当前位置: 首页 > news >正文

分布式集群下如何做到唯一序列号

优质博文:IT-BLOG-CN

分布式架构下,生成唯一序列号是设计系统常常会遇到的一个问题。例如,数据库使用分库分表的时候,当分成若干个sharding表后,如何能够快速拿到一个唯一序列号,是经常遇到的问题。实现思路如下:

【1】数据库自增长序列或字段:全数据库唯一。
【优点】:简单,代码方便,性能可以接受。数字ID天然排序,对分页后者需要排序的结果很有帮组。适合小应用,无需分表,无高并发性能要求。
【缺点】:不同数据库实现不同,在水平分表时,使用自增ID时可能会出现ID冲突。同时在高并发的情况下需要使用事务。在性能达不到要求的情况下,比较难于扩展。如果多个系统需要合并或者设计到数据迁移会相当痛苦。
【优化】:针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1生成的是14710Master2生成的是2,5,8,11Master3生成的是3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。

【2】UUID:常见的方式。可以利用数据库也可以利用程序生成32位的16进制格式的字符串,唯一性很高。
【优点】:简单,方便,生产ID性能非常好且全球基本唯一,在数据迁移和系统后期合并,或数据库变更等情况下都可应对。
【缺点】:没有排序,无法保证趋势递增。UUID使用字符串存储,查询效率低。存储空间较大,如果数据海量就绪考虑存储量问题,传输数据量大。

UUID是一种标准的128位标识符,几乎可以保证全局唯一。Java中可以使用java.util.UUID来生成:

import java.util.UUID;public class UniqueIDGenerator {public static String generateUUID() {return UUID.randomUUID().toString();}
}

【3】Redis生成ID 当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作INCRINCRBY来实现。可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:
A:1,6,11,16,21
B:2,7,12,17,22
C:3,8,13,18,23
D:4,9,14,19,24
E:5,10,15,20,25
这个,随便负载到哪个机器确定好,未来很难做修改。但是3-5台服务器基本能够满足器上,都可以获得不同的ID。但是步长和初始值一定需要事先需要了。使用Redis集群也可以防止单点故障(系统中一点失效,就会让整个系统无法运作的部件)的问题。另外,比较适合使用Redis来生成每天从0开始的流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。
【优点】:不依赖于数据库,灵活方便,且性能优于数据库。数字ID天然排序,对分页或者需要排序的结果很有帮助。
【缺点】:如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。需要编码和配置的工作量比较大。

使用Redis的原子操作,如INCR命令,可以生成全局唯一的序列号。Redis的高性能和分布式特性使其成为一个不错的选择

import redis.clients.jedis.Jedis;public class RedisIdGenerator {private Jedis jedis;private String key;public RedisIdGenerator(String redisHost, int redisPort, String key) {this.jedis = new Jedis(redisHost, redisPort);this.key = key;}public long nextId() {return jedis.incr(key);}
}

【4】Twitter(推特) 的snowflake算法: twitter在把存储系统从MySQL迁移到Cassandra(一套开源分布式NoSQL数据库系统)的过程中由于Cassandra没有顺序ID生成机制,于是自己开发了一套全局唯一ID生成服务:Snowflake
 ● 41位的时间序列(精确到毫秒,41位的长度可以使用69年)
 ● 10位的机器标识(10位的长度最多支持部署1024个节点)
 ● 12位的计数顺序号(12位的计数顺序号支持每个节点每毫秒产生4096ID序号) 最高位是符号位,始终为0

Snowflake的结构如下(每部分用-分开): 一共加起来刚好64位,为一个Long型。(转换成字符串后长度最多19)
0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenterworkerId作区分),并且效率较高。经测试snowflake每秒能够产生26万个ID
【优点】:高性能,低延迟;独立的应用;按时间有序。
【缺点】:需要独立的开发和部署。在单机上是递增的,但是由于涉及到分布式环境,每台机器上的时钟不可能完全同步,也许有时候也会出现不是全局递增的情况。

