当前位置: 首页 > news >正文

ffmpeg库视频硬解码使用流程

        FFmpeg 的硬解码(Hardware Decoding)通过调用 GPU 或专用硬件的编解码能力实现,能显著降低 CPU 占用率。

一、FFmpeg 支持的硬件解码类型

FFmpeg 原生支持多种硬件加速类型,具体由 AVHWDeviceType 定义,包括:

  • NVIDIA CUDA/NVDEC‌:基于 NVIDIA 显卡的解码‌。
  • Intel Quick Sync Video (QSV)‌:Intel 集成显卡的硬件加速‌。
  • VAAPI‌:适用于 Intel/AMD 硬件的通用视频加速 API‌。
  • VideoToolbox‌:macOS/iOS 平台的硬解码‌。
  • MediaCodec‌:Android 平台的硬解码(需 FFmpeg 编译时启用)‌。
    enum AVHWDeviceType {AV_HWDEVICE_TYPE_NONE,AV_HWDEVICE_TYPE_VDPAU,AV_HWDEVICE_TYPE_CUDA,AV_HWDEVICE_TYPE_VAAPI,AV_HWDEVICE_TYPE_DXVA2,AV_HWDEVICE_TYPE_QSV,AV_HWDEVICE_TYPE_VIDEOTOOLBOX,AV_HWDEVICE_TYPE_D3D11VA,AV_HWDEVICE_TYPE_DRM,AV_HWDEVICE_TYPE_OPENCL,AV_HWDEVICE_TYPE_MEDIACODEC,
    };

av_hwdevice_find_type_by_name:根据名称查找对应的AVHWDeviceType。支持的名称如下所示。

static const char *const hw_type_names[] = {[AV_HWDEVICE_TYPE_CUDA]   = "cuda",[AV_HWDEVICE_TYPE_DRM]    = "drm",[AV_HWDEVICE_TYPE_DXVA2]  = "dxva2",[AV_HWDEVICE_TYPE_D3D11VA] = "d3d11va",[AV_HWDEVICE_TYPE_OPENCL] = "opencl",[AV_HWDEVICE_TYPE_QSV]    = "qsv",[AV_HWDEVICE_TYPE_VAAPI]  = "vaapi",[AV_HWDEVICE_TYPE_VDPAU]  = "vdpau",[AV_HWDEVICE_TYPE_VIDEOTOOLBOX] = "videotoolbox",[AV_HWDEVICE_TYPE_MEDIACODEC] = "mediacodec",
};

 与硬解相关的函数:

avcodec_get_hw_config:用于获取编解码器支持的硬件配置AVCodecHWConfig。这里用于获取硬件支持的像素格式。
av_hwdevice_ctx_create:av_hwdevice_ctx_create创建硬件设备相关的上下文信息AVHWDeviceContext和对硬件设备进行初始化。
decoder_ctx->get_format = get_hw_format ,get_hw_format是向AVCodecContext注册的一个函数,用于协商支持的像素格式。
av_hwframe_transfer_data:拷贝数据到一个硬件的surface,或者从一个硬件surface拷贝数据,也就是GPU和CPU之间数据拷贝。这里用于GPU拷贝到CPU。GPU解码后数据格式默认类型是从硬件读取,CUDA可能是AV_PIX_FMT_NV12;而CPU解码后的数据一般是YUV数据,比如AV_PIX_FMT_YUV420P。
av_find_best_stream:查找最佳媒体流(如视频、音频、字幕等)的函数。

enum AVPixelFormat hw_pix_fmt;
enum AVHWDeviceType type = AV_HWDEVICE_TYPE_CUDA;
AVCodec *decoder = NULL;/* open the input file */if (avformat_open_input(&input_ctx, argv[2], NULL, NULL) != 0) {fprintf(stderr, "Cannot open input file '%s'\n", argv[2]);return -1;}if (avformat_find_stream_info(input_ctx, NULL) < 0) {fprintf(stderr, "Cannot find input stream information.\n");return -1;}/* find the video stream information */ret = av_find_best_stream(input_ctx, AVMEDIA_TYPE_VIDEO, -1, -1, &decoder, 0);if (ret < 0) {fprintf(stderr, "Cannot find a video stream in the input file\n");return -1;}for (i = 0;; i++) {const AVCodecHWConfig *config = avcodec_get_hw_config(decoder, i);if (!config) {fprintf(stderr, "Decoder %s does not support device type %s.\n",decoder->name, av_hwdevice_get_type_name(type));return -1;}if (config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX &&config->device_type == type) {hw_pix_fmt = config->pix_fmt;break;}}

二、FFmpeg 硬件解码器名称及对应编码格式

FFmpeg 支持的硬件解码器名称与编码格式关联紧密,需根据具体硬件平台(如 NVIDIA、Intel、AMD)及接口协议(如 CUDA、VAAPI、QSV)选择适配方案。以下是主流编码格式对应的硬件解码器名称示例:

