当前位置: 首页 > news >正文

大数据Hadoop(MapReduce)

MapReduce概述

MapReduce定义

MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。
MapReduce核心功能是将用户编写的业务逻辑代码自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。

MapReduce优缺点

优点

1)MapReduce易于编程
它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。
2)良好的扩展性
当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。
3)高容错性
MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。
4)适合PB级以上海量数据的离线处理
可以实现上千台服务器集群并发工作,提供数据处理能力。

缺点

1)不擅长实时计算
MapReduce无法像MySQL一样,在毫秒或者秒级内返回结果。
2)不擅长流式计算
流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。
3)不擅长DAG(有向无环图)计算
多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。

MapReduce核心思想

在这里插入图片描述
(1)分布式的运算程序往往需要分成至少2个阶段。
(2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。
(3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。
(4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

MapReduce进程

一个完整的MapReduce程序在分布式运行时有三类实例进程:
(1)MrAppMaster:负责整个程序的过程调度及状态协调。
(2)MapTask:负责Map阶段的整个数据处理流程。
(3)ReduceTask:负责Reduce阶段的整个数据处理流程

官方WordCount源码

采用反编译工具反编译源码,发现WordCount案例有Map类、Reduce类和驱动类。且数据的类型是Hadoop自身封装的序列化类型。

常用数据序列化类型

Java类型Hadoop Writable类型
BooleanBooleanWritable
ByteByteWritable
IntIntWritable
FloatFloatWritable
LongLongWritable
DoubleDoubleWritable
StringText
MapMapWritable
ArrayArrayWritable
NullNullWritable

MapReduce编程规范

用户编写的程序分成三个部分:Mapper、Reducer和Driver。
在这里插入图片描述
在这里插入图片描述

WordCount案例实操

本地测试

  1. 需求
    在给定的文本文件中统计输出每一个单词出现的总次数
    (1)输入数据
    在这里插入图片描述

(2)期望输出数据
atguigu 2
banzhang 1
cls 2
hadoop 1
jiao 1
ss 2
xue 1

  1. 需求分析

按照MapReduce编程规范,分别编写Mapper,Reducer,Driver。
在这里插入图片描述

  1. 环境准备
    (1)创建maven工程,MapReduceDemo
    (2)在pom.xml文件中添加如下依赖
<dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>1.7.30</version></dependency>
</dependencies>

(2)在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout  
log4j.appender.stdout=org.apache.log4j.ConsoleAppender  
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n  
log4j.appender.logfile=org.apache.log4j.FileAppender  
log4j.appender.logfile.File=target/spring.log  
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout  
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

(3)创建包名:com.atguigu.mapreduce.wordcount

  1. 编写程序

(1)编写Mapper类

package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{Text k = new Text();IntWritable v = new IntWritable(1);@Overrideprotected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {// 1 获取一行String line = value.toString();// 2 切割String[] words = line.split(" ");// 3 输出for (String word : words) {k.set(word);context.write(k, v);}}
}

(2)编写Reducer类

package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{int sum;
IntWritable v = new IntWritable();@Overrideprotected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {// 1 累加求和sum = 0;for (IntWritable count : values) {sum += count.get();}// 2 输出v.set(sum);context.write(key,v);}
}

(3)编写Driver驱动类

package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WordCountDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {// 1 获取配置信息以及获取job对象Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 2 关联本Driver程序的jarjob.setJarByClass(WordCountDriver.class);// 3 关联Mapper和Reducer的jarjob.setMapperClass(WordCountMapper.class);job.setReducerClass(WordCountReducer.class);// 4 设置Mapper输出的kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 5 设置最终输出kv类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);// 6 设置输入和输出路径FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 7 提交jobboolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}
  1. 本地测试
    (1)需要首先配置好HADOOP_HOME变量以及Windows运行依赖
    (2)在IDEA/Eclipse上运行程序

提交到集群测试

集群上测试
(1)用maven打jar包,需要添加的打包插件依赖

<build><plugins><plugin><artifactId>maven-compiler-plugin</artifactId><version>3.6.1</version><configuration><source>1.8</source><target>1.8</target></configuration></plugin><plugin><artifactId>maven-assembly-plugin</artifactId><configuration><descriptorRefs><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><executions><execution><id>make-assembly</id><phase>package</phase><goals><goal>single</goal></goals></execution></executions></plugin></plugins>
</build>

注意:如果工程上显示红叉。在项目上右键->maven->Reimport刷新即可。
(2)将程序打成jar包
在这里插入图片描述

(3)修改不带依赖的jar包名称为wc.jar,并拷贝该jar包到Hadoop集群的/opt/module/hadoop-3.1.3路径。
(4)启动Hadoop集群

[atguigu@hadoop102 hadoop-3.1.3]sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

(5)执行WordCount程序

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar  wc.jarcom.atguigu.mapreduce.wordcount.WordCountDriver /user/atguigu/input /user/atguigu/output

Hadoop序列化

序列化概述

  1. 什么是序列化
    序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
    反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。
  2. 为什么要序列化
    一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。
  3. 为什么不用Java的序列化
    Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。
  4. Hadoop序列化特点:
    (1)紧凑 :高效使用存储空间。
    (2)快速:读写数据的额外开销小。
    (3)互操作:支持多语言的交互

自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步。
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

public FlowBean() {super();
}

(3)重写序列化方法

@Override
public void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);
}

(4)重写反序列化方法

@Override
public void readFields(DataInput in) throws IOException {upFlow = in.readLong();downFlow = in.readLong();sumFlow = in.readLong();
}

(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用"\t"分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。详见后面排序案例。

@Override
public int compareTo(FlowBean o) {// 倒序排列,从大到小return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

序列化案例实操

需求

统计每一个手机号耗费的总上行流量、总下行流量、总流量
(1)输入数据
在这里插入图片描述
(2)输入数据格式:

id手机号码网络ip上行流量下行流量网络状态码
713560436666120.196.100.991116954200

(3)期望输出数据格式

手机号码上行流量下行流量总流量
1356043666611169542070

需求分析

在这里插入图片描述

编写MapReduce程序

(1)编写流量统计的Bean对象

package com.atguigu.mapreduce.writable;import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;//1 继承Writable接口
public class FlowBean implements Writable {private long upFlow; //上行流量private long downFlow; //下行流量private long sumFlow; //总流量//2 提供无参构造public FlowBean() {}//3 提供三个参数的getter和setter方法public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}public void setSumFlow() {this.sumFlow = this.upFlow + this.downFlow;}//4 实现序列化和反序列化方法,注意顺序一定要保持一致@Overridepublic void write(DataOutput dataOutput) throws IOException {dataOutput.writeLong(upFlow);dataOutput.writeLong(downFlow);dataOutput.writeLong(sumFlow);}@Overridepublic void readFields(DataInput dataInput) throws IOException {this.upFlow = dataInput.readLong();this.downFlow = dataInput.readLong();this.sumFlow = dataInput.readLong();}//5 重写ToString@Overridepublic String toString() {return upFlow + "\t" + downFlow + "\t" + sumFlow;}
}

(2)编写Mapper类

package com.atguigu.mapreduce.writable;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {private Text outK = new Text();private FlowBean outV = new FlowBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//1 获取一行数据,转成字符串String line = value.toString();//2 切割数据String[] split = line.split("\t");//3 抓取我们需要的数据:手机号,上行流量,下行流量String phone = split[1];String up = split[split.length - 3];String down = split[split.length - 2];//4 封装outK outVoutK.set(phone);outV.setUpFlow(Long.parseLong(up));outV.setDownFlow(Long.parseLong(down));outV.setSumFlow();//5 写出outK outVcontext.write(outK, outV);}
}

