当前位置: 首页 > news >正文

【C++初阶】从零开始模拟实现vector(含迭代器失效详细讲解)

目录

1、基本结构

1.1成员变量

 1.2无参构造函数

1.3有参构造函数

preserve()的实现

代码部分: 

push_back()的实现 

代码部分:

代码部分:

1.4拷贝构造函数

代码部分:

1.5支持{}初始化的构造函数

 代码部分:

 1.6支持迭代器区间初始化的构造函数

代码部分:

 1.7支持一次插入多个相同元素的构造函数

代码部分:

resize()函数的实现:改变大小 

代码部分:

1.8析构函数

代码部分: 

2、插入和删除

2.1尾插

代码部分: 

2.2在任意位置插入

代码部分: 

 2.3尾删

代码部分:

2.4在任意位置删除 

思路:

代码部分: 

3、运算符的重载

3.1赋值运算符的重载

1、传统写法

代码部分: 

2、现代写法

swap()的实现

代码部分: 

3.2operator []的实现

代码实现:

4、迭代器失效问题(重点)

4.1迭代器失效的原因和后果

4.2常见迭代器失效的操作

4.2.1扩容相关操作

4.2.2删除相关操作

总结:


1、基本结构

1.1成员变量

vector类有三个成员变量,_start指向数据块起始位置,_finish指向有效数据块的结尾位置,_end_of_storage指向有效空间容量的结束位置

在这里给它们去缺省值

namespace yyc
{template <class T>class vector{public:typedef T* iterator;private://成员变量初始化为空iterator _start = nullptr;//指向数据块起始位置iterator _finish = nullptr;//指向有效数据的尾iterator _end_of_storage = nullptr;//指向空间容量的尾};
}

 1.2无参构造函数

这里的无参构造函数,也可以不写初始化列表(因为成员变量给的缺省值会自动给初始化列表)

vector()
{} 
//vector() 
//: _start(nullptr)
//, _finish(nullptr)
//, _endOfStorage(nullptr) 
//{}

1.3有参构造函数

初始化一个给定大小的vector,并使用默认值填充

在实现构造之前,我们可以实现一个扩容成员函数reserve()和一个尾插成员函数push_back()

preserve()的实现

实现reserve的过程还可以实现size()capacity()函数

在实现preserve时要注意的是:

1、这里用到的并不是memcpy来进行数据拷贝,而是用for循环来一个一个赋值

这是因为在面对T为string类型时,使用memcpy会导致浅拷贝

2、在扩容后要进行迭代器的更新,防止出现迭代器失效的问题

代码部分: 
		size_t size() const{return _finish - _start;}size_t capacity() const{return _end_of_storage - _start;}void reserve(size_t n){if (n > capacity()){size_t oldsize = size();//将原有空间中有效数据长度记录下来T* tmp = new T[n];//memcpy(tmp,_start,sizeof(T)*size())//memcpy进行的是浅拷贝,会导致迭代器失效for (size_t i = 0; i < oldsize; ++i){tmp[i] = _start[i];//将原有空间中的资源转到新开的空间}delete[] _start;//销毁旧空间_start = tmp;_finish = _start + oldsize;//finish重新指向原本要指向的位置_end_of_storage = _start + n;}}

push_back()的实现 

代码部分:
		void push_back(const T& x){if (_finish == _end_of_storage){reserve(capacity() == 0 ? 4 : capacity() * 2);}*_finish = x;++_finish;}

然后我们直接复用这两个成员函数就可以实现初始化

但要实现范围for就必须先实现两个返回首尾位置的迭代器

代码部分:

		typedef T* iterator;typedef const T* const_iterator;//实现范围foriterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin() const{return _start;}

通过一系列的复用来实现构造函数,这样就极大的提高代码的简洁性以及易于修改 

代码部分:
		vector(const vector<T>& x){reserve(x.size());for (auto a : x){push_back(a);}}

