手搓多模态-05 transformer编码层
前情回顾
前面我们已经实现一个图像嵌入层和顶层的模型调度:
class SiglipVisionTransformer(nn.Module): ##视觉模型的第二层,将模型的调用分为了图像嵌入模型和transformer编码器模型的调用def __init__(self, config:SiglipVisionConfig):super().__init__()self.config = configself.embed_dim = config.hidden_sizeself.embeddings = SiglipVisionEmbeddings(config) ## 负责将图像嵌入成向量self.encoder = SiglipEncoder(config) ## 负责将向量编码成注意力相关的向量self.post_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ## 层归一化def forward(self, pixel_values:torch.Tensor) -> torch.Tensor:"""
pixel_values: [Batch_size,Channels,Height,Width]"""## [ Batch_size,Channels,Height,Width] -> [Batch_size,Num_Patches,Embedding_size]
hidden_states = self.embeddings(pixel_values) ## 将图像嵌入成向量# [Batch_size,Num_Patches,Embedding_size] -> [Batch_size,Num_Patches,Embedding_size]
last_hidden_state = self.encoder(hidden_states) ## 将向量编码成注意力相关的向量# [Batch_size,Num_Patches,Embedding_size] -> [Batch_size,Num_Patches,Embedding_size]
last_hidden_state = self.post_layer_norm(last_hidden_state)return last_hidden_state
这里我们传入一个图像数据集,它会先通过SiglipVisionEmbeddings 把图像编码成嵌入向量,但此时的向量还不是上下文相关的,所以我们加入了一个SiglipEncoder层来做注意力嵌入,嵌入完了之后通过归一化即可返回一个图像的上下文相关的嵌入向量。有关图像嵌入部分和归一化部分之前已经提及了。这里我们着重于实现transformer的注意力层。
编码器的结构
由"Attention is all you need"这篇论文,我们可以了解到,编码器的架构如上图所示,输入嵌入 + 位置编码形成了编码器的输入,在Encoder层中会有N个这样的Encoder块,每个Encoder块中先通过一个多头注意力计算,再进行残差连接和归一化,然后再通过前向传播的MLP层,再进行一次残差连接和归一化。
这里残差连接的作用是防止梯度消失,多头注意力层可以让不同的token(在图像里面是patch)相关联,然后再通过一个MLP层增加整体的参数和模型的上限。
于是我们也创建一个SiglipEncoder层:
class SiglipEncoder(nn.Module):def __init__(self, config:SiglipVisionConfig):super().__init__()self.config = configself.embed_dim = config.hidden_sizeself.num_hidden_layers = config.num_hidden_layersself.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(self.num_hidden_layers)]) ## 多层编码器def forward(self, input_embeddings:torch.Tensor) -> torch.Tensor:
hidden_states = input_embeddingsfor layer in self.layers:
hidden_states = layer(hidden_states)return hidden_states
一个Encoder层由若干个SiglipEncoderLayer块组成,具体多少个是作为超参数在配置中修改的。接着我们需要实现每个SiglipEncoderLayer块。
SiglipEncoderLayer的结构
注意:这里我们稍作了修改,我们在模型第二层调用这里加了一个post_layer_norm:
self.post_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) ## 层归一化
这是因为我们希望嵌入向量在进入编码器之前和之后都做一次归一化,所以每个EncodeLayer块中我们先做归一化,再做自注意力,再做归一化和MLP,然后整个Encoder调用的输出,我们会用post_layer_norm做一次归一化。参考SiglipVisionTransformer类。
根据之前的结构我们编写如下的代码:
class SiglipEncoderLayer(nn.Module):def __init__(self, config:SiglipVisionConfig):super().__init__()self.config = configself.embed_dim = config.hidden_sizeself.self_atten = SiglipAttention(config) ## 注意力层self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) ## 层归一化self.mlp = SiglipMLP(config) ## MLP层self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) ## 层归一化def forward(self, hidden_states:torch.Tensor) -> torch.Tensor:"""