(3)编写Reducer类

package com.atguigu.mapreduce.writable;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {private FlowBean outV = new FlowBean();@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {long totalUp = 0;long totalDown = 0;//1 遍历values,将其中的上行流量,下行流量分别累加for (FlowBean flowBean : values) {totalUp += flowBean.getUpFlow();totalDown += flowBean.getDownFlow();}//2 封装outKVoutV.setUpFlow(totalUp);outV.setDownFlow(totalDown);outV.setSumFlow();//3 写出outK outVcontext.write(key,outV);}
}

(4)编写Driver驱动类

package com.atguigu.mapreduce.writable;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;public class FlowDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {//1 获取job对象Configuration conf = new Configuration();Job job = Job.getInstance(conf);//2 关联本Driver类job.setJarByClass(FlowDriver.class);//3 关联Mapper和Reducerjob.setMapperClass(FlowMapper.class);job.setReducerClass(FlowReducer.class);//4 设置Map端输出KV类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);//5 设置程序最终输出的KV类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//6 设置程序的输入输出路径FileInputFormat.setInputPaths(job, new Path("D:\\inputflow"));FileOutputFormat.setOutputPath(job, new Path("D:\\flowoutput"));//7 提交Jobboolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}

MapReduce框架原理

在这里插入图片描述

InputFormat数据输入

切片与MapTask并行度决定机制

1)问题引出
MapTask的并行度决定Map阶段的任务处理并发度,进而影响到整个Job的处理速度。
思考:1G的数据,启动8个MapTask,可以提高集群的并发处理能力。那么1K的数据,也启动8个MapTask,会提高集群性能吗?MapTask并行任务是否越多越好呢?哪些因素影响了MapTask并行度?
2)MapTask并行度决定机制
数据块:Block是HDFS物理上把数据分成一块一块。数据块是HDFS存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。数据切片是MapReduce程序计算输入数据的单位,一个切片会对应启动一个MapTask。
在这里插入图片描述

Job提交流程源码和切片源码详解

1)Job提交流程源码详解

waitForCompletion()submit();// 1建立连接connect();	// 1)创建提交Job的代理new Cluster(getConfiguration());// (1)判断是本地运行环境还是yarn集群运行环境initialize(jobTrackAddr, conf); // 2 提交job
submitter.submitJobInternal(Job.this, cluster)// 1)创建给集群提交数据的Stag路径Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);// 2)获取jobid ,并创建Job路径JobID jobId = submitClient.getNewJobID();// 3)拷贝jar包到集群
copyAndConfigureFiles(job, submitJobDir);	rUploader.uploadFiles(job, jobSubmitDir);// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);maps = writeNewSplits(job, jobSubmitDir);input.getSplits(job);// 5)向Stag路径写XML配置文件
writeConf(conf, submitJobFile);conf.writeXml(out);// 6)提交Job,返回提交状态
status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());

在这里插入图片描述
2)FileInputFormat切片源码解析(input.getSplits(job))
在这里插入图片描述

FileInputFormat切片机制

在这里插入图片描述
在这里插入图片描述

TextInputFormat

1)FileInputFormat实现类
思考:在运行MapReduce程序时,输入的文件格式包括:基于行的日志文件、二进制格式文件、数据库表等。那么,针对不同的数据类型,MapReduce是如何读取这些数据的呢?
FileInputFormat常见的接口实现类包括:TextInputFormat、KeyValueTextInputFormat、NLineInputFormat、CombineTextInputFormat和自定义InputFormat等。
2)TextInputFormat
TextInputFormat是默认的FileInputFormat实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量, LongWritable类型。值是这行的内容,不包括任何行终止符(换行符和回车符),Text类型。
以下是一个示例,比如,一个分片包含了如下4条文本记录。

Rich learning form
Intelligent learning engine
Learning more convenient
From the real demand for more close to the enterprise

每条记录表示为以下键/值对:

(0,Rich learning form)
(20,Intelligent learning engine)
(49,Learning more convenient)
(74,From the real demand for more close to the enterprise)

CombineTextInputFormat切片机制

框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其低下。

1)应用场景:
CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。
2)虚拟存储切片最大值设置
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。
3)切片机制
生成切片过程包括:虚拟存储过程和切片过程二部分。
在这里插入图片描述
(1)虚拟存储过程:
将输入目录下所有文件大小,依次和设置的setMaxInputSplitSize值比较,如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值2倍,此时将文件均分成2个虚拟存储块(防止出现太小切片)。
例如setMaxInputSplitSize值为4M,输入文件大小为8.02M,则先逻辑上分成一个4M。剩余的大小为4.02M,如果按照4M逻辑划分,就会出现0.02M的小的虚拟存储文件,所以将剩余的4.02M文件切分成(2.01M和2.01M)两个文件。
(2)切片过程:
(a)判断虚拟存储的文件大小是否大于setMaxInputSplitSize值,大于等于则单独形成一个切片。
(b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
(c)测试举例:有4个小文件大小分别为1.7M、5.1M、3.4M以及6.8M这四个小文件,则虚拟存储之后形成6个文件块,大小分别为:
1.7M,(2.55M、2.55M),3.4M以及(3.4M、3.4M)
最终会形成3个切片,大小分别为:
(1.7+2.55)M,(2.55+3.4)M,(3.4+3.4)M

CombineTextInputFormat案例实操

需求

将输入的大量小文件合并成一个切片统一处理。

  1. 输入数据
    准备4个小文件
  2. 期望
    期望一个切片处理4个文件
实现过程
  1. 不做任何处理,运行1.8节的WordCount案例程序,观察切片个数为4。
    number of splits:4

  2. 在WordcountDriver中增加如下代码,运行程序,并观察运行的切片个数为3。

(a)驱动类中添加代码如下:

// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);//虚拟存储切片最大值设置4m
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);

(b)运行如果为3个切片。
number of splits:3

  1. 在WordcountDriver中增加如下代码,运行程序,并观察运行的切片个数为1。
    (a)驱动中添加代码如下:
// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);//虚拟存储切片最大值设置20m
CombineTextInputFormat.setMaxInputSplitSize(job, 20971520);

(b)运行如果为1个切片

number of splits:1

MapReduce工作流程

在这里插入图片描述
在这里插入图片描述
上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:
(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序
(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据
(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:
(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M。

Shuffle机制

Shuffle机制

Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。
在这里插入图片描述

Partition分区

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Partition分区案例实操

1)需求
将统计结果按照手机归属地不同省份输出到不同文件中(分区)
(1)输入数据
(2)期望输出数据
手机号136、137、138、139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中。
2)需求分析
在这里插入图片描述
3)在案例序列化案例实操的基础上,增加一个分区类

package com.atguigu.mapreduce.partitioner;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;public class ProvincePartitioner extends Partitioner<Text, FlowBean> {@Overridepublic int getPartition(Text text, FlowBean flowBean, int numPartitions) {//获取手机号前三位prePhoneString phone = text.toString();String prePhone = phone.substring(0, 3);//定义一个分区号变量partition,根据prePhone设置分区号int partition;if("136".equals(prePhone)){partition = 0;}else if("137".equals(prePhone)){partition = 1;}else if("138".equals(prePhone)){partition = 2;}else if("139".equals(prePhone)){partition = 3;}else {partition = 4;}//最后返回分区号partitionreturn partition;}
}

4)在驱动函数中增加自定义数据分区设置和ReduceTask设置

package com.atguigu.mapreduce.partitioner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;public class FlowDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {//1 获取job对象Configuration conf = new Configuration();Job job = Job.getInstance(conf);//2 关联本Driver类job.setJarByClass(FlowDriver.class);//3 关联Mapper和Reducerjob.setMapperClass(FlowMapper.class);job.setReducerClass(FlowReducer.class);//4 设置Map端输出数据的KV类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);//5 设置程序最终输出的KV类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//8 指定自定义分区器job.setPartitionerClass(ProvincePartitioner.class);//9 同时指定相应数量的ReduceTaskjob.setNumReduceTasks(5);//6 设置输入输出路径FileInputFormat.setInputPaths(job, new Path("D:\\inputflow"));FileOutputFormat.setOutputPath(job, new Path("D\\partitionout"));//7 提交Jobboolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}