1.4拷贝构造函数

拷贝构造函数实现的思路和有参构造函数差不多,也是进行复用来实现

代码部分:
		vector(const vector<T>& x){reserve(x.size());for (auto a : x){push_back(a);}}

1.5支持{}初始化的构造函数

 这是C++版本才新出的一种初始化方式

它支持vector<int> v = {1,2,3,4,5};这种方式初始化

 代码部分:

		vector(initializer_list<T> il){reserve(il.size());for (auto& a : il){push_back(a);}}

初始化实现: 

	yyc::vector<int> v1 = { 1,2,3,4,5,6 };//一种一种隐式类型转换yyc::vector<int> v2({ 1,2,3,4,5,6 });//调用对应构造

 1.6支持迭代器区间初始化的构造函数

代码部分:
		template <class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}

这种初始化方式就可以实现

yyc::vector<int> v1(10,1);
yyc::vector<int> v2(v1.begin(), v1.begin() + 3);

 1.7支持一次插入多个相同元素的构造函数

可以实现初始化一次插入多个元素

代码部分:
		vector(int n, const T& val = T()):_start(new T[n]),_finish(_start+n),_end_of_storage(_finish){//while (n--)//{//	push_back(val);//}for (int i = 0; i < n; ++i){_start[i] = val;}}

初始化实现: 

yyc::vector<int> v1(10,1);

但还有一种简洁的方式实现该构造函数

1、一种是复用reserve()和push_back()l来实现

2、直接复用resize()函数

resize()函数的实现:改变大小 

代码部分:
		void resize(size_t n, const T& val = T())//这里的的val给缺省值{if (n <= size())//当n<=size()时,会进行数据的删除{_finish =_start;return;}else if (n > capacity())//当n>capacity()时,就进行扩容{reserve(n);//复用写好的reserve()//多出来的空间插入数据while (_finish != _start + n){//从原本的_finish处进行尾插*_finish = val;++_finish;}}}

复用resize(),通过n的大小来进行数据的插入 

vector(size_t n, const T& val = T())  //  这里我们实现了两个函数  
{										//  一个是size_t 的 n  一个是intresize(n, val);						// 可以有效的匹配不同调用场景
}										// 防止负数隐式转换
vector(int n, const T& val = T())
{resize(n, val);
}

1.8析构函数

代码部分: 
		~vector(){delete[] _start;_start = _finish = _end_of_storage = nullptr;}

2、插入和删除

2.1尾插

代码部分: 
		void push_back(const T& x){if (_finish == _end_of_storage){reserve(capacity() == 0 ? 4 : capacity() * 2);}*_finish = x;++_finish;}

2.2在任意位置插入

 注意事项:

当插入过程中需要扩容时,就需要进行迭代器的更新,防止迭代器失效

代码部分: 
		void insert(iterator pos, const T& val){assert(pos >= _start);assert(pos <= _finish);if (_finish == _end_of_storage){//保留pos位置,防止扩容后迭代器失效size_t len = pos - _start;reserve(capacity() == 0 ? 4 : capacity() * 2);pos = _start + len;//更新迭代器}iterator it = _finish - 1;while (it >= pos){*(it + 1) = *it;//挪动数据--it;}*pos = val;//在指定位置插入数据++_finish;}

 2.3尾删

代码部分:
		void pop_back(){assert(_finish > _start);--_finish;}

2.4在任意位置删除 

思路:

将pos+1后面的数据一个一个往前移,进行数据的覆盖

最后返回删除位置的迭代器,以此来更新迭代器

代码部分: 
		iterator erase(iterator pos)//删除指定位置数据{assert(pos >= _start);assert(pos <= _finish);//用后面的数据覆盖前面的数据iterator it = pos + 1;while (it < _finish){*(it - 1) = *it;it++;}_finish--;return pos;}