hidden_states: [Batch_size,Num_Patches,Embedding_size]""" residual = hidden_states
hidden_states = self.layer_norm1(hidden_states) ## 层归一化
hidden_states = self.self_atten(hidden_states) ## 注意力层## 残差连接 [Batch_size,Num_Patches,Embedding_size]
residual = hidden_states = hidden_states + residual
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states) ## MLP层## 残差连接 [Batch_size,Num_Patches,Embedding_size]return hidden_states + residual
MLP层的结构
我们先实现简单的MLP层,这里是将自注意力的输出进行线性变换,主要是为了增加参数量,扩展模型的性能上限。代码如下:
class SiglipMLP(nn.Module):def __init__(self, config:SiglipVisionConfig):super().__init__()self.config = configself.embed_dim = config.hidden_sizeself.intermediate_size = config.intermediate_sizeself.fc1 = nn.Linear(self.embed_dim, self.intermediate_size)self.fc2 = nn.Linear(self.intermediate_size, self.embed_dim)def forward(self, hidden_states:torch.Tensor) -> torch.Tensor:"""
hidden_states: [Batch_size,Num_Patches,Embedding_size]"""
hidden_states = self.fc1(hidden_states) ## [Batch_size,Num_Patches,Embedding_size] -> [Batch_size,Num_Patches,Intermediate_size] hidden_states = nn.functional.gelu(hidden_states,approximate="tanh") ## [Batch_size,Num_Patches,Intermediate_size] gelu激活函数 hidden_states = self.fc2(hidden_states) ## [Batch_size,Num_Patches,Intermediate_size] -> [Batch_size,Num_Patches,Embedding_size]return hidden_states
值得一提的是,这里的激活函数用的是gelu激活函数,那我们对gelu激活函数做一个简单的介绍。
Gelu激活函数
gelu激活函数是relu激活函数的变体,我们先谈一下激活函数的发展。
激活函数是什么?
激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。
所以激活函数的作用主要是为模型引入非线性。
早期的激活函数是sigmoid激活函数,其公式和图像如下:
这里从图像就可以看出来这是一个非线性的函数,并且是单调的,它把R域的数值放缩到0和1之间。
但是sigmoid函数有一些问题:
- 在输入小于-5或者大于5的时候,梯度就非常平缓了,这容易导致梯度消失的问题
- 函数的计算公式复杂,这在求梯度的时候要花费很大的计算资源
于是为了改进这些缺点,人们又提出了relu激活函数
relu激活函数的公式如下:
- relu的全称是Rectified Linear Units ,即整流线性单元,这里我们可以看到,梯度被保留下来了,且计算复杂度也降低了。
但是这不够完美,因为小于0的部分都置为0了,模型无法从小于0的神经元中学习到任何知识,所以人们又对其进行优化,并提出了gelu函数。
Gelu函数
GELU函数的全称是(Gaussian Error Linear Unit),也叫高斯误差线性激活单元,其公式如下:
其中,φ(x)表示标准正态分布的累计概率密度函数,从累计概率密度函数的定义我们可以知道,它在R域上从0到1递增的,GELU函数的图像如下所示:
可以看到,在函数小于0的部分并非简单的输出0,而是对一些信息做了保留,同时也让函数更加的平滑了。相比于RELU来说,GELU函数是连续可导的。
在计算复杂度上,GELU虽然比RELU的计算复杂度高上不少,但是人们用近似公式来计算GELU,这使得GELU函数的计算复杂度与sigmoid函数相似,这是可以接受的,因为它改进了sigmoid梯度消失的问题。近似公式如下:
相关文章:
手搓多模态-05 transformer编码层
前情回顾 前面我们已经实现一个图像嵌入层和顶层的模型调度: class SiglipVisionTransformer(nn.Module): ##视觉模型的第二层,将模型的调用分为了图像嵌入模型和transformer编码器模型的调用def __init__(self, config:SiglipVisionConfig):super().__i…...
LightTrack + VOT2019 + Jetson 部署全流程指南【轻量级目标跟踪】
LightTrack VOT2019 Jetson 部署全流程指南【轻量级目标跟踪】 🔧 1. 环境准备(Jetson 平台)推荐配置:⚙️ 安装 Python 3.6 虚拟环境(Jetson 原生 Python 版本较新) 📥 2. 下载 LightTrack 源…...