WritableComparable排序

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
自定义排序WritableComparable原理分析
bean对象做为key传输,需要实现WritableComparable接口重写compareTo方法,就可以实现排序。

@Override
public int compareTo(FlowBean bean) {int result;// 按照总流量大小,倒序排列if (this.sumFlow > bean.getSumFlow()) {result = -1;}else if (this.sumFlow < bean.getSumFlow()) {result = 1;}else {result = 0;}return result;
}

WritableComparable排序案例实操(全排序)

需求

根据案例序列化案例实操序列化案例产生的结果再次对总流量进行倒序排序。
(1)输入数据
在这里插入图片描述
第一次处理后的数据
在这里插入图片描述
(2)期望输出数据

135094687237335110349117684
1373623051324812468127162
1395643563613215121644
138465441212640264
。。。 。。。
需求分析

在这里插入图片描述

代码实现

(1)FlowBean对象在在需求1基础上增加了比较功能

package com.atguigu.mapreduce.writablecompable;import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class FlowBean implements WritableComparable<FlowBean> {private long upFlow; //上行流量private long downFlow; //下行流量private long sumFlow; //总流量//提供无参构造public FlowBean() {}//生成三个属性的getter和setter方法public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}public void setSumFlow() {this.sumFlow = this.upFlow + this.downFlow;}//实现序列化和反序列化方法,注意顺序一定要一致@Overridepublic void write(DataOutput out) throws IOException {out.writeLong(this.upFlow);out.writeLong(this.downFlow);out.writeLong(this.sumFlow);}@Overridepublic void readFields(DataInput in) throws IOException {this.upFlow = in.readLong();this.downFlow = in.readLong();this.sumFlow = in.readLong();}//重写ToString,最后要输出FlowBean@Overridepublic String toString() {return upFlow + "\t" + downFlow + "\t" + sumFlow;}@Overridepublic int compareTo(FlowBean o) {//按照总流量比较,倒序排列if(this.sumFlow > o.sumFlow){return -1;}else if(this.sumFlow < o.sumFlow){return 1;}else {return 0;}}
}

(2)编写Mapper类

package com.atguigu.mapreduce.writablecompable;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;public class FlowMapper extends Mapper<LongWritable, Text, FlowBean, Text> {private FlowBean outK = new FlowBean();private Text outV = new Text();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//1 获取一行数据String line = value.toString();//2 按照"\t",切割数据String[] split = line.split("\t");//3 封装outK outVoutK.setUpFlow(Long.parseLong(split[1]));outK.setDownFlow(Long.parseLong(split[2]));outK.setSumFlow();outV.set(split[0]);//4 写出outK outVcontext.write(outK,outV);}
}

(3)编写Reducer类

package com.atguigu.mapreduce.writablecompable;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;public class FlowReducer extends Reducer<FlowBean, Text, Text, FlowBean> {@Overrideprotected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {//遍历values集合,循环写出,避免总流量相同的情况for (Text value : values) {//调换KV位置,反向写出context.write(value,key);}}
}

(4)编写Driver类

package com.atguigu.mapreduce.writablecompable;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;public class FlowDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {//1 获取job对象Configuration conf = new Configuration();Job job = Job.getInstance(conf);//2 关联本Driver类job.setJarByClass(FlowDriver.class);//3 关联Mapper和Reducerjob.setMapperClass(FlowMapper.class);job.setReducerClass(FlowReducer.class);//4 设置Map端输出数据的KV类型job.setMapOutputKeyClass(FlowBean.class);job.setMapOutputValueClass(Text.class);//5 设置程序最终输出的KV类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//6 设置输入输出路径FileInputFormat.setInputPaths(job, new Path("D:\\inputflow2"));FileOutputFormat.setOutputPath(job, new Path("D:\\comparout"));//7 提交Jobboolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}

WritableComparable排序案例实操(区内排序)

1)需求
要求每个省份手机号输出的文件中按照总流量内部排序。
2)需求分析
基于前一个需求,增加自定义分区类,分区按照省份手机号设置。
在这里插入图片描述
3)案例实操
(1)增加自定义分区类

package com.atguigu.mapreduce.partitionercompable;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;public class ProvincePartitioner2 extends Partitioner<FlowBean, Text> {@Overridepublic int getPartition(FlowBean flowBean, Text text, int numPartitions) {//获取手机号前三位String phone = text.toString();String prePhone = phone.substring(0, 3);//定义一个分区号变量partition,根据prePhone设置分区号int partition;if("136".equals(prePhone)){partition = 0;}else if("137".equals(prePhone)){partition = 1;}else if("138".equals(prePhone)){partition = 2;}else if("139".equals(prePhone)){partition = 3;}else {partition = 4;}//最后返回分区号partitionreturn partition;}
}

(2)在驱动类中添加分区类

// 设置自定义分区器
job.setPartitionerClass(ProvincePartitioner2.class);// 设置对应的ReduceTask的个数
job.setNumReduceTasks(5);

Combiner合并

在这里插入图片描述
自定义Combiner实现步骤
(a)自定义一个Combiner继承Reducer,重写Reduce方法

public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable outV = new IntWritable();@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable value : values) {sum += value.get();}outV.set(sum);context.write(key,outV);}
}

(b)在Job驱动类中设置:

job.setCombinerClass(WordCountCombiner.class);

Combiner合并案例实操

需求:统计过程中对每一个MapTask的输出进行局部汇总,以减小网络传输量即采用Combiner功能。
期望:Combine输入数据多,输出时经过合并,输出数据降低。
在这里插入图片描述
案例实操-方案一
(1)增加一个WordCountCombiner类继承Reducer

package com.atguigu.mapreduce.combiner;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {private IntWritable outV = new IntWritable();@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable value : values) {sum += value.get();}//封装outKVoutV.set(sum);//写出outKVcontext.write(key,outV);}
}

(2)在WordcountDriver驱动类中指定Combiner

// 指定需要使用combiner,以及用哪个类作为combiner的逻辑
job.setCombinerClass(WordCountCombiner.class);

案例实操-方案二
(1)将WordcountReducer作为Combiner在WordcountDriver驱动类中指定

// 指定需要使用Combiner,以及用哪个类作为Combiner的逻辑
job.setCombinerClass(WordCountReducer.class);

运行程序,如下图所示

在这里插入图片描述

OutputFormat数据输出

OutputFormat接口实现类

在这里插入图片描述

自定义OutputFormat案例实操

需求:过滤输入的log日志,包含atguigu的网站输出到e:/atguigu.log,不包含atguigu的网站输出到e:/other.log。
需求分析:
在这里插入图片描述
案例实操

(1)编写LogMapper类

package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class LogMapper extends Mapper<LongWritable, Text,Text, NullWritable> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//不做任何处理,直接写出一行log数据context.write(value,NullWritable.get());}
}

(2)编写LogReducer类

package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class LogReducer extends Reducer<Text, NullWritable,Text, NullWritable> {@Overrideprotected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {// 防止有相同的数据,迭代写出for (NullWritable value : values) {context.write(key,NullWritable.get());}}
}

(3)自定义一个LogOutputFormat类

package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> {@Overridepublic RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {//创建一个自定义的RecordWriter返回LogRecordWriter logRecordWriter = new LogRecordWriter(job);return logRecordWriter;}
}

(4)编写LogRecordWriter类

package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;import java.io.IOException;public class LogRecordWriter extends RecordWriter<Text, NullWritable> {private FSDataOutputStream atguiguOut;private FSDataOutputStream otherOut;public LogRecordWriter(TaskAttemptContext job) {try {//获取文件系统对象FileSystem fs = FileSystem.get(job.getConfiguration());//用文件系统对象创建两个输出流对应不同的目录atguiguOut = fs.create(new Path("d:/hadoop/atguigu.log"));otherOut = fs.create(new Path("d:/hadoop/other.log"));} catch (IOException e) {e.printStackTrace();}}@Overridepublic void write(Text key, NullWritable value) throws IOException, InterruptedException {String log = key.toString();//根据一行的log数据是否包含atguigu,判断两条输出流输出的内容if (log.contains("atguigu")) {atguiguOut.writeBytes(log + "\n");} else {otherOut.writeBytes(log + "\n");}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {//关流IOUtils.closeStream(atguiguOut);IOUtils.closeStream(otherOut);}
}