3、运算符的重载

3.1赋值运算符的重载

1、传统写法

· 先进行原有空间的释放和迭代器的置空

· 在复用reserve()和push_back()来进行数据的拷贝

代码部分: 
		vector<T>& operator=(const vector<T>& v){if (*this != v){delete[] _start;_start = _finish = _end_of_storage = nullptr;reserve(v.size());for (auto& x : v){push_back(x);}}return *this;}

2、现代写法

 现代写法就比较简洁,不需要我们来做复杂的工作,,只要实现好了swap()拷贝构造函数就可以实现

swap()的实现
		void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}
代码部分: 
		void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}vector<T>& operator=(vector<T>& v){swap(v);return *this;}

3.2operator []的实现

代码实现:

		T& operator[](size_t i){assert(i < size());return _start[i];}const T& operator[](size_t i) const{assert(i < size());return _start[i];}

4、迭代器失效问题(重点)

4.1迭代器失效的原因和后果

使用迭代器的主要原因就是为了不暴露容器的底层结构,不需要关心底层结构,让使用更简单

它的底层实际上就是一个指针或对指针进行了封装,比如:vector的迭代器就是原生态指针T* 

因此,迭代器失效就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)

4.2常见迭代器失效的操作

4.2.1扩容相关操作

当 vector 需要扩展容量时,会分配新的内存空间并将原有元素搬移到新的位置。此时,所有的迭代器将会失效,它的本质其实就是野指针

· reserve()

· resize()

· insert()

· push_back()

· assign()

#include <iostream>
using namespace std;
#include <vector>
int main()
{vector<int> v{1,2,3,4,5,6};auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。*/while(it != v.end()){cout<< *it << " " ;++it;}cout<<endl;return 0;
}    //  程序运行会崩掉

因此,在进行了扩容后默认迭代器就失效了 

4.2.2删除相关操作

删除操作会使指向被删除元素及其后续元素的迭代器失效。

#include<iostream>
using namespace std;
#include <vector>
int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了

int main()
{xxx::vector<int> v1;v1.push_back(1);v1.push_back(2);v1.push_back(3);v1.push_back(4);v1.push_back(5);for (const auto& e : v1){cout << e << " ";}cout << endl;//  迭代器失效  //删除所有的偶数:在不同系统下实现结果各有所不同/*auto it = v1.begin();while (it != v1.end()){if (*it % 2 == 0){v1.erase(it);}++it;}*///删除所有的偶数/*auto it = v1.begin();//这种方法在linux下可以进行,但在VS下无法实现//vs会强制检查while (it != v1.end()){if (*it % 2 == 0){v1.erase(it);}else{++it;}}*/               
//  前面两种删除方式都会使迭代器失效  it已经不是指向该指向的位置//该方法适用于多平台	// 迭代器完全体  auto it = v1.begin();while (it != v1.end()){if (*it % 2 == 0){it = v1.erase(it);  // 删除之后重新赋值迭代器,这也是为什么earse要返回迭代器的原因}else{++it;}}for (const auto& e : v1){cout << e << " ";}cout << endl;return 0;
}

总结:

在进行了扩容或删除操作后,参与其中的迭代器就默认失效了,解决办法就是对迭代器进行更新

相关文章:

【C++初阶】从零开始模拟实现vector(含迭代器失效详细讲解)

目录 1、基本结构 1.1成员变量 1.2无参构造函数 1.3有参构造函数 preserve()的实现 代码部分&#xff1a; push_back()的实现 代码部分&#xff1a; 代码部分&#xff1a; 1.4拷贝构造函数 代码部分&#xff1a; 1.5支持{}初始化的构造函数 代码部分&#xff1a; …...

AI比人脑更强,因为被植入思维模型【21】冯诺依曼思维模型

定义 冯诺依曼思维模型是一种基于数理逻辑和系统分析的思维方式&#xff0c;它将复杂的问题或系统分解为若干个基本的组成部分&#xff0c;通过建立数学模型和逻辑规则来描述和分析这些部分之间的关系&#xff0c;进而实现对整个系统的理解和优化。该模型强调从整体到局部、再…...