【Easylive】视频删除方法详解:重点分析异步线程池使用
【Easylive】项目常见问题解答(自用&持续更新中…) 汇总版 方法整体功能 这个deleteVideo方法是一个综合性的视频删除操作,主要完成以下功能: 权限验证:检查视频是否存在及用户是否有权限删除核心数据删除&…...
(C语言)循环单链表(数据结构)(指针)(循环列表教程)
目录 源代码: 代码详解: 1. 头文件和宏定义 2. 类型定义 3. 初始化链表 4. 判断链表是否为空 5. 求链表的长度 6. 清空链表 7. 销毁链表 8. 链表的插入(头插法) 9. 链表的插入(尾插法) 10. 查看…...
Debian 12 服务器搭建Beego环境
一、Debian 12系统准备 1.更新系统 #apt update && apt upgrade -y 2.安装基础工具 #apt install -y git curl wget make gcc 二、安装Go环境 Go语言的镜像官网:https://golang.google.cn/ 1.下载go最新版 #cd /usr/local/src #wget -o https://golang.go…...
淘宝商品评论API接口概述及JSON数据参考(测试)
前言 一、淘宝商品评论API接口概述 淘宝商品评论API接口是淘宝开放平台提供的一项服务,允许开发者通过HTTP请求获取指定商品的评论数据。这些数据包括评论内容、评论者信息、评分、评论时间等,为开发者提供了丰富的商品评价信息,有助于分析…...
AI:决策树、决策森林与随机森林
决策树与随机森林:从原理到实战的全面解析(2025最新版) 引言 在机器学习的世界里,决策树和森林模型(包括随机森林)常常是数据科学家们常用的工具之一。无论是初学者还是资深从业者,理解这些模型的原理和应用,都能帮助你在数据分析和预测任务中获得更好的结果。本文将…...
图形化编程语言:低代码赛道的技术革命与范式突破
在 2024 年 Gartner 低代码平台魔力象限报告中,传统低代码厂商市场份额增速放缓至 12%,而图形化编程语言赛道融资额同比激增 370%。本文深度剖析低代码平台的技术瓶颈,系统阐释图形化编程语言的核心优势,揭示其如何重构软件开发范…...
EdgeInfinite: 用3B模型处理无限长的上下文
论文标题 EdgeInfinite: A Memory-Efficient Infinite-Context Transformer for Edge Devices 论文地址 https://arxiv.org/pdf/2503.22196 作者背景 vivo,浙江大学 代码 The code will be released after the official audit. 动机 self-attention的二次时…...
大模型论文:Improving Language Understanding by Generative Pre-Training
大模型论文:Improving Language Understanding by Generative Pre-Training OpenAI2018 文章地址:https://www.mikecaptain.com/resources/pdf/GPT-1.pdf 摘要 自然语言理解包括各种各样的任务,如文本蕴涵、问题回答、语义相似性评估和文…...
springboot 项目怎样开启https服务
要在Spring Boot项目中启用HTTPS服务,请按照以下步骤操作: 1. 生成SSL证书密钥库 使用keytool生成自签名证书 在终端或命令行工具中运行以下命令,生成一个PKCS12格式的密钥库文件: keytool -genkeypair -alias myapp -keyalg …...
R语言之mlr依赖包缺失警告之分析
因为本地没有网络,所有相关的依赖包都是手动下载,再使用脚本一键安装的。 在使用mlr包时,执行下面的代码时,总是报各种依赖缺失,也不知道咋看FAIL信息。 # 建模与调参 # 查阅线性回归、随机森林、xgboost和KNN四种模…...
如何记录日常笔记
关于用Obsidian记日常笔记这事儿,我的经验是别想得太复杂。刚开始用的时候总想着要搞个完美的分类系统,后来发现简单粗暴反而最实用。 文件夹分两类就够了——比如「工作记录」扔一个文件夹,「读书笔记」扔另一个,别分太细&#…...
Completablefuture的底层原理是什么
参考面试回答: 个人理解 CompletableFuture 是 Java 8 引入的一个类、它可以让我们在多线程环境中更加容易地处理异步任务。CompletableFuture 的底层原理是基于一个名为 FutureTask 的机制、结合了 监听器模式 和 等待-通知机制 来处理异步计算。 1.首先就是Com…...
