当前位置: 首页 > news >正文

2024年认证杯SPSSPRO杯数学建模A题(第一阶段)保暖纤维的保暖能力全过程文档及程序

2024年认证杯SPSSPRO杯数学建模

A题 保暖纤维的保暖能力

原题再现:

  冬装最重要的作用是保暖,也就是阻挡温暖的人体与寒冷环境之间的热量传递。人们在不同款式的棉衣中会填充保暖材料,从古已有之的棉花、羽绒到近年来各种各样的人造纤维。不同的保暖纤维具有不同的保暖性能,比如人们以往的经验表明,高品质的羽绒具有非常优秀的保暖性能,所以在极寒地区生活的人们可以穿着不算特别厚重的羽绒服,也能够起到足够的御寒效果。但是羽绒作为保暖填充材料也有缺点:成本高,无法耐湿,以及获取手段可能对动物造成不人道的伤害。所以现在普遍认为人造的保暖纤维可能在今后取得更大的市场前景。
  我们专注于对人造保暖纤维的保暖能力进行建模。请你和你的团队建立合理的数学模型以回答下列问题。
  第一阶段问题:
  1. 人们研究过一些指标来描述某种保暖材料的保暖能力。例如热导率、热阻值、热导系数、CLO 值(克罗值)等。在其中,有些指标主要依据基本的传热学物理量来进行定义和推算,忽略了实际使用的环境因素。常用的 CLO 值从定义上需要在穿着环境中对衣物进行实测,是一个比较完善的指标。但也有两个问题:首先,对某种填充材料而言,不同的填充方式、重量、厚度和压缩程度等因素都会影响实际成衣的保暖性能,所以原本定义于成衣的 CLO 值并不能完整地反映某种填充材料的完整性能;其次,在 CLO 值的定义中只考虑了某些特定的穿着环境,在运动、潮湿、大风等特殊条件下,CLO 值与体感可能会有可观的偏差。请针对衣物内填充的保暖纤维建立一个合理的指标体系,较为全面地衡量某种保暖纤维的保暖能力。
  2. 考虑到成本低廉,加工方便,我们假设只使用涤纶作为保暖纤维的材料。假设纤维的横截面都是圆形,每根纤维的平均长度和纤维的直径都是已知的常数。请建立合理的数学模型,来研究这种保暖纤维的保暖能力与纤维平均长度以及纤维直径的关系。
  3. 在第 2 问的基础上,请根据你定义的指标,根据典型的棉花和羽绒的微观结构(请自行寻找所需数据),来估测其保暖能力。

整体求解过程概述(摘要)

  当冬季来临时,冬装成为了我国北部地区的首选衣服种类。在我国东北地区,由于天气寒冷甚至到零下几十度,因此保暖的衣服显得尤为重要,一件好的冬装需要有一定的抗风能力,不让外界的寒风穿透同时也能够将身体的热量进行一个保持,尽可能保证热量不散发到外界寒冷环境中。通过构建一个包含物理特性、环境适应性和用户体验的综合评价体系,本研究深入分析了各种纤维的保暖效率及其在不同环境条件下的表现。
  对于问题一,本文利用服装专业相关的文献了解到评估一个材料是否保暖所需的主要指标。并从较多的指标中按照结构与物理特性、物理与热学性能、环境适应性与人体感知四个方面共15个细化指标进行建模,保证了评价指标体系的可靠性与客观性。利用收集到的数据,使用K-S检验与q-q图进行分析处理了解到指标均为非正态分布,因此使用箱形图进行异常值的判定,避免了异常值影响建模的准确。最终将处理后的无异常值数据进行熵权法处理,对不同的种类进行排序以获得指标的权重信息并方面后续相关研究。
  对于问题二,针对涤纶这一具有成本优势和处理便利性的材料,本研究建立了数学模型来探讨其保温能力与纤维的平均长度及直径的关系。将收集到的数据按照一定规则进行数据清洗保证数据的可靠性,将清洗后的结果引入person相关性分析,建立关联程度分析模型,分析出不同指标之间的关系,根据相关性的结果不难看出不同指标之间均存在着较好的线性关系而同时受可以进行接下来的分析。因此在该问中,本文构建以导热率为目的因变量,其他相关指标作为自变量做多元线性回归模型进一步探究涤纶保暖能力与长度、直径及表面积的关系。
  对于问题三,我们综合了前两个问题的研究成果,进一步比较了传统的棉花、羽绒与涤纶等保暖材料的性能,并为了模型的完整性和严谨性,在原有的数据中补充了CLO值这一衡量衣物保温性的一个单位,并构建了添加CLO值后的多元线性回归模型。利用CLO值和导热率进行加权作为数据构建了更加完整的模型,完成了这一问题并给出完整解释,至此完成了该建模第一阶段的所有问题。

