电子变压器示例的步骤,该变压器为同心组件,双绕组,采用正弦电压激励,并应用…...
Redis与Lua原子操作深度解析及案例分析
一、Redis原子操作概述 Redis作为高性能的键值存储系统,其原子性操作是保证数据一致性的核心机制。在Redis中,原子性指的是一个操作要么完全执行,要么完全不执行,不会出现部分执行的情况。 Redis原子性的实现原理 单线程模型&a…...
Shell 脚本开发从入门到实战
第1章:什么是 Shell 与 Shell 脚本? 一、Shell 是什么? Shell 是一个命令解释器,是你在 Linux 里敲命令的地方。你平时用的命令如 cd、ls、echo,其实都由 Shell 来解析执行。最常见的 Shell 是 Bash,绝大…...
宇视设备视频平台EasyCVR打造智慧酒店安防体系,筑牢安全防线
一、需求背景 酒店作为人员流动频繁的场所,对安全保障与隐私保护有着极高的要求。为切实维护酒店内部公共区域的安全秩序,24小时不间断视频监控成为必要举措。通常情况下,酒店需在本地部署视频监控系统以供查看,部分连锁酒店还希…...
深度解读分销小程序商城源码系统:从搭建到运营的关键指南
在移动互联网浪潮的席卷下,电商领域持续变革与创新。分销小程序商城凭借其独特优势,如依托社交平台流量、便捷的购物体验、高效的分销推广模式等,成为众多企业和创业者开展线上业务的热门选择。深入了解分销小程序商城源码系统,从…...
BeeWorks:打造安全可控的企业内网即时通讯平台
在数字化办公时代,企业对即时通讯工具的需求日益增长,尤其是对数据安全和隐私保护有严格要求的行业,如金融、政府、医疗等。BeeWorks 作为一款专注于内网部署的即时通讯软件,凭借其卓越的安全性、稳定性、丰富的功能以及全面的信创…...
微信小程序开发:废品回收小程序-功能清单
用户端:便捷体验,触手可及 废品百科与估价指南:平台以直观的方式展示各类废品的分类标准与实时市场价格,让用户轻松掌握废品价值,决策更从容。 一键预约,轻松回收:用户只需轻触屏幕,…...
【Grok 大模型深度解析】第一期:技术溯源与核心突破
一、Grok的技术基因:从Transformer到混合架构的演进 1.1 Transformer架构的局限性 2017年Google提出的Transformer架构彻底改变了自然语言处理领域,其自注意力机制(Self-Attention)在长序列建模上表现优异。然而,随着模型规模的增大,传统Transformer暴露出以下问题: 计…...
性能比拼: Redis vs Memcached
本内容是对知名性能评测博主 Anton Putra Redis vs Memcached Performance Benchmark 内容的翻译与整理, 有适当删减, 相关指标和结论以原作为准 在本视频中,我们将对比 Redis 和 Memcached。我会介绍一些功能上的不同,但主要关注 性能。 首先…...
Mujoco xml actuator
actuator general(通用执行器)motor(电机执行器)position(位置伺服)velocity(速度伺服)intvelocity(积分速度伺服)damper(主动阻尼器)…...
Mybatis Plus分页查询返回total为0问题
概述 最近开发公司新项目,使用 Mybatis Plus 分页,发现总数和总页数为0,在此记录问题和解决方案。 添加 MybatisPlusConfig /*** author: lanys* version: 1.0* 创建时间:2025年4月9日 14:24:40* Description: MybatisPlus分页…...
多卡分布式训练:torchrun --nproc_per_node=5
多卡分布式训练:torchrun --nproc_per_node=5 1. torchrun 实现规则 torchrun 是 PyTorch 提供的用于启动分布式训练作业的实用工具,它基于 torch.distributed 包,核心目标是简化多进程分布式训练的启动和管理。以下是其主要实现规则: 进程启动 多进程创建:torchrun 会…...
网络层-IP地址计算
例1:IP地址二进制与十进制互转 题目: 将二进制IP 11000000.10101000.00000001.00001010 转换为点分十进制。将IP地址 172.16.254.1 转换为二进制格式。 答案与解析: 转换步骤: 每个8位二进制转为十进制: 11000000 →…...
BeagleBone Black笔记
目录 参考资料开机led控制GPIO输入输出插网线联网安装gcc编译工具镜像备份验证备份完整性将内存卡插入目标BBBboot启动开关 参考资料 链接: BeagleBone Black使用(一):狗板简介 链接: 使用Beaglebone Black的IO口 开机 直接用usb连接到电脑…...
【25软考网工笔记】第一章 计算机网络概述
目录 一、计算机网络发展与分类 1. 计算机网络形成和发展 1)ICT 2)计算机网络的发展 3)我国互联网发展 2. 计算机网络分类 1)通信子网和资源子网 2)PAN、LAN、MAN、WAN 3)其他分类方式 3. 计算机…...
Soybean Admin 配置vite兼容低版本浏览器、安卓电视浏览器(飞视浏览器)
环境 window10 pnpm 8.15.4 node 8.15.4 vite 5.1.4 soybean admin: 1.0.0 native-ui: 2.38.0 小米电视 MIUI TV版本:MiTV OS 2.7.1886(稳定版) 飞视浏览器:https://www.fenxm.com/1220.html在小米电视安装飞视浏览器可以去小红书查安装教程:…...
MicroPython 开发ESP32应用教程 之 I2S、INMP441音频录制、MAX98357A音频播放、SD卡读写
本课程我们讲解Micropython for ESP32 的i2s及其应用,比如INMP441音频录制、MAX98357A音频播放等,还有SD卡的读写。 一、硬件准备 1、支持micropython的ESP32S3开发板 2、INMP441数字全向麦克风模块 3、MAX98357A音频播放模块 4、SD卡模块 5、面包板及…...