Linux学习笔记(1) 目录结构与路径描述:对比 Windows 系统差异(期末,期中复习笔记全)
前言 一、Linux 的目录结构 二、Linux 路径的描述方式 三、总结 前言 在计算机操作系统的领域中,Linux 和 Windows 是两大主流系统。它们在目录结构和路径描述方式上存在显著不同,理解这些差异对于熟练掌握 Linux 系统至关重要。 一、Linux 的目录结构…...
《算法笔记》10.3小节——图算法专题->图的遍历 问题 A: 第一题
题目描述 该题的目的是要你统计图的连通分支数。 输入 每个输入文件包含若干行,每行两个整数i,j,表示节点i和j之间存在一条边。 输出 输出每个图的联通分支数。 样例输入 1 4 4 3 5 5样例输出 2 分析: 由于题目没给出范围࿰…...
【docker】
1.构建jar包 2.构建自定义的镜像dockerfile vim Dockerfile # 使用 OpenJDK 17 作为基础镜像,该镜像包含 JDK 17 环境 # 该镜像适用于需要编译或运行基于 JDK 17 的 Java 应用程序FROM openjdk:8-jdk-alpine# 设置容器中的工作目录为 /app # 所有后续操作…...
深度学习总结(1)
初识神经网络(helloworld) 要解决的问题是,将手写数字的灰度图像(28像素28像素)划分到10个类别中(从0到9)。我们将使用MNIST数据集。 在机器学习中,分类问题中的某个类别叫作类(class),数据点叫作样本(sample),与某个样本对应的类叫作标签(label)。…...
Java面试38-Dubbo是如何动态感知服务下线的?
首先,Dubbo默认采用Zookeeper实现服务注册与服务发现,就是多个Dubbo服务之间的通信地址,是使用Zookeeper来维护的。在Zookeeper上,会采用树形结构的方式来维护Dubbo服务提供端的协议地址,Dubbo服务消费端会从Zookeeper…...
企业数据分析何时该放弃Excel?
在企业数据分析中,Excel 的适用数据量范围取决于 数据复杂度、计算需求 和 硬件性能: 一、Excel 适合处理的数据量范围 数据规模适用场景限制与风险≤10万行- 日常报表 - 简单数据透视表 - 基础公式计算(如SUMIFS、VLOOKUP)处理流畅,无明显性能问题10万~50万行- 较复杂分析…...
单片机实现触摸按钮执行自定义任务组件
触摸按钮执行自定义任务组件 项目简介 本项目基于RT8H8K001开发板 RT6809CNN01开发板 TFT显示屏(1024x600) GT911触摸屏实现了一个多功能触摸按钮组件。系统具备按钮控制后执行任务的功能,可用于各类触摸屏人机交互场景。 硬件平台 MCU: STC8H8K64U࿰…...
深度学习与神经网络 | 邱锡鹏 | 第四章学习笔记 神经网络
四、神经网络 文章目录 四、神经网络4.1 神经元4.2 神经网络4.3 前馈神经网络4.4 反向传播算法4.5 计算图与自动微分4.6 优化问题 4.1 神经元 w表示每一维(其他神经元)的权重,b可以用来调控阈值,z 经过激活函数得到最后的值a来判…...
去产能、去库存、去杠杆、降成本、补短板的智慧工业开源了。
智慧工业视觉监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上…...
【嵌入式系统设计师】知识点:第4章 嵌入式系统软件基础知识
提示:“软考通关秘籍” 专栏围绕软考展开,全面涵盖了如嵌入式系统设计师、数据库系统工程师、信息系统管理工程师等多个软考方向的知识点。从计算机体系结构、存储系统等基础知识,到程序语言概述、算法、数据库技术(包括关系数据库、非关系型数据库、SQL 语言、数据仓库等)…...