(5)编写LogDriver类

package com.atguigu.mapreduce.outputformat;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class LogDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(LogDriver.class);job.setMapperClass(LogMapper.class);job.setReducerClass(LogReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(NullWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);//设置自定义的outputformatjob.setOutputFormatClass(LogOutputFormat.class);FileInputFormat.setInputPaths(job, new Path("D:\\input"));//虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat//而fileoutputformat要输出一个_SUCCESS文件,所以在这还得指定一个输出目录FileOutputFormat.setOutputPath(job, new Path("D:\\logoutput"));boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}

MapReduce内核源码解析

MapTask工作机制

在这里插入图片描述
(1)Read阶段:MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。
(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。
(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:
步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。
步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。

(5)Merge阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。
在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并mapreduce.task.io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

ReduceTask工作机制

在这里插入图片描述
(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Sort阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
(3)Reduce阶段:reduce()函数将计算结果写到HDFS上。

ReduceTask并行度决定机制

回顾:MapTask并行度由切片个数决定,切片个数由输入文件和切片规则决定。
思考:ReduceTask并行度由谁决定?

1)设置ReduceTask并行度(个数)
ReduceTask的并行度同样影响整个Job的执行并发度和执行效率,但与MapTask的并发数由切片数决定不同,ReduceTask数量的决定是可以直接手动设置:

// 默认值是1,手动设置为4
job.setNumReduceTasks(4);

2)实验:测试ReduceTask多少合适

(1)实验环境:1个Master节点,16个Slave节点:CPU:8GHZ,内存: 2G
(2)实验结论:

在这里插入图片描述
3)注意事项

在这里插入图片描述

MapTask & ReduceTask源码解析

1)MapTask源码解析流程
在这里插入图片描述
2)ReduceTask源码解析流程

在这里插入图片描述

Join应用

Reduce Join

Map端的主要工作:为来自不同表或文件的key/value对,打标签以区别不同来源的记录。然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出。
Reduce端的主要工作:在Reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在Map阶段已经打标志)分开,最后进行合并就ok了。

Reduce Join案例实操

1)需求
在这里插入图片描述
在这里插入图片描述
2)需求分析
通过将关联条件作为Map输出的key,将两表满足Join条件的数据并携带数据所来源的文件信息,发往同一个ReduceTask,在Reduce中进行数据的串联。
在这里插入图片描述
3)代码实现

(1)创建商品和订单合并后的TableBean类

package com.atguigu.mapreduce.reducejoin;import org.apache.hadoop.io.Writable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class TableBean implements Writable {private String id; //订单idprivate String pid; //产品idprivate int amount; //产品数量private String pname; //产品名称private String flag; //判断是order表还是pd表的标志字段public TableBean() {}public String getId() {return id;}public void setId(String id) {this.id = id;}public String getPid() {return pid;}public void setPid(String pid) {this.pid = pid;}public int getAmount() {return amount;}public void setAmount(int amount) {this.amount = amount;}public String getPname() {return pname;}public void setPname(String pname) {this.pname = pname;}public String getFlag() {return flag;}public void setFlag(String flag) {this.flag = flag;}@Overridepublic String toString() {return id + "\t" + pname + "\t" + amount;}@Overridepublic void write(DataOutput out) throws IOException {out.writeUTF(id);out.writeUTF(pid);out.writeInt(amount);out.writeUTF(pname);out.writeUTF(flag);}@Overridepublic void readFields(DataInput in) throws IOException {this.id = in.readUTF();this.pid = in.readUTF();this.amount = in.readInt();this.pname = in.readUTF();this.flag = in.readUTF();}
}

(2)编写TableMapper类

package com.atguigu.mapreduce.reducejoin;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;import java.io.IOException;public class TableMapper extends Mapper<LongWritable,Text,Text,TableBean> {private String filename;private Text outK = new Text();private TableBean outV = new TableBean();@Overrideprotected void setup(Context context) throws IOException, InterruptedException {//获取对应文件名称InputSplit split = context.getInputSplit();FileSplit fileSplit = (FileSplit) split;filename = fileSplit.getPath().getName();}@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//获取一行String line = value.toString();//判断是哪个文件,然后针对文件进行不同的操作if(filename.contains("order")){  //订单表的处理String[] split = line.split("\t");//封装outKoutK.set(split[1]);//封装outVoutV.setId(split[0]);outV.setPid(split[1]);outV.setAmount(Integer.parseInt(split[2]));outV.setPname("");outV.setFlag("order");}else {                             //商品表的处理String[] split = line.split("\t");//封装outKoutK.set(split[0]);//封装outVoutV.setId("");outV.setPid(split[0]);outV.setAmount(0);outV.setPname(split[1]);outV.setFlag("pd");}//写出KVcontext.write(outK,outV);}
}

(3)编写TableReducer类

package com.atguigu.mapreduce.reducejoin;import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;public class TableReducer extends Reducer<Text,TableBean,TableBean, NullWritable> {@Overrideprotected void reduce(Text key, Iterable<TableBean> values, Context context) throws IOException, InterruptedException {ArrayList<TableBean> orderBeans = new ArrayList<>();TableBean pdBean = new TableBean();for (TableBean value : values) {//判断数据来自哪个表if("order".equals(value.getFlag())){   //订单表//创建一个临时TableBean对象接收valueTableBean tmpOrderBean = new TableBean();try {BeanUtils.copyProperties(tmpOrderBean,value);} catch (IllegalAccessException e) {e.printStackTrace();} catch (InvocationTargetException e) {e.printStackTrace();}//将临时TableBean对象添加到集合orderBeansorderBeans.add(tmpOrderBean);}else {                                    //商品表try {BeanUtils.copyProperties(pdBean,value);} catch (IllegalAccessException e) {e.printStackTrace();} catch (InvocationTargetException e) {e.printStackTrace();}}}//遍历集合orderBeans,替换掉每个orderBean的pid为pname,然后写出for (TableBean orderBean : orderBeans) {orderBean.setPname(pdBean.getPname());//写出修改后的orderBean对象context.write(orderBean,NullWritable.get());}}
}

(4)编写TableDriver类

package com.atguigu.mapreduce.reducejoin;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class TableDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Job job = Job.getInstance(new Configuration());job.setJarByClass(TableDriver.class);job.setMapperClass(TableMapper.class);job.setReducerClass(TableReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(TableBean.class);job.setOutputKeyClass(TableBean.class);job.setOutputValueClass(NullWritable.class);FileInputFormat.setInputPaths(job, new Path("D:\\input"));FileOutputFormat.setOutputPath(job, new Path("D:\\output"));boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}

4)测试
运行程序查看结果

1004	小米	4
1001	小米	1
1005	华为	5
1002	华为	2
1006	格力	6
1003	格力	3

5)总结

缺点:这种方式中,合并的操作是在Reduce阶段完成,Reduce端的处理压力太大,Map节点的运算负载则很低,资源利用率不高,且在Reduce阶段极易产生数据倾斜。
解决方案:Map端实现数据合并。

Map Join

1)使用场景
Map Join适用于一张表十分小、一张表很大的场景。
2)优点
思考:在Reduce端处理过多的表,非常容易产生数据倾斜。怎么办?
在Map端缓存多张表,提前处理业务逻辑,这样增加Map端业务,减少Reduce端数据的压力,尽可能的减少数据倾斜。
3)具体办法:采用DistributedCache
(1)在Mapper的setup阶段,将文件读取到缓存集合中。
(2)在Driver驱动类中加载缓存。