Keil5调试技巧

一、引言 Keil5作为一款广泛应用于嵌入式系统开发的集成开发环境&#xff08;IDE&#xff09;&#xff0c;在微控制器编程领域占据着重要地位。它不仅提供了强大的代码编辑和编译功能&#xff0c;还具备丰富的调试工具&#xff0c;帮助开发者快速定位和解决代码中的问题。本文…...

Web PKI现行应用、标准

中国现行 Web PKI 标准 中国在 Web PKI&#xff08;公钥基础设施&#xff09;领域制定了多项国家标准&#xff0c;以确保网络安全和数字证书管理的规范性。以下是一些现行的重要标准&#xff1a; 1. GB/T 21053-2023《信息安全技术 公钥基础设施 PKI系统安全技术要求》 该标…...

ROS多机通信(四)——Ubuntu 网卡 Mesh 模式配置指南

引言 使用Ad-hoc加路由协议和直接Mesh模式配置网卡实现的网络结构是一样的&#xff0c;主要是看应用选择&#xff0c; Ad-Hoc模式 B.A.T.M.A.N. / OLSR 优点&#xff1a;灵活性高&#xff0c;适合移动性强或需要优化的复杂网络。 缺点&#xff1a;配置复杂&#xff0c;需手动…...

【实用部署教程】olmOCR智能PDF文本提取系统:从安装到可视化界面实现

文章目录 引言系统要求1. 环境准备&#xff1a;安装Miniconda激活环境 2. 配置pip源加速下载3. 配置学术加速&#xff08;访问国外资源&#xff09;4. 安装系统依赖5. 安装OLMOCR6. 运行OLMOCR处理PDF文档7. 理解OLMOCR输出结果9. 可视化UI界面9.1 安装界面依赖9.2 创建界面应用…...

STM32单片机uCOS-Ⅲ系统11 中断管理

目录 一、异常与中断的基本概念 1、中断的介绍 2、和中断相关的名词解释 二、中断的运作机制 三、中断延迟的概念 四、中断的应用场景 五、中断管理讲解 六、中断延迟发布 1、中断延迟发布的概念 2、中断队列控制块 3、中断延迟发布任务初始化 OS_IntQTaskInit() 4…...

CTF【WEB】学习笔记1号刊

Kali的小工具箱 curl www.xxx.com&#xff1a;查看服务器响应返回的信息 curl -I www.xxx.com:查看响应的文件头 一、cmd执行命令 ipconfig&#xff1a;ip地址配置等&#xff1b; 二、 Kali操作 1.sudo su&#xff1b; 2.msfconsole 3.search ms17_010 永恒之蓝&#xff…...

cpp-友元

理解 C 中的友元&#xff08;Friend&#xff09; 在 C 语言中&#xff0c;封装&#xff08;Encapsulation&#xff09; 是面向对象编程的重要特性之一。它允许类将数据隐藏在私有&#xff08;private&#xff09;或受保护&#xff08;protected&#xff09;成员中&#xff0c;…...

Spring AOP 核心概念与实践指南

第一章&#xff1a;AOP 核心概念与基础应用 1.1 AOP 核心思想 ​面向切面编程&#xff1a;通过横向抽取机制解决代码重复问题&#xff08;如日志、事务、安全等&#xff09;​核心优势&#xff1a;不修改源代码增强功能&#xff0c;提高代码复用性和可维护性 1.2 基础环境搭…...

利用ffmpeg库实现音频Opus编解码

一、编译与环境配置 ‌libopus库集成‌ 需在编译FFmpeg时添加--enable-libopus参数&#xff0c;编译前需先安装libopus源码并配置动态库路径‌。最新FFmpeg 7.1版本默认支持Opus的浮点运算优化和VBR/CVBR模式‌。 ‌多平台兼容性‌ Opus支持Windows/Linux/macOS平台&#xff0…...