Scala基础知识
数组 不可变数组 第一种方式定义数组 定义:val arr1 new Array[Int](10) (1)new 是关键字 (2)[Int]是指定可以存放的数据类型,如果希望存放任意数据类型,则指定Any (3&#x…...
scala课后总结(7)
不可变数组与可变数组的转换 arr1.toBuffer :将不可变数组 arr1 转换为可变数组,原 arr1 不变,返回新的可变数组 。 arr2.toArray :把可变数组 arr2 转为不可变数组, arr2 本身不变,返回新的不可…...
【T2I】MIGC: Multi-Instance Generation Controller for Text-to-Image Synthesis
code:CVPR 2024 MIGC: Multi-Instance Generation Controller for Text-to-Image Synthesis [CVPR 2024] MIGC: Multi-Instance Generation Controller for Text-to-Image Synthesis - 知乎 Abstract 我们提出了一个多实例生成(Multi-Instance Generation, MIG)任务…...
MyBatis的第三天笔记
4. MyBatis核心配置文件详解 4.1 配置文件结构 MyBatis核心配置文件采用XML格式,主要用于配置数据库连接、事务管理、映射文件等信息。以下是一个基本的配置文件示例: <?xml version"1.0" encoding"UTF-8" ?> <!DOCTY…...
03_docker 部署 nginx 配置 HTTPS 并转发请求到后端服务
03_Docker 部署 Nginx 配置 HTTPS 并转发请求到后端服务 一、在 Docker 内部署 Nginx 拉取 Nginx 镜像 docker pull nginx:1.19.4 //如果能直接拉取使用这个命令 docker pull docker.xuanyuan.me/nginx:1.19.4 //不能直接拉取需要在前面加上镜像地址拉取成功后,创建…...
位运算题目:N 天后的牢房
文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题:N 天后的牢房 出处:957. N 天后的牢房 难度 5 级 题目描述 要求 8 \texttt{8} 8 间牢房排成一排,每间牢房的状态是被占用或…...
OceanBase V4.3.5 上线全文索引功能,让数据检索更高效
近日,OceanBase 4.3.5 BP1 版本正式推出了企业级全文索引功能。该版本在中文分词、查询效率及混合检索能力上进行了全面提升。经过自然语言模式和布尔模式在不同场景下的对比测试,OceanBase 的全文索引性能明显优于 MySQL。 点击下载 OceanBase 社区版…...
【MySQL 数据库】数据表的操作
🔥博客主页🔥:【 坊钰_CSDN博客 】 欢迎各位点赞👍评论✍收藏⭐ 目录 1. 表的查看 1.1 语法 2. 表的创建 2.1 语法 2.2 练习 3. 查看表结构 3.1 语法 3.2 示例 4. 表的修改 4.1 语法 4.2 示例操作 4.2.1 向表中添加字段…...
(三十七)Dart 中使用 Pub 包管理系统与 HTTP 请求教程
Dart 中使用 Pub 包管理系统与 HTTP 请求教程 Pub 包管理系统简介 Pub 是 Dart 和 Flutter 的包管理系统,用于管理项目的依赖。通过 Pub,开发者可以轻松地添加、更新和管理第三方库。 使用 Pub 包管理系统 1. 找到需要的库 访问以下网址,…...
几款开源网盘的比较
开源网盘 1. Nextcloud2. Seafile3. ownCloud4. Syncthing5. FileBrowser6. Z-File7. kiftd总结对比推荐选择 1. Nextcloud 开发语言:PHP (后端) JavaScript (前端) 官网:https://nextcloud.com/ 特点: 功能全面(文件同步、共享…...
python中的in关键字查找的时间复杂度
列表(List) 对于列表来说, in 运算符的复杂度是 O(n),其中n是列表的长度。这意味着如果列表中有n个元素,那么执行 in 运算符需要遍历整个列表来查找目标元素。 以下是一个示例,演示了在列表中使用 in 运算…...
Windows注册鼠标钩子,获取用户选中的文本
注册鼠标钩子 // 注册鼠标钩子 HHOOK hMouseHook; hMouseHook SetWindowsHookEx(WH_MOUSE_LL, MouseProc, GetModuleHandle(NULL), 0);// 取消鼠标钩子 UnhookWindowsHookEx(hMouseHook); hMouseHook nullptr; 上述代码中MouseProc方法用于处理系统的鼠标消息 处理鼠标消息…...