//缓存普通文件到Task运行节点。
job.addCacheFile(new URI("file:///e:/cache/pd.txt"));
//如果是集群运行,需要设置HDFS路径
job.addCacheFile(new URI("hdfs://hadoop102:8020/cache/pd.txt"));

Map Join案例实操

1)需求
在这里插入图片描述
在这里插入图片描述
2)需求分析
MapJoin适用于关联表中有小表的情形。
在这里插入图片描述
3)实现代码

(1)先在MapJoinDriver驱动类中添加缓存文件

package com.atguigu.mapreduce.mapjoin;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;public class MapJoinDriver {public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {// 1 获取job信息Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 2 设置加载jar包路径job.setJarByClass(MapJoinDriver.class);// 3 关联mapperjob.setMapperClass(MapJoinMapper.class);// 4 设置Map输出KV类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(NullWritable.class);// 5 设置最终输出KV类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);// 加载缓存数据job.addCacheFile(new URI("file:///D:/input/tablecache/pd.txt"));// Map端Join的逻辑不需要Reduce阶段,设置reduceTask数量为0job.setNumReduceTasks(0);// 6 设置输入输出路径FileInputFormat.setInputPaths(job, new Path("D:\\input"));FileOutputFormat.setOutputPath(job, new Path("D:\\output"));// 7 提交boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}

(2)在MapJoinMapper类中的setup方法中读取缓存文件

package com.atguigu.mapreduce.mapjoin;import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;
import java.util.Map;public class MapJoinMapper extends Mapper<LongWritable, Text, Text, NullWritable> {private Map<String, String> pdMap = new HashMap<>();private Text text = new Text();//任务开始前将pd数据缓存进pdMap@Overrideprotected void setup(Context context) throws IOException, InterruptedException {//通过缓存文件得到小表数据pd.txtURI[] cacheFiles = context.getCacheFiles();Path path = new Path(cacheFiles[0]);//获取文件系统对象,并开流FileSystem fs = FileSystem.get(context.getConfiguration());FSDataInputStream fis = fs.open(path);//通过包装流转换为reader,方便按行读取BufferedReader reader = new BufferedReader(new InputStreamReader(fis, "UTF-8"));//逐行读取,按行处理String line;while (StringUtils.isNotEmpty(line = reader.readLine())) {//切割一行    
//01	小米String[] split = line.split("\t");pdMap.put(split[0], split[1]);}//关流IOUtils.closeStream(reader);}@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//读取大表数据    
//1001	01	1String[] fields = value.toString().split("\t");//通过大表每行数据的pid,去pdMap里面取出pnameString pname = pdMap.get(fields[1]);//将大表每行数据的pid替换为pnametext.set(fields[0] + "\t" + pname + "\t" + fields[2]);//写出context.write(text,NullWritable.get());}
}

数据清洗(ETL)

“ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库
在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

1)需求
去除日志中字段个数小于等于11的日志。
期望输出数据每行字段长度都大于11。

2)需求分析
需要在Map阶段对输入的数据根据规则进行过滤清洗。
3)实现代码

(1)编写WebLogMapper类

package com.atguigu.mapreduce.weblog;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 1 获取1行数据String line = value.toString();// 2 解析日志boolean result = parseLog(line,context);// 3 日志不合法退出if (!result) {return;}// 4 日志合法就直接写出context.write(value, NullWritable.get());}// 2 封装解析日志的方法private boolean parseLog(String line, Context context) {// 1 截取String[] fields = line.split(" ");// 2 日志长度大于11的为合法if (fields.length > 11) {return true;}else {return false;}}
}

(2)编写WebLogDriver类

package com.atguigu.mapreduce.weblog;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WebLogDriver {public static void main(String[] args) throws Exception {// 输入输出路径需要根据自己电脑上实际的输入输出路径设置args = new String[] { "D:/input/inputlog", "D:/output1" };// 1 获取job信息Configuration conf = new Configuration();Job job = Job.getInstance(conf);// 2 加载jar包job.setJarByClass(LogDriver.class);// 3 关联mapjob.setMapperClass(WebLogMapper.class);// 4 设置最终输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(NullWritable.class);// 设置reducetask个数为0job.setNumReduceTasks(0);// 5 设置输入和输出路径FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 6 提交boolean b = job.waitForCompletion(true);System.exit(b ? 0 : 1);}
}

MapReduce开发总结

1)输入数据接口:InputFormat
(1)默认使用的实现类是:TextInputFormat
(2)TextInputFormat的功能逻辑是:一次读一行文本,然后将该行的起始偏移量作为key,行内容作为value返回。
(3)CombineTextInputFormat可以把多个小文件合并成一个切片处理,提高处理效率。
2)逻辑处理接口:Mapper
用户根据业务需求实现其中三个方法:map() setup() cleanup ()
3)Partitioner分区
(1)有默认实现 HashPartitioner,逻辑是根据key的哈希值和numReduces来返回一个分区号;key.hashCode()&Integer.MAXVALUE % numReduces
(2)如果业务上有特别的需求,可以自定义分区。
4)Comparable排序
(1)当我们用自定义的对象作为key来输出时,就必须要实现WritableComparable接口,重写其中的compareTo()方法。
(2)部分排序:对最终输出的每一个文件进行内部排序。
(3)全排序:对所有数据进行排序,通常只有一个Reduce。
(4)二次排序:排序的条件有两个。
5)Combiner合并
Combiner合并可以提高程序执行效率,减少IO传输。但是使用时必须不能影响原有的业务处理结果。
6)逻辑处理接口:Reducer
用户根据业务需求实现其中三个方法:reduce() setup() cleanup ()
7)输出数据接口:OutputFormat
(1)默认实现类是TextOutputFormat,功能逻辑是:将每一个KV对,向目标文本文件输出一行。
(2)用户还可以自定义OutputFormat。

Hadoop数据压缩

概述

1)压缩的好处和坏处
压缩的优点:以减少磁盘IO、减少磁盘存储空间。
压缩的缺点:增加CPU开销。
2)压缩原则
(1)运算密集型的Job,少用压缩
(2)IO密集型的Job,多用压缩

MR支持的压缩编码

1)压缩算法对比介绍
在这里插入图片描述
2)压缩性能的比较
在这里插入图片描述

压缩方式选择

压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片。

Gzip压缩
优点:压缩率比较高;
缺点:不支持Split;压缩/解压速度一般;

Bzip2压缩
优点:压缩率高;支持Split;
缺点:压缩/解压速度慢。

Lzo压缩
优点:压缩/解压速度比较快;支持Split;
缺点:压缩率一般;想支持切片需要额外创建索引。

Snappy压缩
优点:压缩和解压缩速度快;
缺点:不支持Split;压缩率一般;

压缩位置选择

压缩可以在MapReduce作用的任意阶段启用。
在这里插入图片描述

压缩参数配置

1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器

压缩格式对应的编码/解码器
DEFLATEorg.apache.hadoop.io.compress.DefaultCodec
gziporg.apache.hadoop.io.compress.GzipCodec
bzip2org.apache.hadoop.io.compress.BZip2Codec
LZOcom.hadoop.compression.lzo.LzopCodec
Snappyorg.apache.hadoop.io.compress.SnappyCodec

2)要在Hadoop中启用压缩,可以配置如下参数

在这里插入图片描述

压缩实操案例

Map输出端采用压缩

即使你的MapReduce的输入输出文件都是未压缩的文件,你仍然可以对Map任务的中间结果输出做压缩,因为它要写在硬盘并且通过网络传输到Reduce节点,对其压缩可以提高很多性能,这些工作只要设置两个属性即可,我们来看下代码怎么设置。

1)给大家提供的Hadoop源码支持的压缩格式有:BZip2Codec、DefaultCodec

package com.atguigu.mapreduce.compress;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;	
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WordCountDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration conf = new Configuration();// 开启map端输出压缩conf.setBoolean("mapreduce.map.output.compress", true);// 设置map端输出压缩方式conf.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class,CompressionCodec.class);Job job = Job.getInstance(conf);job.setJarByClass(WordCountDriver.class);job.setMapperClass(WordCountMapper.class);job.setReducerClass(WordCountReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