深入理解指针(1)(C语言版)

文章目录 前言一、内存和地址1.1 内存1.2 究竟该如何理解编址 二、指针变量和地址2.1 取地址操作符&2.2 指针变量和解引用操作符*2.2.1 指针变量2.2.2 如何拆解指针类型2.2.3 解引用操作符 2.3 指针变量的大小 三、指针变量类型的意义3.1 指针的解引用3.2 指针-整数3.3 voi…...

计算机网络——通信基础和传输介质

物理层任务&#xff1a;实现相邻节点之间比特&#xff08;0或1&#xff09;的传输 到了数据链路层之后&#xff0c;它会以帧为单位&#xff0c;把若干个比特交给物理层&#xff0c;物理层需要把这些比特信息转化成信号&#xff0c;在物理传输媒体上进行传输 通信基础基本概念 信…...

【橘子网络】关于网络分层以及协议的全局讲解

一、网络设备 1、硬件网络设备 1.1、主机(host) 主机的定义比较广泛&#xff0c;所有的接收流量或者发送流量的设备都可以被称之为主机。可以是电脑&#xff0c;手机&#xff0c;服务器。在当今云服务大行其道的局面下&#xff0c;各种云设备也可以被称之为主机。 基于这个…...

macOS 使用 enca 识别 文件编码类型(比 file 命令准确)

文章目录 macOS 上安装 enca基本使用起因 - iconv关于 enca安装 Encaenca & enconv 其它用法 macOS 上安装 enca brew install enca基本使用 enca filepath.txt示例 $ enca 动态规划算法.txt [0] Simplified Chinese National Standard; GB2312CRLF line terminat…...

MySQL 字符集

目录 字符集的基本概念 常见MySQL字符集 ascii(单字节字符集) latin1(单字节字符集) utf8(多字节字符集) utf8mb4(多字节字符集) MySQL默认字符集 MySQL字符集的层次级别 服务器级别 数据库级别 表级别 列级别 连接字符集 字符集是计算机科学中的一个重要概念&…...

Linux shell脚本3-if语句、case语句、for语句、while语句、until语句、break语句、continue语句,格式说明及程序验证

目录 1.if 控制语句 1.1 if 语句格式 1.2 程序验证 2.case语句 2.1case语句格式 2.2程序验证 2.2.1 终端先执行程序&#xff0c;在输入一个数 2.2.2 终端执行程序时同时输入一个预设变量 2.2.3 case带有按位或运算和通配符匹配 3.for语句 3.1for语句格式 3.2程序验…...

基于虚拟知识图谱的语义化决策引擎

在数字化转型浪潮中&#xff0c;企业数据资产的价值释放面临两大挑战&#xff1a;海量异构数据的整合困局与业务-技术语义鸿沟。本文解析飞速创软灵燕智能体平台的创新解决方案——通过构建业务语义驱动的虚拟知识图谱系统&#xff0c;实现企业数据的智能认知与决策赋能。 一、…...

Unity Shader 的编程流程和结构

Unity Shader 的编程流程和结构 Unity Shader 的编程主要由以下三个核心部分组成&#xff1a;Properties&#xff08;属性&#xff09;、SubShader&#xff08;子着色器&#xff09; 和 Fallback&#xff08;回退&#xff09;。下面是它们的具体作用和结构&#xff1a; 1. Pr…...

C++ 继承

目录 一、继承的概念与定义 1.1 继承的概念 1.2 继承的定义 1.2.1 语法 1.2.2 继承关系和访问限定符 1.2.3 继承基类成员访问方式的变化 二、基类和派生类对象赋值转换 三、继承中的作用域 四、派生类的默认成员函数 五、C11 final 六、继承与友元 七、继承与静态成…...