问题重述:

  冬季服装的主要功能是保暖,即阻止人体散发的热量与寒冷环境之间的热传导。在不同款式的冬季服装中,填充材料起着关键作用,而这些填充材料可以包括传统的棉花和羽绒,以及近年来各种各样的人造纤维。不同类型的填充材料具有不同的保暖性能。比如高品质的羽绒以其出色的保暖效果而闻名,因此在极寒地区,人们可以穿着相对轻便的羽绒服,依然享有良好的保暖效果。然而,羽绒作为填充材料也存在一些缺点,如成本较高、不耐湿、以及可能对动物造成伤害等。所以,人造保暖纤维在未来可能会成为市场的主流选择。
  本文关注于人造保暖纤维的保暖性能,旨在建立合理的数学模型解决以下问题:
  问题一:综合考虑某种填充的保暖纤维材料属性与实际穿着环境,建立全面的保暖能力评估指标体系。思路分析:针对问题一,首先从PubMed、GoogleScholar、知网及知乎等网站中搜索与保暖纤维相关的文献,以确定最常见的15个评估指标。这一步确保了我们构建的指标评价体系具有科学客观、全面准确的特性。随后,根据这些指标的评价体系开始收集所需的数据。针对收集到的数据,首先对其分布方式进行K-S检验和q-q图判定。结果显示,所有指标均呈现非正态分布,因此利用箱型图进行异常值检测,通过综合实际情况对异常值进行人为判定。接下来,使用处理后的数据构建了基于熵权法的理想解法,对不同种类的数据进行排序,并建立了评价模型。
  问题二:探讨涤纶作为保暖纤维材料的保暖能力与纤维平均长度以及纤维横截面直径的关系。思路分析:针对问题二,采用与问题一相同的方法对收集的涤纶保暖纤维数据进行了数据清洗。清洗后,引入了Person相关性分析,建立了相关性模型,分析了不同指标之间的关系。根据相关性结果,发现各指标之间存在较好的线性关系。因此,构建了以导热率为自变量,其他指标为因变量的多元线性回归模型。
  问题三:在第二问的基础上,基于所定义的指标及其微观结构特征,评估典型棉花和羽绒的保暖性能。思路分析:对于问题三,我们进行了不同保暖材料性能的比较。为了更合理地进行比较,于是收集了相关指标数据,并构建了优化模型。为了提高模型的完整性,因此补充了问题二数据样本的CLO值,并建立了CLO值的多元线性回归模型。最后利用CLO值与导热率的加权结果作为目标函数,并将材料的物理或化学属性设定的取值范围作为约束条件进行求解。

模型假设:

  • 假设题目所给的数据真实可靠。
  • 假设数据具有普遍性和适用性。
  • 假设保暖衣实际使用的环境因素的细微差别忽略不计。
  • 假设纤维间的热交换可以忽略,即每根纤维独立传导热量。
  • 假设所有纤维的形状和大小都相同,且横截面为圆形。
  • 假设纤维的排列是均匀的,没有大的空隙。