2)Mapper保持不变

package com.atguigu.mapreduce.compress;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{Text k = new Text();IntWritable v = new IntWritable(1);@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {// 1 获取一行String line = value.toString();// 2 切割String[] words = line.split(" ");// 3 循环写出for(String word:words){k.set(word);context.write(k, v);}}
}

3)Reducer保持不变

package com.atguigu.mapreduce.compress;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{IntWritable v = new IntWritable();@Overrideprotected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {int sum = 0;// 1 汇总for(IntWritable value:values){sum += value.get();}v.set(sum);// 2 输出context.write(key, v);}
}

Reduce输出端采用压缩

基于WordCount案例处理。

1)修改驱动

package com.atguigu.mapreduce.compress;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.io.compress.Lz4Codec;
import org.apache.hadoop.io.compress.SnappyCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class WordCountDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(WordCountDriver.class);job.setMapperClass(WordCountMapper.class);job.setReducerClass(WordCountReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 设置reduce端输出压缩开启FileOutputFormat.setCompressOutput(job, true);// 设置压缩的方式FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class); 
//	    FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class); 
//	    FileOutputFormat.setOutputCompressorClass(job, DefaultCodec.class); boolean result = job.waitForCompletion(true);System.exit(result?0:1);}
}

常见错误及解决方案

1)导包容易出错。尤其Text和CombineTextInputFormat。
2)Mapper中第一个输入的参数必须是LongWritable或者NullWritable,不可以是IntWritable. 报的错误是类型转换异常。
3)java.lang.Exception: java.io.IOException: Illegal partition for 13926435656 (4),说明Partition和ReduceTask个数没对上,调整ReduceTask个数。
4)如果分区数不是1,但是reducetask为1,是否执行分区过程。答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1肯定不执行。
5)在Windows环境编译的jar包导入到Linux环境中运行,
hadoop jar wc.jar com.atguigu.mapreduce.wordcount.WordCountDriver /user/atguigu/ /user/atguigu/output
报如下错误:
Exception in thread “main” java.lang.UnsupportedClassVersionError: com/atguigu/mapreduce/wordcount/WordCountDriver : Unsupported major.minor version 52.0
原因是Windows环境用的jdk1.7,Linux环境用的jdk1.8。
解决方案:统一jdk版本。
6)缓存pd.txt小文件案例中,报找不到pd.txt文件
原因:大部分为路径书写错误。还有就是要检查pd.txt.txt的问题。还有个别电脑写相对路径找不到pd.txt,可以修改为绝对路径。
7)报类型转换异常。
通常都是在驱动函数中设置Map输出和最终输出时编写错误。
Map输出的key如果没有排序,也会报类型转换异常。
8)集群中运行wc.jar时出现了无法获得输入文件。
原因:WordCount案例的输入文件不能放用HDFS集群的根目录。
9)出现了如下相关异常
Exception in thread “main” java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO W i n d o w s . a c c e s s 0 ( L j a v a / l a n g / S t r i n g ; I ) Z a t o r g . a p a c h e . h a d o o p . i o . n a t i v e i o . N a t i v e I O Windows.access0(Ljava/lang/String;I)Z at org.apache.hadoop.io.nativeio.NativeIO Windows.access0(Ljava/lang/String;I)Zatorg.apache.hadoop.io.nativeio.NativeIOWindows.access0(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:609)
at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977)
java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:356)
at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:371)
at org.apache.hadoop.util.Shell.(Shell.java:364)
解决方案:拷贝hadoop.dll文件到Windows目录C:\Windows\System32。个别同学电脑还需要修改Hadoop源码。

方案二:创建如下包名,并将NativeIO.java拷贝到该包名下
在这里插入图片描述
10)自定义Outputformat时,注意在RecordWirter中的close方法必须关闭流资源。否则输出的文件内容中数据为空。

@Override
public void close(TaskAttemptContext context) throws IOException, InterruptedException {if (atguigufos != null) {atguigufos.close();}if (otherfos != null) {otherfos.close();}
}

相关文章:

大数据Hadoop(MapReduce)

MapReduce概述 MapReduce定义 MapReduce是一个分布式运算程序的编程框架&#xff0c;是用户开发“基于Hadoop的数据分析应用”的核心框架。 MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序&#xff0c;并发运行在一个Hadoop集群上…...

使用apache-jmeter时,控制台打不开应用的解决方法

运行jmeter.bat的时候&#xff0c;提示&#xff1a; findstr 不是内部或外部命令&#xff0c;也不是可运行的程序 或批处理文件。 Not able to find Java executable or version. Please check your Java installation. errorlevel2这个错误信息表明系统无法识别 findstr 命令…...

leetcode 74. 搜索二维矩阵

class Solution {public boolean searchMatrix(int[][] matrix, int target) {int m matrix.length;int n matrix[0].length;int l 0;int r n * m - 1; // 记得减一while (l < r) {int mid (l r) / 2;if(matrix[mid / n][mid % n] > target) {r mid - 1;} else if…...

函数式编程在 Java:Function、BiFunction、UnaryOperator 你真的会用?

大家好&#xff0c;我是你们的Java技术博主&#xff01;今天我们要深入探讨Java函数式编程中的几个核心接口&#xff1a;Function、BiFunction和UnaryOperator。很多同学虽然知道它们的存在&#xff0c;但真正用起来却总是不得要领。这篇文章将带你彻底掌握它们&#xff01;&am…...

SpringMVC基础一(SpringMVC运行原理)

先了解MVC&#xff0c;在JavaWeb基础五中。 回忆servlet&#xff0c;在javaweb基础二中。 创建一个web项目&#xff1a; 1、新建maven项目&#xff0c;导入依赖。&#xff08;junit、springmvc、spring-webmvc、servlet-api、jsp-api、jstl&#xff09; <groupId>org…...

libva之ffavdemo分析

ffavdemo 代码库实现了一个基于FFmpeg和VAAPI的硬件加速视频解码与渲染框架&#xff0c;主要用于演示视频解码与渲染的完整硬件加速流程。支持多种渲染后端&#xff08;X11、DRM、EGL&#xff09;&#xff0c;适应不同显示环境。包含视频处理过滤器&#xff0c;可进行格式转换和…...

从零开始写android 的智能指针

Android中定义了两种智能指针类型&#xff0c;一种是强指针sp&#xff08;strong pointer&#xff09;&#xff0c;源码中的位置在system/core/include/utils/StrongPointer.h。另外一种是弱指针&#xff08;weak pointer&#xff09;。其实称之为强引用和弱引用更合适一些。强…...

Spark-SQL 之 Window

window 函数实例 select concat(substr(p_dt,1,4),substr(p_dt,6,2)...

Python设计模式-单例模式

一、单例模式核心思想 单例模式&#xff08;Singleton Pattern&#xff09;是一种创建型设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供一个全局访问点。该模式主要解决以下问题&#xff1a; 资源控制&#xff08;如数据库连接池&#xff09;配置信息全局一…...

富文本编辑器的内容导出html,并保留图片

富文本编辑器的上传的图片默认转为base64&#xff0c;但是如果需要保存到数据库&#xff0c;base64的数据就太大了&#xff0c;所以一般都会长传到文件服务器&#xff0c;然会返回图片url。 但是当我们需要把富文本编辑器的内容导出为html时&#xff0c;因为图片时url,当浏览器…...

jQueryHTML与插件

1.jQuery 事件机制 1.1 注册事件 bind()、on()方法向被选元素添加一个或多个事件处理程序&#xff0c;以及当事件发生时运行的函数 $("p").on({"click": function () {alert("点击了")},"mouseenter": function () {…...