XSS Game(DOM型) 靶场 通关

目录 靶场网址 Ma Spaghet! 分析 解题 Jefff 分析 解题 方法一 方法二 Ugandan Knuckles 分析 解题 Ricardo Milos 分析 解题 Ah Thats Hawt 分析 解题 方法一 方法二 Ligma 分析 解题 ​ Mafia 分析 解题 方法一&#xff1a;构造函数 方法二&#xf…...

XSS基础靶场练习

目录 1. 准备靶场 2. PASS 1. Level 1&#xff1a;无过滤 源码&#xff1a; 2. level2&#xff1a;转HTML实体 htmlspecialchars简介&#xff1a; 源码 PASS 3. level3:转HTML深入 源码&#xff1a; PASS 4. level4:过滤<> 源码&#xff1a; PASS: 5. level5:过滤on 源码…...

leetcode-200.岛屿数量

首先&#xff0c;想要找岛&#xff0c;肯定是要逐个遍历的&#xff0c;否则肯定会漏岛。 其次&#xff0c;我怎么知道两个点是否属于一个岛&#xff1f;只有一个方法&#xff0c;我踏上一个岛的某个点时&#xff0c;我就分别往四周走&#xff0c;且把当前地块毁掉&#xff0c;就…...

Linux | ubuntu安装 SSH 软件及测试工具

01 windows 要怎么和 ubuntu 互传文件呢&#xff0c;我们可以使用 ssh 软件。 终端输入 sudo apt-get install openssh-server &#xff0c;输入登录 Ubuntu 用户的密码&#xff0c;这里我们输入 y 确认安装。如下图所示。 接着继续改 ssh 配置文件&#xff0c;因为 ssh 默认…...

组件日志——etcd

目录 一、简介 二、安装【Ubuntu】 安装etcd 安装CAPI 三、写一个示例 3.0写一个示例代码 3.1获取一个etcd服务 3.2获取租约(写端操作) 3.3使用租约(写端操作) 3.4销毁租约(写端操作) 3.5获取etcd服务中的服务列表(读端操作) 3.6监听状态变化(读端操作) 一、简介 Et…...

search_fields与filterset_fields的使用

在Django中&#xff0c;search_fields 和 filterset_fields 可以在视图类中使用&#xff0c;尤其是在 Django REST Framework (DRF) 中。它们分别用于实现搜索和过滤功能。以下是它们在视图类中的具体使用方法。 1. search_fields 在视图类中的使用 search_fields 是 DRF 中 S…...

SQLite Delete 语句详解

SQLite Delete 语句详解 SQLite 是一种轻量级的数据库管理系统&#xff0c;广泛应用于移动设备、嵌入式系统和服务器端应用。在数据库管理中&#xff0c;删除数据是一项基本操作。SQLite 提供了强大的删除功能&#xff0c;本文将详细介绍 SQLite 的 Delete 语句及其用法。 1.…...

通往自主智能之路:探索自我成长的AI

1. 引言&#xff1a;当前AI范式与自我成长智能的愿景 当前的人工智能领域在很大程度上由大型语言模型&#xff08;LLM&#xff09;的卓越能力所定义。这些模型&#xff0c;例如OpenAI的GPT系列和谷歌的BERT&#xff0c;已经展示了前所未有的理解和生成类人文本的能力。LLM通常…...

[自动化] 【八爪鱼】使用八爪鱼实现CSDN文章自动阅读脚本

在CSDN上&#xff0c;文章的阅读量往往是衡量内容影响力的一个重要指标。为了测试自动化手段能否提高阅读数&#xff0c;我尝试使用网页自动化工具来模拟人工阅读某个ID的文章。 1. 网页自动化的常见方案 谈到网页自动化&#xff0c;Selenium 是一个最常见的选择。它可以通过…...