完整论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:

import numpy as np
import pandas as pd# 创建数据矩阵
data = np.array([[129.1120758, 773.6479492, 825.1612549],[168.480957, 481.8232422, -2.038263798],[79.30264282, -85.80281067, -536.1644897],[95.75248718, -689.5393677, 1165.208374],[147.3497009, 1456.69043, -265.2684021],[62.37760925, 1090.017578, -1163.998169],[112.1847687, -1054.654053, -825.2636108],[44.32613754, -377.8758545, 531.7950439],[23.33691406, 198.0267639, 261.1568909]
])# 转换为 DataFrame
df = pd.DataFrame(data, columns=["使用体验", "环境适应性", "物理特性"])# 标准化处理,这里使用min-max标准化,同时考虑正负属性(物理特性为负属性)
df_normalized = (df - df.min()) / (df.max() - df.min())
df_normalized['物理特性'] = 1 - df_normalized['物理特性']  # 反转负属性的标准化df_normalized# 计算熵值
def calculate_entropy(df):# 常数,防止对数为负无穷epsilon = 1e-9proportions = df / df.sum()entropy = -np.sum(proportions * np.log(proportions + epsilon), axis=0) / np.log(len(df))return entropy# 计算权重
def calculate_weights(entropy):# 权重是熵值的补数分布的归一化weight = 1 - entropyweight_normalized = weight / weight.sum()return weight_normalized# 计算
entropy = calculate_entropy(df_normalized)
weights = calculate_weights(entropy)# 输出熵值和权重
entropy, weightsimport matplotlib.pyplot as plt
import seaborn as sns# 计算加权标准化值
df_weighted = df_normalized * weights# 计算理想解和负理想解
ideal_solution = df_weighted.max()
nadir_solution = df_weighted.min()plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用SimHei字体
plt.rcParams['axes.unicode_minus'] = False  # 正确显示负号# 可视化
plt.figure(figsize=(16, 6))plt.subplot(1, 2, 1)
sns.heatmap(df_normalized, annot=True, cmap='coolwarm', fmt=".2f", cbar_kws={'label': 'Normalized Scores'})
plt.title('Normalized Data')plt.subplot(1, 2, 2)
weights.plot(kind='bar', color='teal')
plt.title('Weights of Criteria')
plt.ylabel('Weight')
plt.xticks(rotation=45)plt.tight_layout()
plt.show()ideal_solution, nadir_solution
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

相关文章:

2024年认证杯SPSSPRO杯数学建模A题(第一阶段)保暖纤维的保暖能力全过程文档及程序

2024年认证杯SPSSPRO杯数学建模 A题 保暖纤维的保暖能力 原题再现: 冬装最重要的作用是保暖,也就是阻挡温暖的人体与寒冷环境之间的热量传递。人们在不同款式的棉衣中会填充保暖材料,从古已有之的棉花、羽绒到近年来各种各样的人造纤维。不…...

采药 刷题笔记 (动态规划)0/1背包

P1048 [NOIP2005 普及组] 采药 - 洛谷 | 计算机科学教育新生态 动态规划 0/1背包 的本质在于继承 一行一行更新 上一行是考虑前i个物品的最优情况 当前行是考虑第i1个物品的情况 当前行的最优解 来自上一行和前i个物品的最优解进行比较 如果当前装了当前物品&#xff…...

LabVIEW MathScript工具包对运行速度的影响及优化方法

LabVIEW 的 MathScript 工具包 在运行时可能会影响程序的运行速度,主要是由于以下几个原因: 1. 解释型语言执行方式 MathScript 使用的是类似于 MATLAB 的解释型语言,这意味着它不像编译型语言(如 C、C 或 LabVIEW 本身的 VI&…...

大数据新视界 -- Hive 数据湖架构中的角色与应用(上)(25 / 30)

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

电脑关机的趣味小游戏——system函数、strcmp函数、goto语句的使用

文章目录 前言一. system函数1.1 system函数清理屏幕1.2 system函数暂停运行1.3 system函数电脑关机、重启 二、strcmp函数三、goto语句四、电脑关机小游戏4.1. 程序要求4.2. 游戏代码 总结 前言 今天我们写一点稍微有趣的代码,比如写一个小程序使电脑关机&#xf…...

elasticsearch是如何进行搜索的?