Java实现的Snowflake算法示例:

public class SnowflakeIdGenerator {private final long twepoch = 1288834974657L;private final long workerIdBits = 5L;private final long datacenterIdBits = 5L;private final long maxWorkerId = -1L ^ (-1L << workerIdBits);private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);private final long sequenceBits = 12L;private final long workerIdShift = sequenceBits;private final long datacenterIdShift = sequenceBits + workerIdBits;private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;private final long sequenceMask = -1L ^ (-1L << sequenceBits);private long workerId;private long datacenterId;private long sequence = 0L;private long lastTimestamp = -1L;public SnowflakeIdGenerator(long workerId, long datacenterId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;}public synchronized long nextId() {long timestamp = timeGen();if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}if (lastTimestamp == timestamp) {sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0L;}lastTimestamp = timestamp;return ((timestamp - twepoch) << timestampLeftShift) |(datacenterId << datacenterIdShift) |(workerId << workerIdShift) |sequence;}protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}protected long timeGen() {return System.currentTimeMillis();}
}

【5】MongoDBObjectId MongoDBObjectIdsnowflake算法类似。它设计成轻量型的,不同的机器都能用全局唯一的同种方法方便地生成它。MongoDB从一开始就设计用来作为分布式数据库,处理多个节点是一个核心要求。使其在分片环境中要容易生成得多。

4个字节是从标准纪元开始的时间戳,单位为秒。时间戳,与随后的5个字节组合起来,提供了秒级别的唯一性。由于时间戳在前,这意味着ObjectId大致会按照插入的顺序排列。这对于某些方面很有用,如将其作为索引提高效率。这4个字节也隐含了文档创建的时间。绝大多数客户端类库都会公开一个方法从ObjectId获取这个信息。

接下来的3字节是所在主机的唯一标识符。通常是机器主机名的散列值。这样就可以确保不同主机生成不同的ObjectId,不产生冲突。

为了确保在同一台机器上并发的多个进程产生的ObjectId是唯一的,接下来的两字节来自产生ObjectId的进程标识符PID
9字节保证了同一秒钟不同机器不同进程产生的ObjectId是唯一的。后3字节就是一个自动增加的计数器,确保相同进程同一秒产生的ObjectId也是不一样的。同一秒钟最多允许每个进程拥有2563(16 777 216)个不同的ObjectId

【6】Zookeeper Zookeeper可以用来实现分布式唯一ID生成器。通过创建顺序节点,可以确保每个节点的名称是唯一且递增的。

【7】其他一些方案: 比如京东淘宝等电商的订单号生成。因为订单号和用户id在业务上的区别,订单号尽可能要多些冗余的业务信息,比如:滴滴:时间+起点编号+车牌号 淘宝订单:时间戳+用户ID 其他电商:时间戳+下单渠道+用户ID,有的会加上订单第一个商品的ID。而用户ID,则要求含义简单明了,包含注册渠道即可,尽量短。

相关文章:

分布式集群下如何做到唯一序列号

优质博文&#xff1a;IT-BLOG-CN 分布式架构下&#xff0c;生成唯一序列号是设计系统常常会遇到的一个问题。例如&#xff0c;数据库使用分库分表的时候&#xff0c;当分成若干个sharding表后&#xff0c;如何能够快速拿到一个唯一序列号&#xff0c;是经常遇到的问题。实现思…...

Linux vi/vim

Linux vi/vim 所有的 Unix Like 系统都会内建 vi 文书编辑器&#xff0c;其他的文书编辑器则不一定会存在。 但是目前我们使用比较多的是 vim 编辑器。 vim 具有程序编辑的能力&#xff0c;可以主动的以字体颜色辨别语法的正确性&#xff0c;方便程序设计。 什么是 vim&…...

二分搜索(二)搜索插入位置

35. 搜索插入位置 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: …...

postgresql in模糊查询

postgresql in模糊查询 plsql模糊查询表名 转载 一.简单查询 1.Select 列名,列名…from select e.empno,e.ename,e.job,e.sal from emp e(别名); 2.带条件查询 select 列名,列名,…,列名 from 表名 where –查询名字叫SMITH的员工的信息 select * from emp where ena…...

政府大数据面临的挑战

政府大数据在数据资源标准、共享、应用、评价以及数据资产转化方面面临着严峻挑战&#xff0c;因此需要从保障数据流动性的角度来重构信息体系&#xff0c;从关注流程和业务逻辑的角度转向关注数据流动性和数据价值&#xff0c;遵从信息流动的内在逻辑&#xff0c;发挥数据的最…...