KTH5772 系列游戏手柄摇杆专用3D 霍尔位置传感器

产品概述 KTH5772是一款专为游戏手柄上的摇杆应用而设计的3D霍尔磁感应芯片&#xff0c;主要面向对线性度、回报率、灵敏度、功耗要求严格的摇杆应用。KTH5772基于3D霍尔技术&#xff0c;内部分别集成了X轴、Y轴和Z轴三个独立的霍尔元件&#xff0c;能够通过测量和处理磁通密度…...

C++进阶——C++11_右值引用和移动语义_可变参数模板_类的新功能

目录 1、右值引用和移动语义 1.1 左值和右值 1.2 左值引用和右值引用 1.3 引用延长生命周期 1.4 左值和右值的参数匹配 1.5 右值引用和移动语义的使用场景 1.5.1 左值引用主要使用场景 1.5.2 移动构造和移动赋值 1.5.3 右值引用和移动语义解决传值返回问题 1.5.4 右值…...

(五)深入了解AVFoundation-播放:多音轨、字幕、倍速播放与横竖屏切换

引言 在之前的博客中&#xff0c;我们已经实现了一个相对完整的播放器&#xff0c;具备了基本功能&#xff0c;如播放、暂停、播放进度显示和拖拽快进等。这为我们提供了一个坚实的基础。接下来&#xff0c;我们将进一步扩展播放器的功能&#xff0c;使其更具灵活性和实用性&a…...

matplotlib.pyplot常见图形及组合基础用法文档

matplotlib.pyplot 常见图形及组合基础用法文档 一、引言 matplotlib.pyplot 是 Python 中用于数据可视化的强大库&#xff0c;提供了丰富的绘图函数&#xff0c;可绘制折线图、散点图、柱状图等多种类型的图形。同时&#xff0c;还能将不同类型的图形组合在一起&#xff0c;…...

mysql的基础语句和外键查询及其语句

思路&#xff1a;双指针思路可以吗&#xff0c;我就直接找G,如果后一个是1就cnt&#xff0c;如果不是数字&#xff0c;用一个指针i指向G&#xff0c;另一个指针j移动&#xff0c;当不是G时停止&#xff0c;统计G的个数&#xff0c;如果是奇数个同时G的下一个是1&#xff0c;cnt…...

如何使用 DeepSeek 帮助自己的工作?

1. 信息检索 信息检索是获取特定信息的过程&#xff0c;尤其是在大量数据或文本中查找相关内容。这个过程应用广泛&#xff0c;从网页搜索引擎到数据库查询&#xff0c;再到企业内部信息系统。在使用 DeepSeek 或其它类似工具进行信息检索时&#xff0c;可以考虑以下几个重要方…...

为 Doub 打造吸引 CMO 的 SEO 报告

在数字营销中&#xff0c;SEO 报告不仅是展示工作成果的工具&#xff0c;更是向高层管理者&#xff08;如 CMO&#xff09;证明 SEO 价值的关键。对于 Doub 这样一家提供精密模切解决方案的网站&#xff08;基于 WordPress 和 WooCommerce&#xff09;&#xff0c;撰写一份吸引…...

数据可视化 —— 折线图应用(大全)

一、导入需要的库 # Matplotlib 是 Python 最常用的绘图库&#xff0c;pyplot 提供了类似 MATLAB 的绘图接口 import matplotlib.pyplot as plt import numpy as np import pandas as pd 二、常用的库函数 plt.plot(x轴,y轴)&#xff1a;plot()是画折线图的函数。 plt.xlabe…...

配置mac mini M4 的一些软件

最近更换了 mac mini M4 &#xff0c;想要重新下载配置软件 &#xff0c;记录一下。 Homebrew是什么&#xff1f; homebrew是一款Mac OS平台下的软件包管理工具&#xff0c;拥有安装、卸载、更新、查看、搜索等功能。通过简单的指令可以实现包管理&#xff0c;而不用关心各种…...

八邻域轮廓跟踪算法_传感器技术

在科学技术日新月异的今天&#xff0c;人们对机器设备的智能性、自主性要求也越来越高&#xff0c;希望其完全替代人的角色&#xff0c;把人们从繁重、危险的工作任务中解脱出来&#xff0c;而能否像人一样具有感知周围环境的能力已成为设备实现智能化自主化的关键。 广义的“…...

python实战:如何正确安装 ffmpeg(window、linux、mac都通用)

直接使用 Conda 安装 FFmpeg,而无需手动下载或配置环境变量。Conda 会自动管理依赖项,并将 FFmpeg 添加到你的环境路径中。 方法 1:使用 Conda 安装 FFmpeg 在 Anaconda Prompt(或终端)中运行: conda install ffmpeg -c conda-forge-c conda-forge 表示从 conda-forge…...

网络机顶盒常见问题全解析:从安装到故障排除

WiFi连接问题 机顶盒无法连接WiFi&#xff0c;先检查路由器信号强度。若信号弱&#xff0c;可将机顶盒移近路由器&#xff0c;或调整路由器天线方向。也可重启机顶盒与路由器&#xff0c;若仍不行&#xff0c;进入机顶盒设置&#xff0c;重置网络设置。若支持5GHz频段&#xf…...

使用stm32cubeide stm32f407 lan8720a freertos lwip 实现tcp客户端、服务端及网络数据转串口数据过程详解

1前言 项目需要使用MCU实现网络功能&#xff0c;后续确定方案stm32f407 外接lan8720a实现硬件平台搭建&#xff0c;针对lan8720a也是用的比较多的phy&#xff0c;网上比较多的开发板&#xff0c;硬件上都是选用了这个phy&#xff0c;项目周期比较短&#xff0c;选用了这个常用…...

GAT-GRAPH ATTENTION NETWORKS(论文笔记)

CCF等级&#xff1a;A 发布时间&#xff1a;2018年 代码位置 25年4月21日交 目录 一、简介 二、原理 1.注意力系数 2.归一化 3.特征组合与非线性变换 4.多头注意力 4.1特征拼接操作 4.2平均池化操作 三、实验性能 四、结论和未来工作 一、简介 图注意力网络&…...

【蓝桥杯】贪心算法

1. 区间调度 1.1. 题目 给定个区间,每个区间由开始时间start和结束时间end表示。请选择最多的互不重叠的区间,返回可以选择的区间的最大数量。 输入格式: 第一行包含一个整数n,表示区间的数量 接下来n行,每行包含两个整数,分别表示区间的开始时间和结束时间 输出格式:…...

从一批视频里面抽取固定的第n帧图片(包含并行实现)

以下代码主要用于从 ./*.mp4 的文件夹中&#xff0c;每个视频中抽取第N帧保存成图&#xff0c;用于图生视频训练&#xff0c;考虑到数据量比较大&#xff0c;推荐使用ffmpeg来实现的&#xff0c;性能可以比较高&#xff08;10w个视频差不多十多分钟就可以跑完&#xff09;&…...

论文阅读:2024-arxiv How to Steer LLM Latents for Hallucination Detection?

总目录 大模型安全相关研究&#xff1a;https://blog.csdn.net/WhiffeYF/article/details/142132328 How to Steer LLM Latents for Hallucination Detection? https://arxiv.org/pdf/2503.01917 https://www.doubao.com/chat/2818934852496130 其它资料&#xff1a; http…...

python面试技巧

文章目录 前言面试前面试中良好的沟通表达展示解决问题的能力体现学习能力和热情注意非语言沟通 面试后 前言 在 Python 面试中&#xff0c;掌握一些有效的技巧能让你更好地展现自己的能力和素质&#xff0c;以下是一些实用的面试技巧&#xff1a; 面试前 研究公司和岗位&…...

免费AI编程插件Fitten Code + IntelliJ IDEA实现AI辅助编程实战指南

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家、CSDN平台优质创作者&#xff0c;高级开发工程师&#xff0c;数学专业&#xff0c;拥有高级工程师证书&#xff1b;擅长C/C、C#等开发语言&#xff0c;熟悉Java常用开发技术&#xff0c;能熟练应用常用数据库SQL server,Oracle…...