请求与转发 协调节点确定参与搜索的目标索引,及其通过分片路由表确定分片对索引所在分片中选择任意节点并发请求多个分片的副本分片 副本选择策略 副本选择主要考虑 分片健康状态:选择状态为 green 或 yellow 的副本节点负载情况:避免查询…...

【Linux课程学习】:站在文件系统之上理解:软硬链接,软硬链接的区别

🎁个人主页:我们的五年 🔍系列专栏:Linux课程学习 🌷追光的人,终会万丈光芒 🎉欢迎大家点赞👍评论📝收藏⭐文章 Linux学习笔记: https://blog.csdn.net/d…...

如何做好一份技术文档

要做好一份技术文档,你需要遵循以下步骤: 1. 明确文档目标: 确定文档的目的和受众。 了解受众的技术水平和背景,以便调整内容的深度和语言风格。 2. 收集信息: 搜集所有与主题相关的技术细节、数据、图表和…...

优雅关闭进程

原文地址:优雅关闭进程 – 无敌牛 欢迎参观我的个人博客:无敌牛 – 技术/著作/典籍/分享等 介绍 本文涉及到进程对信号的响应,关于信号的一些基本知识,可以参考往期文章:linux系统信号简介 – 无敌牛 一个进程正常…...

【WEB开发.js】addEventListener事件监听器的绑定和执行次数的问题(小心踩坑)

假设我们有一个按钮,用户点击该按钮后,会选择一个文件,且我们希望每次点击按钮时只触发一次文件处理。下面我会给你一个简单的例子,展示放在函数内部和放在函数外部的区别。 1. 将事件监听器放在函数内部(问题的根源&…...

将 x 减到 0 的最小操作数 C++滑动窗口

给你一个整数数组 nums 和一个整数 x 。每一次操作时,你应当移除数组 nums 最左边或最右边的元素,然后从 x 中减去该元素的值。请注意,需要 修改 数组以供接下来的操作使用。 如果可以将 x 恰好 减到 0 ,返回 最小操作数 &#x…...

深入解析 C++ 中的 common_reference_with 和 common_with:设计原理与复杂性

在 C 标准库的设计中,类型之间的兼容性和安全性是至关重要的,尤其是在泛型编程中。为了实现高效且安全的类型推导和转换,C 提供了一些复杂的概念和工具来确保不同类型之间能够正确协同工作。common_reference_with 和 common_with 这两个概念…...

从CPU缓存与指令重排序探讨JMM

目录 问题背景 解决思路 hb关系的应用 原子性问题 问题背景 1. 编译器和CPU优化: 编译器和CPU为了提升单线程程序的性能,会对代码进行优化,如指令重排序、延迟计算等。这些优化在单线程环境下不会影响程序的最终结果,但在多线…...

ETSI EN 300328 标准的一些笔记

ETSI - European Telecommunications Standards Institute 欧洲电信标准化协会 ETSI EN 300328 是欧洲协调标准,此标准适用于工作在2.4G频段范围内运行的宽频传输系统和设备的无线电频谱。 例如 WIFI、Zigbee、蓝牙、 (国内的星闪)。不涵盖UWB。 符合了EN 300328标…...

各大浏览器(如Chrome、Firefox、Edge、Safari)的对比

浏览器如Chrome、Firefox、Edge等在功能、性能、隐私保护等方面各有特点。以下是对这些浏览器的详细对比,帮助你选择合适的浏览器。 1. Google Chrome 市场份额:Chrome是目前市场上最流行的浏览器,约占全球浏览器市场的65%以上。 性能&#…...