数据结构---链表

1. 简介 链表&#xff08;Linked List&#xff09;是一种常见的线性数据结构&#xff0c;它由一系列节点组成&#xff0c;每个节点包含数据部分和指向下一个节点的指针&#xff08;或引用&#xff09;。链表的一个主要优点是能够高效地插入和删除元素&#xff0c;尤其是在数组…...

【系统架构设计师】真题论文: 论无服务器架构及其应用(包括解题思路和素材)

更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 真题题目(2017年 试题3)解题思路论文素材参考无服务器架构概念和特点无服务器架构的核心技术组件无服务器架构在不同领域的应用真题题目(2017年 试题3) 近年来,随着信息技术的迅猛发展和应用需求的快速更迭,…...

深度学习模型:BiLSTM (Bidirectional LSTM) - 双向长短时记忆网络详解

一、引言 在深度学习领域&#xff0c;序列数据的处理一直是一个关键任务。循环神经网络&#xff08;RNN&#xff09;及其变体在自然语言处理、语音识别、时间序列分析等诸多领域发挥着重要作用。然而&#xff0c;传统的 RNN 面临着梯度消失或梯度爆炸等问题&#xff0c;导致难…...

【计算机网络】实验3:集线器和交换器的区别及交换器的自学习算法

实验 3&#xff1a;集线器和交换器的区别及交换器的自学习算法 一、 实验目的 加深对集线器和交换器的区别的理解。 了解交换器的自学习算法。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实验内容 1、熟悉集线器和交换器的区别 (1) 第一步&#xff1a;构建网络…...

playwright 学习复仇记-2 Selector选择器定位元素

前言 Selector 选择器&#xff0c;也就是通常说的元素定位了&#xff0c;页面上点点点的操作&#xff0c;都是基于元素定位&#xff0c;所以这块是重点需要学的核心内容。 Selector 选择器 说到元素定位&#xff0c;大家肯定会首先想到 selenium 的八大元素定位&#xff0c;其…...

C语言——实现计算房屋总价

//功能&#xff1a;计算房屋总价 //房屋总价 房屋面积 * 单价 //契税 房屋总价 * 0.15% //印花税 房屋总价 * 0.05% //功能&#xff1a;计算房屋总价 //房屋总价 房屋面积 * 单价 //契税 房屋总价 * 0.15% //印花税 房屋总价 * 0.05%#include<stdio.h>void main()…...

Vue3 脚手架扩展

当 yarn dev 运行成功后&#xff0c;我们继续添加扩展 首先我们要安装一些依赖 其中的vue-router和vuex安装最新版的就行&#xff0c;因为项目是vue3 element-plus和less&#xff0c;less-loader最好按照我这个版本来下载 element-plus是一个vue常用的ui组件库 element-plus/…...

Ubuntu 20.04 程序运行导致“段错误 (核心已转储)”的原因分析及解决方案 ubuntu

Ubuntu 20.04 程序运行导致“段错误 (核心已转储)”的原因分析及解决方案 在Ubuntu 20.04系统中&#xff0c;运行程序时出现“段错误 (核心已转储)”是一种常见的错误提示。本文将详细解析导致段错误的原因&#xff0c;并提供完整的解决方案&#xff0c;辅以示例说明&#xff…...

Mysql常用sql语句

数据库操作 # 创建数据库 create database 库名 charsetutf8; # 使用数据库 use 库名; # 退出数据库 quit # 查看所有数据库 show databases; # 查看当前使用的数据库 select database(); # 删除数据库 drop database 库名; 表操作 #查看当前数据库中所有表 show tables;#创…...

SpringBoot 架构下的在线家具商城:规划与实践之路

第1章 绪论 1.1选题动因 当前的网络技术&#xff0c;软件技术等都具备成熟的理论基础&#xff0c;市场上也出现各种技术开发的软件&#xff0c;这些软件都被用于各个领域&#xff0c;包括生活和工作的领域。随着电脑和笔记本的广泛运用&#xff0c;以及各种计算机硬件的完善和升…...

request和websocket

当然&#xff0c;可以为你详细介绍 FastAPI 中的 Request 对象。Request 对象在 FastAPI 中扮演着重要的角色&#xff0c;负责封装来自客户端的 HTTP 请求信息。了解 Request 对象的使用方法和属性&#xff0c;有助于你更高效地处理请求数据、访问请求上下文以及进行各种操作。…...