UE5 蓝图里的反射
蓝图支持使用名字调用函数 使用SetTimerByFunctionName节点即可,该节点是指延后多少时间调用函数,注意时间不能是0也不能是负数,否者不会执行...
私有化视频会议系统,业务沟通协作安全不断线
BeeWorks Meet视频会议平台具备丰富而强大的功能,能够满足企业多样化的业务场景需求。其会议管理功能,让企业能够轻松安排和管理各类会议。 从创建会议、设置会议时间、邀请参会人员到会议提醒,一应俱全,确保会议的顺利进行。多人…...
大数据学习(100)-kafka详解
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一…...
unittest测试模块:Python 标准库中的单元测试利器
在当今的软件开发中,测试的必要性不言而喻。为了确保代码的质量和稳定性,开发者需要一种高效的方式去编写和运行单元测试。Python 提供了一个强大的工具——unittest。这是一个标准库模块,专为编写和运行测试而设计,帮助开发者减少…...
java后端对时间进行格式处理
时间格式处理 通过java后端,使用jackson库的注解JsonFormat(pattern "yyyy-MM-dd HH:mm:ss")进行格式化 package com.weiyu.pojo;import com.fasterxml.jackson.annotation.JsonFormat; import lombok.AllArgsConstructor; import lombok.Data; import …...
Spring的简单介绍
Spring的简单介绍 Spring 是一个开源的 Java 企业级应用开发框架,旨在简化企业应用的开发过程。它通过提供全面的基础设施支持,帮助开发人员构建可靠的、高效的、可扩展的企业级应用程序。Spring 提供了多种功能模块,支持开发不同类型的应用…...
Python基础知识点(函数2)
#需求 打印stu_info def show_info(name,age): print(f"姓名:{name},年龄:{age}") #1.必要参数 在调用函数的时候必须传值 show_info("tom",3) #注意!对于形参,除了个数要匹配,顺序也要匹配 …...
MySQL的左连接、右连接、内连接、外连接
一、前言 MySQL中的左连接、右连接、内连接和全外连接是用于多表关联查询的核心操作。 二、内连接(INNER JOIN) 定义:返回两个表中完全匹配的行,即只保留两个表连接字段值相等的行。示例场景:查询所有有选课记录的学…...
Springboot JPA ShardingSphere 根据年分表
Spring Boot集成JPA与ShardingSphere实现按年分表,需重点关注分片算法选择、时间字段映射及动态表管理。以下是实现方案: 一、依赖配置 1. 核心依赖引入 <!-- ShardingSphere JDBC --> <dependency><groupId>org.apache.shardi…...
巧记英语四级单词 Unit1-3【晓艳老师版】
light 光,轻的、 grant v.准予,承认 gr官人,ant蚂蚁,外面下着大雨,官人让蚂蚁进来了grind v.摩擦,磨碎 官人在里面的 磨刀,准备找法海给白娘子报仇slight v.稍微的,有点的 light 光…...
Flink 任务调度机制
一、Task 任务调度执行流程 一、Graph 的概念 Flink 中的执行图可以分为四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图。 StreamGraph:执行用户代码中的 env.execute() 方法后,根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的…...
设计模式之享元模式
1. 概念 享元模式(Flyweight Pattern), 运用共享技术有效地支持大量细粒度对象的复用。系统只使用少量的对象,而这些对象都很相似,状态变化很小,可以实现对象的多次复用。 在享元模式中可以共享的相同内容称为内部状态(Intrinsic State)&…...
设计模式 - 策略模式Strategy
设计思想: 策略模式的就是定义一系列算法,将他们一个个封装起来,并且使它们可以相互替换,通常我们的代码中出现大量的if...else...或者switch语句时,我们都可以使用策略模式来优化代码 典型场景: 支付系…...
23种设计模式-行为型模式-策略
文章目录 简介场景解决代码关键实现细节 总结 简介 策略是一种行为设计模式,它能让你定义一系列算法,并将每种算法分别放入独立的类中,以使算法对象能够被替换。 场景 你在开发一款导航应用,类似高德。你要实现自动路线规划的功…...