AD7606使用方法

AD7606是一款8通道最高16位200ksps的AD采样芯片。5V单模拟电源供电,真双极性模拟输入可以选择10 V,5 V两种量程。支持串口与并口两种读取方式。 硬件连接方式: 配置引脚 引脚功能 详细说明 OS2 OS1 OS2 过采样率配置 000 1倍过采样率 …...

双向长短期记忆(Bi-LSTM)神经网络介绍

长短期记忆(Long Short-Term Memory, LSTM)神经网络: 1.是Hochreiter和Schmidhuber设计的循环神经网络(Recurrent Neural Network, RNN)的改进版本。LSTM模型借鉴了人类大脑的选择性输入和选择性遗忘机制,获取序列中的关键信息,遗忘和当前预测…...

openGauss开源数据库实战十八

文章目录 任务十八 openGauss逻辑结构:构:用户和权眼管理任务目标实施步骤一、准备工作二、用户和角色管理1.使用CREATE USER语句创建用户2.使用CREATE ROLE语句创建用户3.删除用户和角色 三、权限管理1.系统权限清理工作 任务十八 openGauss逻辑结构:构:用户和权眼管理 任务目…...

JVM 性能调优 -- JVM 调优常用网站

前言: 上一篇分享了 JDK 自带的常用的 JVM 调优命令和图形化界面工具,本篇我们分享一下常用的第三方辅助 JVM 调优网站。 JVM 系列文章传送门 初识 JVM(Java 虚拟机) 深入理解 JVM(Java 虚拟机) 一文搞…...

现在的电商风口已经很明显了

随着电商行业的不断发展,直播带货的热潮似乎正逐渐降温,而货架电商正成为新的焦点。抖音等平台越来越重视货架电商,强调搜索功能的重要性,预示着未来的电商中心将转向货架和搜索。 在这一转型期,AI技术与电商的结合为…...

基于AT89C52单片机的电子时钟与温湿度检测系统

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

Wwise SoundBanks内存优化

1.更换音频格式为Vorbis 2.停用多余的音频,如Random Container的随机脚步声数量降为2个 3.背景音乐勾选“Stream”。这样就让音频从硬盘流送到Wwise,而不是保存在内存当中,也就节省了内存 4.设置最大发声数Max Voice Instances 5.设置音频…...

Next.js 独立开发教程(十三):错误处理(Error Handling)

系列文章目录 Next.js 开发教程(一):入门指南-CSDN博客 Next.js 开发教程(二):从零构建仪表盘应用-CSDN博客 Next.js 开发教程(三):CSS 样式的完整指南-CSDN博客 Next.js 独立开发教程&…...

【Halcon】边缘检测算子汇总(一)

frei_amp 功能:使用Frei-Chen算法检测图像的边缘振幅。 参数: 输入图像(Image):待处理的原始图像。输出梯度图像(ImageEdgeAmp):经过Frei-Chen算法处理后的边缘振幅图像。工作原理:frei_amp算子通过计算图像一阶导数的近似值来检测边缘。它使用两个特定的滤波器掩模(…...

前端开发中Token存储:选择Cookie还是localStorage?

在现代前端开发领域,用户身份验证与状态管理不可或缺,而 token 作为身份验证机制的核心要素,对保障用户信息安全至关重要。然而,token 的存储方式对应用安全性和用户体验有着直接影响。本文将从安全性、便捷性和使用场景等维度,深度剖析在 Cookie 和 localStorage 中选择存…...

Scala中的正则表达式01

规则类型具体规则示例说明单字符大多数字符匹配自身正则表达式 abc,文本 abca 匹配 a,b 匹配 b,c 匹配 c方括号 [ ][ ] 定义字符集,匹配其一[abc],文本 a、b 或 c[abc] 匹配 a、b 或者 c排除字符集 [^ ][^ ] 开头加 ^&…...

机器学习——决策树模型

决策树是如何工作的? 假设你在经营一家猫收养中心,并提供了一些功能,你想训练一个分类器来快速告诉你,动物到底是不是猫,这里有10个训练例子,并与这10个例子中的每一个相关联,我们将有关于动物…...