前端【9种前端常见的设计模式】

&#x1f31f;9种前端常见的设计模式 哈喽小伙伴们&#xff0c;这期给大家整理了一些有关9种前端常见的设计模式&#xff0c;覆盖多方面基础知识&#xff0c;建议大家收藏阅读。 文章目录 &#x1f31f;9种前端常见的设计模式&#x1f31f;1. 外观模式&#x1f31f; 2. 代理模…...

IDEA使用HotSwapHelper进行热部署

目录 前言JDK1.8特殊准备DECVM安装插件安装与配置参考文档相关下载 前言 碰到了一个项目&#xff0c;用jrebel启动项目时一直报错&#xff0c;不用jrebel时又没问题&#xff0c;找不到原因&#xff0c;又不想放弃热部署功能 因此思考能否通过其他方式进行热部署&#xff0c;找…...

【Django-xadmin】

时间长不用,会忘的系列 1、Django-xadmin后台字段显示处理 主要是修改每个模块下adminx.py文件 代码解释&#xff1a;第1行控制表单字段显示第2行控制列表字段显示第3行控制搜索条件第4行控制过滤条件第5行支持单个或多个字段信息修改第6行列表分页&#xff0c;每页显示多少行…...

AI 计算基础设施的战略转折点分析

核心技术范式转移 我们正处于计算架构的重大转折点。第一个根本性转变是从传统的 CPU 编程范式&#xff0c;向以 GPU 为核心的神经网络运算模式转移。这不仅仅是硬件架构的改变&#xff0c;更代表了整个软件开发和应用部署方式的革新。第二个转变则是在这个新的基础设施之上&a…...

Java基于SpringBoot+Vue的IT技术交流和分享平台(附源码+lw+部署)

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

二:OpenStack环境准备-controller node

一&#xff1a;工具、环境准备-controller node 二&#xff1a;OpenStack环境准备-controller node 三&#xff1a;安装服务-controller node 四&#xff1a;工具、环境准备-compute node 五&#xff1a;OpenStack环境准备-compute node 六&#xff1a;安装服务-compute node 七…...

解决stable-diffusion-webui时的问题:No module ‘xformers‘. Proceeding without it

p.s 被另一篇文章坑了&#xff0c;装个xformers把我原先的pytorch降智了&%$^# 注意&#xff1a;&#xff01;&#xff01;&#xff01;xformers非强制安装&#xff1b;可优化显存&#xff0c;提高性能和出图速率&#xff0c;对于GPU能力有限的用户很有用&#xff1b;安装过…...

清理Linux/CentOS7根目录的思路

在使用Linux服务器过程中&#xff0c;经常会遇到磁盘空间不足的问题&#xff0c;好多应用默认安装在根目录下&#xff0c;记录一下如何找到问题所在&#xff0c;清理根目录&#xff08;/&#xff09; 1. 检查空间使用情况 1.1 查看分区占用&#xff1a; df -h输出&#xff1…...

人工智能-深度学习-BP算法

BP算法的核心思想是通过计算损失函数对网络参数的梯度&#xff0c;然后使用梯度下降法来更新网络参数&#xff0c;从而最小化损失函数。 误差反向传播算法(BP)的基本步骤: 前向传播&#xff1a;正向计算得到预测值。 计算损失&#xff1a;通过损失函数计算预测值和真实值的差…...

C++小问题

怎么分辨const修饰的是谁 是限定谁不能被改变的&#xff1f; 在C中&#xff0c;const关键字的用途和位置非常关键&#xff0c;它决定了谁不能被修改。const可以修饰变量、指针、引用等不同的对象&#xff0c;并且具体的作用取决于const的修饰位置。理解const的规则能够帮助我们…...

如何让控件始终处于父容器的居中位置(父容器可任意改变大小)

前言&#xff1a; 大家好&#xff0c;我是上位机马工&#xff0c;硕士毕业4年年入40万&#xff0c;目前在一家自动化公司担任软件经理&#xff0c;从事C#上位机软件开发8年以上&#xff01;我们在C#开发winform程序的时候&#xff0c;有时候需要将一个控件居中显示&#xff0c…...