Vue3 + TypeScript 的 Hooks 实用示例

示例 1: 防抖 Hook&#xff08;useDebounce&#xff09; typescript // hooks/useDebounce.ts import { ref, watch, onUnmounted, type WatchSource } from vue;/*** 防抖 Hook* param source 监听的响应式数据源* param callback 防抖后执行的回调函数* param delay 防抖延…...

【DB2】事务日志满/归档占用较大问题处理记录

某DB2环境经常报错The active log is full and is held by...&#xff0c;并且归档磁盘占用较大 事务日志满 事务日志满可以理解为Oracle的redo追尾&#xff0c;即业务写入量大于redo刷盘速度&#xff0c;这时候其他SQL会陷入等待&#xff0c;容易造成性能问题 一般由两方面原…...

Rust 的征服:从系统编程到全栈开发的 IT 新宠

文章目录 Rust 的本质&#xff1a;性能与安全的完美平衡Rust 的演进&#xff1a;从 Mozilla 的实验到全球热潮核心技术&#xff1a;Rust 的杀手锏与生态所有权与生命周期高并发&#xff1a;无畏线程Cargo&#xff1a;现代构建工具生态繁荣&#xff1a;Crates.io Rust 的杀手级应…...

【力扣hot100题】(086)乘积最大子数组

感觉题目越来越难&#xff0c;这题不看答案真的想不到一点。 一开始绕了不少弯路&#xff0c;甚至想将每一个子数组的积全部求出来比较…… 答案的方法有点难懂。 方法如下&#xff1a;维护两个数&#xff0c;分别是目前为止最大数和最小数&#xff0c;最大数一般来说是正数…...

编译器bug ?

## 问题描述 两个结构几乎相同的模板实现&#xff0c;一个能正常工作&#xff0c;另一个在 VS2019 和 GCC 中都会报错。 ## 最小化测试代码 // bug_report.cpp #include <type_traits> #include <string>template<typename T> struct Type2Type { using t…...

算法刷题记录——LeetCode篇(1.8) [第71~80题](持续更新)

更新时间&#xff1a;2025-04-10 算法题解目录汇总&#xff1a;算法刷题记录——题解目录汇总技术博客总目录&#xff1a;计算机技术系列博客——目录页 优先整理热门100及面试150&#xff0c;不定期持续更新&#xff0c;欢迎关注&#xff01; 72. 编辑距离 给你两个单词 wo…...

leetcode68.左右文本对齐

思路源自 leetcode-字符串篇 68题 文本左右对齐 难度高的模拟类型题目&#xff0c;关键点在于事先知道有多少单词要放在本行并且还要知道本行是不是最后一行&#xff08;最后一行需要全部单空格右对齐&#xff0c;不是最后一行就空格均摊&#xff09;&#xff0c;非最后一行的空…...

leetcode:905. 按奇偶排序数组(python3解法)

难度&#xff1a;简单 给你一个整数数组 nums&#xff0c;将 nums 中的的所有偶数元素移动到数组的前面&#xff0c;后跟所有奇数元素。 返回满足此条件的 任一数组 作为答案。 示例 1&#xff1a; 输入&#xff1a;nums [3,1,2,4] 输出&#xff1a;[2,4,3,1] 解释&#xff1a…...

Java抽象类与抽象方法详解

一、抽象类的作用与定义 1. 核心作用 ​​设计意图​​&#xff1a;当多个子类具有共性行为但具体实现不同时&#xff0c;通过抽象类强制规范子类的实现格式。 ​​典型场景​​&#xff1a; // 定义抽象图形类 public abstract class Shape {// 抽象方法&#xff1a;计算面…...

QScrCpy源码解析(3)监听手机usb端口

采用的技术方式为adb adb可以通过命令行达到控制安卓手机的目的 大致思路为 1在界面显示的时候初始化一个定时器&#xff0c;不断地查询当前设备连接到的手机安卓设备 使用的adb指令为 adb devices 定时器代码 connect(&m_autoUpdatetimer, &QTimer::timeout, th…...

go-zero学习笔记(六)---gozero中间件介绍

​ 1. 中间件分类 gozero默认中间件通过在api文件中创建的中间件通过server.Use(middleware Middleware)创建的中间件2. 中间件介绍 2.1 gozero默认中间件 默认中间件包括如下&#xff1a;在gozero中对应的代码为&#xff1a; // 文件位置&#xff1a;github.com\zeromicro\g…...

基于FPGA实现BPSK 调制

目录 一、 任务介绍二、基本原理三、基于FPGA实现BPSK 调制四、源码 一、 任务介绍 BPSK 调制在数字通信系统中是一种极重要的调制方式&#xff0c;它的抗干扰噪声性能及通频带的利用率均优先于 ASK 移幅键控和 FSK 移频键控。因此&#xff0c;PSK 技术在中、高速数据传输中得…...

包含网络、平台、数据及安全四大体系的智慧快消开源了

智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒&#xff0c;省去繁琐重复的适配流程&#xff0c;实现芯片、算法、应用的全流程组合&#xff0c;从而大大减少企业级应用约95%的开发成本。国产化人工智能“…...

基于AWS的大模型调用场景:10大成本优化实战方案

大模型训练与推理是AI领域的计算密集型场景&#xff0c;如何在AWS上实现高性能与低成本的双重目标&#xff1f;本文从实例选型、弹性伸缩、存储优化等角度&#xff0c;分享10个经过验证的AWS成本优化策略&#xff0c;帮助企业节省30%以上成本。 一、大模型场景的成本痛点分析 计…...

Human3.6M 解析3d pose标注 h36m

目录 解析pkl 并可视化 解析h5格式: view_h36m_h5_ok.py nlf 预测并计算指标mpje 解析pkl 并可视化 import os import pickleimport cv2 import imageio import numpy as npif __name__ == __main__:# pkl_path=r"E:\data\pose_3d\human3.6mtoolbox\annot\h36m_valid…...

设计模式-观察者模式和发布订阅模式区别

文章目录 其他不错的文章 二者有类似的地方&#xff0c;也有区别。 引用的文章说的已经比较清楚了&#xff0c;这里只列出对比图。 对比点观察者模式发布订阅模式中间人角色无事件中心&#xff0c;观察者直接订阅目标有事件中心&#xff0c;发布者与订阅者通过事件中心通信关系…...

Python proteinflow 库介绍

ProteinFlow是一个开源的Python库,旨在简化蛋白质结构数据在深度学习应用中的预处理过程。以下是其详细介绍: 功能 数据处理:支持处理单链和多链蛋白质结构,包括二级结构特征、扭转角等特征化选项。 数据获取:能够从Protein Data Bank (PDB)和Structural Antibody Databa…...

羽绒服选购

羽绒服怎么选&#xff1f; 看吊牌 填充物含绒子量充绒克数 填充物&#xff1a; 鹅绒>鸭绒>鹅鸭混合绒 中国90%羽绒服都是鸭绒&#xff0c;鹅绒产量少&#xff0c;且拔毛方式不人道&#xff0c;所以价格更高 白鸭绒和黑鸭绒区别不大&#xff0c;但是白羽绒服只能用白鸭绒…...

使用注解@RequestBody变红的解决问题

解决办法&#xff1a; package com.takeout.controller;import com.takeout.common.R; import com.takeout.entity.Employee; import com.takeout.service.EmployeeService; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowire…...

Multi-Agent Routing Value Iteration Network(多智能体路由值迭代网络)论文阅读

标题&#xff1a;Multi-Agent Routing Value Iteration Network(多智能体路由值迭代网络) 作者&#xff1a;Quinlan Sykora&#xff0c; Mengye Ren&#xff0c; Raquel Urtasun 单位: Uber 发表期刊&#xff1a;AI 发表时间&#xff1a;2020年 论文研究主题归类&#xf…...