#3003. Jed‘s MEX

刚开始直接硬来,要么TLE要么WA 后面改成另一种思路: 先把ai大于n的全都转换为刚好小于n的数,记录在cnt[i]中,代表ai有多少个 然后从高往低走,把cnt大于1的分到下面去,使数尽可能分布得广一些 然后从低往…...

数据集增强:提升深度学习模型泛化能力的关键技术

在深度学习中,数据是模型性能的基石。大规模、高质量的数据集通常能显著提高模型的泛化能力,帮助模型在真实场景中做出更准确的预测。然而,在很多实际应用中,数据收集困难、昂贵或者受限,尤其是当数据集相对较小或标注…...

JS实现高效导航——A*寻路算法+导航图简化法

一、如何实现两点间路径导航 导航实现的通用步骤,一般是: 1、网格划分 将地图划分为网格,即例如地图是一张图片,其像素为1000*1000,那我们将此图片划分为各个10*10的网格,从而提高寻路算法的计算量。 2、标…...

在wordpress添加自定义文章类型

实现思路 在Once主题中,有文章,页面等编辑的文案类型,文章类型主要做文案输出,而页面类型主要做一些界面菜单的操作。参考文章类型,使用自定义页面模板,实现一个自定义文章类型,例如**笔记(nod…...

[node.js] [HTTP/S] 实现 requests 发起 HTTP/S/1.1/2.0 请求

node.js 使用 V8 引擎来编译运行 javascript 代码,与浏览器中的环境不同的是,node.js 不包含 DOM 和 BOM 模块。 本文使用 node.js 的官方库来实现一个简单的 requests() 函数,可以用来发送 HTTP/1.1 和 HTTP/2.0 的请求。有关 HTTP/1.1 和 …...

基于Java Springboot线上约拍摄影预约微信小程序

一、作品包含 源码数据库全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui uniapp 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 微信开发者工…...

node.js基础学习-cheerio模块-简单小爬虫(五)

学习cheerio模块,简单做一个爬取图片网站的图片,并且将这些图片下载到本地指定的文件夹下,很多图片网站都有一些反爬取的机制,找的好几个都会报302错误,所以我找了一个小的图片网站,这个没有反爬取机制&…...

吾杯网络安全技能大赛WP(部分)

吾杯网络安全技能大赛WP(部分) MISC Sign 直接16进制解码即可 原神启动 将图片用StegSolve打开 找到了压缩包密码 将解出docx文件改为zip 找到了一张图片和zip 再把图片放到stegSlove里找到了img压缩包的密码 然后在document.xml里找到了text.zip压缩包密码 然后就出来fl…...

【python自动化一】pytest的基础使用

1.pytest简述 pytest‌ 是一个功能强大且灵活的Python测试框架,其主要是用于流程控制,具体用于UI还是接口自动化根据个人需要而定。且其具有丰富插件,使用时较为方便。咱们具体看下方的内容,本文按照使用场景展开,不完…...

使用 CFD 仿真进行阀门性能分析:第 II 部分

了解如何使用 Ansys Discovery 通过优化模式获得准确的阀门性能结果。 第 II 部分:优化模式下的模拟 阀门的模拟可以在 Explore (探索) 模式和 Refine (优化) 模式下执行。Explore 模式允许快速仿真,在长达…...

Node.js实现WebSocket教程

Node.js实现WebSocket教程 1. WebSocket简介 WebSocket是一种在单个TCP连接上提供全双工通信的协议,允许服务器和客户端之间进行实时、双向通信。本教程将详细讲解如何在Node.js中实现WebSocket。 2. 技术选型 我们将使用ws库来实现WebSocket服务器,…...

使用 Statsmodels 进行统计建模与分析

使用 Statsmodels 进行统计建模与分析 Statsmodels 是 Python 中一个功能强大的库,用于执行统计建模和计量经济学分析。它提供了一系列经典的统计模型和评估方法,涵盖线性回归、时间序列分析和广义线性模型等。 本文将带你深入了解 Statsmodels 的功能…...