Python 调用 Umi-OCR API 批量识别图片/PDF文档数据

目录 一、需求分析 二、方案设计&#xff08;概要/详细&#xff09; 三、技术选型 四、OCR 测试 Demo 五、批量文件识别完整代码实现 六、总结 一、需求分析 市场部同事进行采购或给客户报价时&#xff0c;往往基于过往采购合同数据&#xff0c;给出现在采购或报价的金额…...

Java基础访问修饰符全解析

一、Java 访问修饰符概述 Java 中的访问修饰符用于控制类、方法、变量和构造函数的可见性和访问权限&#xff0c;主要有四种&#xff1a;public、protected、default&#xff08;无修饰符&#xff09;和 private。 Java 的访问修饰符在编程中起着至关重要的作用&#xff0c;它…...

朗迪锋亮相2024人因工程与智能系统交互国际会议

2024年11月28日至30日&#xff0c;2024人因工程与智能系统交互国际会议在深圳隆重举办。此次大会以推动我国人因工程学科发展为目标&#xff0c;致力于加强国际学术交流&#xff0c;深入探讨人工智能时代的智能系统交互&#xff0c;旨在培育新质生产力&#xff0c;助力经济社会…...

OpenGL学习过程总结

1、矩阵 参考链接 第三课&#xff1a;矩阵变换...

webGL入门教程_06变换矩阵与绕轴旋转总结

变换矩阵与绕轴旋转总结 目录 1. 变换矩阵简介2. 平移矩阵3. 缩放矩阵4. 旋转矩阵 4.1 绕 Z 轴旋转4.2 绕 X 轴旋转4.3 绕 Y 轴旋转 5. 组合变换矩阵6. 结论 1. 变换矩阵简介 在计算机图形学中&#xff0c;变换矩阵用于在三维空间中对物体进行操作&#xff0c;包括&#xff…...

mysql 查询所有的触发器

SELECTTRIGGER_SCHEMA AS Database,TRIGGER_NAME AS Trigger,EVENT_OBJECT_TABLE AS Table,EVENT_MANIPULATION AS Event,ACTION_STATEMENT AS Statement FROMinformation_schema.TRIGGERS;创建触发器遇到报错&#xff1a; You do not have the SUPER privilege and binary lo…...

基于Java Springboot个人财务APP且微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 微信…...

GateWay使用手册

好的&#xff0c;下面是优化后的版本。为了提高可读性和规范性&#xff0c;我对内容进行了结构化、简化了部分代码&#xff0c;同时增加了注释说明&#xff0c;便于理解。 1. 引入依赖 在 pom.xml 中添加以下依赖&#xff1a; <dependencies><!-- Spring Cloud Gate…...

go语言读取yaml配置文件内容

1、config.yaml配置文件内容假设如下 name: "example" version: 1.0 settings:timeout: 30debug: truefeatures:- feature1- feature22、定义结构体 go语言定义结构体匹配yaml内容 package mainimport ("fmt""log""os""gopkg.…...

Proteus8.17下载安装教程

Proteus是一款嵌入式系统仿真开发软件&#xff0c;实现了从原理图设计、单片机编程、系统仿真到PCB设计&#xff0c;真正实现了从概念到产品的完整设计&#xff0c;其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等&#xff0c;能够帮助用…...

【AI】Sklearn

长期更新&#xff0c;建议关注、收藏、点赞。 友情链接&#xff1a; AI中的数学_线代微积分概率论最优化 Python numpy_pandas_matplotlib_spicy 建议路线&#xff1a;机器学习->深度学习->强化学习 目录 预处理模型选择分类实例&#xff1a; 二分类比赛 网格搜索实例&…...

图数据库 | 10、图数据库架构设计——高性能图存储架构(上)

老夫在之前的三大篇内容中&#xff0c;介绍了图数据库的三大组件—图计算、图存储以及图查询语言。&#xff08;都归拢在图数据库原理、架构与应用这个专栏中了&#xff0c;感兴趣的朋友可以在去找阅读。&#xff09; 接下来&#xff0c;老夫还将继续深化这三大组件&#xff0…...

el-table 组件二次封装(vue2)

PublicTable.vue <!-- 公共表格组件 --> <template><div class"table-common"><el-table v-loading"loading" :ref"tableid" border style"width: 100%" :data"tableDatas" :row-key"rowKey&quo…...