Kafka消息序列化深度革命:构建高性能、高安全的自定义编码体系

一、突破默认序列化的桎梏 1.1 原生序列化器的致命缺陷 Kafka默认提供的StringSerializer/ByteArraySerializer在复杂场景下暴露三大痛点&#xff1a; 类型安全黑洞&#xff1a;字节流缺乏元数据描述&#xff0c;消费端解析如履薄冰版本兼容困境&#xff1a;数据结构变更导致…...

2025年如何避免使用验证码求解器时被IP封禁

引言 2025年&#xff0c;验证码求解器已成为自动化网络抓取和其他在线流程的关键工具。然而&#xff0c;自动化用户面临的一个常见挑战是IP封禁。当网站检测到自动化活动时&#xff0c;通常会阻止发出请求的IP地址&#xff0c;导致验证码挑战无法解决。本文将探讨使用验证码求…...

前端 AI IDE应用优缺点

嗯&#xff0c;用户问了三个前端面试的问题&#xff0c;我需要仔细分析每个问题&#xff0c;并结合提供的搜索结果来给出全面且准确的回答。 第一个问题是关于开发工具Cursor或Vim的Windurf在开发中的占比以及它们的缺点。从搜索结果里看&#xff0c;网页3提到了Trae对标Curso…...

银河麒麟桌面版包管理器(二)

APT包管理器 APT是Debian及其派生系统的包管理器&#xff0c;构建在dpkg之上&#xff0c;以其强大的依赖性处理能力和丰富的软件仓库而闻名。APT具有自动解决依赖关系、提供易于使用的命令行工具&#xff08;如apt-get、apt-cache等&#xff09;&#xff0c;以及稳定的软件更新…...

Leetcode 3494. Find the Minimum Amount of Time to Brew Potions

Leetcode 3494. Find the Minimum Amount of Time to Brew Potions 1. 解题思路2. 代码实现 题目链接&#xff1a;3494. Find the Minimum Amount of Time to Brew Potions 1. 解题思路 这道题虽说算是搞定了&#xff0c;通过了全部的测试样例&#xff0c;不过还是很暴力的求…...

制作Oracle11g Docker 镜像

基于Linux系统&#xff0c;宿主主机要设置如下环境变量&#xff0c;oracle为64位版本 dockerfile中需要的数据库安装包可从csdn下载内找到 #!/bin/bash # 在宿主机上运行以设置Oracle所需的内核参数 # 这些命令需要root权限cat > /etc/sysctl.d/99-oracle.conf << EO…...

rocky linux下载软件

一、配置国内镜像源加速下载 Rocky Linux 默认使用国外软件源&#xff0c;国内用户可通过替换为阿里云镜像提升下载速度&#xff1a; 备份原配置文件&#xff1a; cp -r /etc/yum.repos.d /etc/yum.repos.d.backup 修改镜像源&#xff1a; sed -e s|^mirrorlist|#mirrorli…...

JVM的组成--运行时数据区

JVM的组成 1、类加载器&#xff08;ClassLoader&#xff09; 类加载器负责将字节码文件从文件系统中加载到JVM中&#xff0c;分为&#xff1a;加载、链接&#xff08;验证、准备、解析&#xff09;、和初始化三个阶段 2、运行时数据区 运行时数据区包括&#xff1a;程序计数…...

SpringBoot中安全的设置阿里云日志SLS的accessKey

众所周知,阿里云的服务都是基于accesskeyId和accesskeySecret来进行身份鉴权的,但唯独日志因为需要写入到.xml文件里对于accesskeyId和accesskeySecret需要进行一定程度的改进,尤其是使用了jasypt进行加密的参数传递进去logback.xml更是会遇到需要对参数进行解密的问题,而官网只…...

DeepSeek 助力 Vue3 开发:打造丝滑的表格(Table)之添加导出数据功能示例11,TableView15_11带分页的导出表格示例

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…...

C++多线程编程:从创建到管理的终极指南

在高性能计算时代,掌握多线程编程是提升程序效率的必修课!本文将手把手教你如何用C++11标准库轻松创建和管理线程,告别单线程的“龟速”,让代码跑出多核CPU的性能! 一、多线程为何重要? 充分利用多核CPU:现代计算机普遍支持多核并行,多线程可让程序性能指数级提升。提升…...