【Linux】进程间通信

目录 一、管道 (一)概念 (二)匿名管道 1、概念 2、函数介绍 3、示例代码 4、原理 (三)命名管道 1、概念 2、函数介绍 3、示例代码 4、原理 (四)管道的读写规则 &#x…...

Python 网络爬虫高级教程:分布式爬取与大规模数据处理

经过基础爬虫和进阶爬虫的学习,我们已经掌握了爬虫的基本原理、动态内容处理及反爬机制的应对。然而,当我们面对海量数据或需要高效爬取多个站点时,分布式爬虫和数据存储、处理能力就显得尤为重要。本篇博客将带你迈向网络爬虫的高级阶段&…...

猫爪背后的情感密码

当家中那只可爱的猫咪时不时用它的小爪子轻拍我们时,很多人或许只当作是调皮捣蛋,实则背后大有深意。 猫用爪子打,可能是在向我们发出玩耍的邀约。在猫咪的天性里,捕猎本能根深蒂固。它们在幼年时与同伴的嬉戏打闹,便…...

【自用】管材流转项目前端重部署流程 vue2 webpackage4 vuecli4

一、配置 1.下载项目,使用 IDEA 打开,并配置 Nodejs 它提示我,需要 Node.js,因为 nodejs 14 的 installer 已经官网已经找不到了,使用 fnm 又太麻烦, 所以直接采用在 IDEA 中下载的方式就好了。 2.清除缓…...

关于c的子进程 fork()

fork() 是一个非常重要的系统调用,用于在 Unix-like 操作系统中创建一个新的进程。它会将当前进程(父进程)复制成一个新的进程(子进程)。子进程会从父进程的代码处继续执行,但具有不同的进程 ID。 fork() …...

耀圣控制设备有限公司:优质压滤机阀门的引领者

耀圣控制设备有限公司:优质压滤机阀门的引领者 在压滤机阀门领域,耀圣控制设备有限公司以其卓越的品质和领先的技术,成为了行业内备受瞩目的品牌。 耀圣控制设备有限公司专注于压滤机阀门的研发与生产,凭借着先进的工艺和严格的质…...

【C语言】结构体(四)

本篇重点是typedef关键字 一,是什么? typedef用来定义新的数据类型,通常typedef与结构体的定义配合使用。 简单来说就是取别名 ▶ struct 是用来定义新的数据类型——结构体 ▶ typedef是给数据类型取别名。 二,为什么&#xf…...

面向源代码的软件可信度量模型 T_{na}

面向源代码的软件可信度量模型 T n a T_{na} Tna​ 课程:软件质量分析 作业 可编写下面的java程序: package org.example;public class SourceCodeOrientedModel {public static void main(String[] args) {int total 41;int[] m {9, 22, 9, 5, 7, 1…...

Java11使用JVM同一日志框架启用日志记录

你可以使用-Xlog选项配置或启用Java虚拟机同一日志框架的日志记录。 -Xlog:gc*trace:file/Users/xx/gc-%t.log:time,tags,level,pid,tid,hostname,path:filecount3,filesize10K -Xlog:gc*trace:stdout:time,tags,level,pid,tid,hostname:filecount3,filesize10K -Xlog:gc*trac…...

k8s容器存储接口 CSI 相关知识

容器存储接口 CSI 相关知识 参考: https://blog.csdn.net/lovely_nn/article/details/122880876 https://developer.aliyun.com/article/783464 https://www.cnblogs.com/varden/p/15139819.html存储商需实现 CSI 插件的 NodeGetVolumeStats 接口,Kube…...

JDBC相关

请解释一下 JDBC 是什么? JDBC(Java Database Connectivity)是 Java 语言访问数据库的标准 API。它提供了一套统一的接口,使得 Java 程序能够与各种不同的数据库进行交互。 请说明一下 JDBC 连接池的使用方法和优势。 使用方法…...