张量并行和流水线并行在Transformer中的具体部位

目录 张量并行和流水线并行在Transformer中的具体部位 一、张量并行 二、流水线并行 张量并行和流水线并行在Transformer中的具体部位 张量并行和流水线并行是Transformer模型中用于提高训练效率的两种并行策略。它们分别作用于模型的不同部位,以下是对这两种并行的具体说…...

详解Qt pdf 之QPdfSelection 选择文本类

文章目录 QPdfSelection 类详解前言 详细说明公共函数说明1. 构造函数2. text3. boundingRect4. isEmpty5. startPage6. endPage 使用场景示例代码代码说明总结 QPdfSelection 类详解 前言 QPdfSelection 是 Qt PDF 模块中的一个类&#xff0c;用于表示在 PDF 文档中被选中的…...

一款支持80+语言,包括:拉丁文、中文、阿拉伯文、梵文等开源OCR库

大家好&#xff0c;今天给大家分享一个基于PyTorch的OCR库EasyOCR&#xff0c;它允许开发者通过简单的API调用来读取图片中的文本&#xff0c;无需复杂的模型训练过程。 项目介绍 EasyOCR 是一个基于Python的开源项目&#xff0c;它提供了一个简单易用的光学字符识别&#xff…...

matlab 中的 bug

在matlab中绘图&#xff0c;设置 axe 的背景颜色 axes_in3.Color #00235B ;打印的时候 print(figure_handle1,-dpng,-r300,"merge_yt_ey") ;此时保存的图片无法识别背景颜色 原因在于 matlab 中的 InverseHardcopy 将 InvertHardcopy 设置成 off 则可以解决这个问…...

【算法刷题指南】优先级队列

&#x1f308;个人主页&#xff1a; 南桥几晴秋 &#x1f308;C专栏&#xff1a; 南桥谈C &#x1f308;C语言专栏&#xff1a; C语言学习系列 &#x1f308;Linux学习专栏&#xff1a; 南桥谈Linux &#x1f308;数据结构学习专栏&#xff1a; 数据结构杂谈 &#x1f308;数据…...

android user版本默认usb模式为充电模式

android插入usb时会切换至默认设置的模式&#xff0c;debug版本为adb&#xff0c;user版本为mtp protected long getChargingFunctions() {// if ADB is enabled, reset functions to ADB// else enable MTP as usual.if (isAdbEnabled()) {return UsbManager.FUNCTION_ADB;} e…...

[极客大挑战 2019]HardSQL--详细解析

信息搜集 登录系统&#xff0c;有两个可能的注入点&#xff1a; 随便输一下看看传参类型&#xff1a; 都是GET型。 SQL注入 传参 usernameadmin’&password123 传参 usernameadmin&password123’ username和password传参&#xff0c;四种闭合方式只有单引号报错&a…...

java基础概念46-数据结构1

一、引入 List集合的三种实现类使用了不同的数据结构&#xff01; 二、数据结构的定义 三、常见的数据结构 3-1、栈 特点&#xff1a;先进后出&#xff0c;后进先出。 java内存容器&#xff1a; 3-2、队列 特点&#xff1a;先进先出、后进后出。 栈VS队列-小结 3-3、数组 3-…...

数学建模选MATLAB还是Python?

在进行数学建模时&#xff0c;选择合适的编程语言和工具对于建模的效率和效果至关重要。目前&#xff0c;MATLAB和Python是两个常用的数学建模工具&#xff0c;它们各自有优缺点&#xff0c;适用于不同的场景。本文将从多个维度对MATLAB和Python进行比较&#xff0c;帮助大家做…...

【C++】多线程

目录 一 概念 1 多线程 2 多进程与多线程 3 多线程理解 二 创建线程 1 thread 2 join() 和 detach() 3 this_thread 三 std::mutex 1 lock 和 unlock 2 lock_guard 3 unique_lock 四 condition_variable 五 std::atomic 一 概念 1 多线程 在C11之前&#xff0…...