人工智能算法基础

基础算法 排序查找线性结构树散列图堆栈 机器学习算法 定义&#xff1a;数据算法 流程&#xff1a;数据收集与预处理、特征选择、训练和测试模型、模型的评估。 监督学习 定义&#xff1a;是从给定的训练数据集中学习出一个函数&#xff0c;当新的数据到来时&#xff0c;可…...

Normal distribution (正态分布)

Normal distribution {正态分布} 1. Normal distribution (正态分布) Gaussian distribution (高斯分布)1.1. Probability density function (概率密度函数)1.2. Standard normal distribution (标准正态分布)1.3. Cumulative distribution function (累积分布函数) 2. 正态分…...

企业级前端架构设计与实战

一、架构设计核心原则 1.1 模块化分层架构 典型目录结构&#xff1a; src/├── assets/ # 静态资源├── components/ # 通用组件├── pages/ # 页面模块├── services/ # API服务层├── store/ # 全局状态管理├── uti…...

数据模型,数据建模,组件,核心价值,使用,意义

数据模型 一组由符号,文本组成的集合, 用以准确表达信息景观, 达到有效交流,沟通的目的 数据建模 是发现,分析和确定数据需求的过程,是一种称为数据模型的精确形式表示和传递这些需求 数据模型的组件 实体, 关系, 属性和域 数据模型的核心价值 交流性 精确性 数据模型的…...

JavaScript 比较运算符

JavaScript 比较运算符 一、基础比较运算符类型 运算符名称示例核心特性==宽松相等"5" == 5 → true隐式类型转换===严格相等"5" === 5 → false类型+值双重校验!=宽松不等null != 0 → true等效于 !(a == b)!==严格不等5 !== "5" → true类型或…...

AI Agent战国时代:Manus挑战者的破局之道与技术博弈

随着Manus引爆通用型AI Agent的"手脑协同"革命&#xff0c;全球AI Agent赛道进入技术竞速期。Flowith、UI-TARS、LangManus等新势力通过差异化路径重构市场格局&#xff0c;背后折射出开源生态、本土化创新与跨模态交互的深层技术博弈。本文结合行业权威报告与公开技…...

linux--时区查看和修改

查看当前时间和时区: 打开终端&#xff0c;输入以下命令查看当前的日期和时间设置&#xff1a; timedatectl修改时区: 使用 timedatectl 命令来修改时区&#xff1a; sudo timedatectl set-timezone <时区>例如&#xff0c;设置时区为北京时间&#xff08;中国标准时间&a…...

个人博客系统 --- 测试报告

一、项目功能介绍 该项目由&#xff1a;登录模块、博客首页模块、博客详情页模块、博客编辑页模块四个功能模块组成。 该系统实现了个人博客的保存以及记录了发布日期、时间、发布人等信息。 二、测试内容与测试用例 我们需要对该系统进行功能测试&#xff0c;界面测试&…...

ESP32S3基于FreeRTOS实时操作系统控制舵机

这段代码是一个基于ESP32的舵机控制示例&#xff0c;通过MCPWM模块配置定时器、操作符、比较器和发生器&#xff0c;生成特定脉冲宽度的PWM信号&#xff0c;控制舵机在 -60度到60度之间以2度为步长往复转动。 1. 源码部分 #include "freertos/FreeRTOS.h" #include…...

【vue的some和filter】

在 Vue 中&#xff0c;some 和 filter 是两种不同的数组方法&#xff0c;分别用于处理数据筛选和条件判断。以下是它们在 Vue 中的具体用法和区别&#xff1a; 一、filter 方法 作用&#xff1a;对数组进行过滤&#xff0c;返回符合条件的新数组。 使用场景&#xff1a;常用于…...