2.1、视频编码格式与硬件解码器
  1. H.264/AVC

    • h264_cuvid(NVIDIA CUDA加速)
    • h264_qsv(Intel Quick Sync Video)
    • h264_vaapi(跨平台开源接口)
    • h264_amf(AMD Advanced Media Framework)‌
  2. H.265/HEVC

    • hevc_cuvid(NVIDIA)
    • hevc_qsv(Intel)
    • hevc_vaapi(通用接口)
    • hevc_amf(AMD)‌
  3. VP8/VP9

    • vp8_cuvid(NVIDIA)
    • vp9_vaapi(通用接口)
    • vp9_qsv(Intel)‌
  4. AV1

    • av1_qsv(Intel)
    • av1_vaapi(通用接口)‌
2.2、音频编码格式与硬件解码器
  1. AAC

    • 硬件解码依赖平台驱动支持(如 Intel HD Audio),FFmpeg 中通常通过系统接口调用,无独立硬解名称‌。
  2. MP3/Opus

    • 硬解支持较少,多采用软件解码‌。

‌三、硬解码实现流程

1. 初始化硬件设备
  • 获取硬件设备类型
    通过 av_hwdevice_find_type_by_name 或枚举类型确定目标硬解码设备‌。
  • 创建硬件设备上下文
    使用 av_hwdevice_ctx_create 初始化硬件设备上下文(hw_device_ctx)‌。
2. 配置解码器
  • 查找支持硬解码的编解码器
    例如 H.264 硬解需查找 h264_cuvid(NVIDIA)或 h264_mediacodec(Android)等解码器‌。
  • 设置解码器参数
    在 AVCodecContext 中指定 hw_device_ctx,关联硬件设备上下文‌。
3. 解码数据
  • 发送数据包
    调用 avcodec_send_packet 将压缩数据送入解码器。
  • 接收解码帧
    通过 avcodec_receive_frame 获取解码后的帧数据,硬件解码的帧通常存储在 GPU 内存中‌。
4. 处理解码数据
  • 内存映射与格式转换
    若需 CPU 访问解码数据,需使用 av_hwframe_transfer_data 将帧从 GPU 内存复制到 CPU 内存‌。

‌四、代码示例

3.1实现硬件解码(以 ‌NVIDIA CUDA/NVDEC‌ 为例)的完整示例代码。

#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libavutil/hwcontext.h>int main(int argc, char *argv[]) {AVFormatContext *fmt_ctx = NULL;AVCodecContext *codec_ctx = NULL;const AVCodec *codec = NULL;AVBufferRef *hw_device_ctx = NULL;AVPacket *pkt = NULL;AVFrame *hw_frame = NULL, *sw_frame = NULL;int video_stream_idx = -1;// 1. 初始化 FFmpegavformat_network_init();// 2. 打开输入文件if (avformat_open_input(&fmt_ctx, "input.mp4", NULL, NULL) < 0) {fprintf(stderr, "无法打开输入文件\n");return -1;}// 3. 查找视频流索引if (avformat_find_stream_info(fmt_ctx, NULL) < 0) {fprintf(stderr, "无法获取流信息\n");goto cleanup;}for (int i = 0; i < fmt_ctx->nb_streams; i++) {if (fmt_ctx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_VIDEO) {video_stream_idx = i;break;}}if (video_stream_idx == -1) {fprintf(stderr, "未找到视频流\n");goto cleanup;}// 4. 初始化硬件设备 (CUDA)if (av_hwdevice_ctx_create(&hw_device_ctx, AV_HWDEVICE_TYPE_CUDA, NULL, NULL, 0) < 0) {fprintf(stderr, "无法创建 CUDA 硬件设备\n");goto cleanup;}// 5. 配置硬件解码器codec = avcodec_find_decoder_by_name("h264_cuvid"); // NVIDIA 硬解解码器if (!codec) {fprintf(stderr, "未找到支持的硬解解码器\n");goto cleanup;}codec_ctx = avcodec_alloc_context3(codec);avcodec_parameters_to_context(codec_ctx, fmt_ctx->streams[video_stream_idx]->codecpar);codec_ctx->hw_device_ctx = av_buffer_ref(hw_device_ctx); // 关联硬件设备// 6. 打开解码器if (avcodec_open2(codec_ctx, codec, NULL) < 0) {fprintf(stderr, "无法打开硬解解码器\n");goto cleanup;}// 7. 初始化数据包和帧pkt = av_packet_alloc();hw_frame = av_frame_alloc();sw_frame = av_frame_alloc();// 8. 解码循环while (av_read_frame(fmt_ctx, pkt) >= 0) {if (pkt->stream_index == video_stream_idx) {// 发送数据包到解码器if (avcodec_send_packet(codec_ctx, pkt) < 0) {fprintf(stderr, "发送数据包失败\n");continue;}// 接收解码后的帧while (avcodec_receive_frame(codec_ctx, hw_frame) == 0) {// 检查是否为硬件帧if (hw_frame->format == AV_PIX_FMT_CUDA) {// 将 GPU 内存数据复制到 CPU 内存if (av_hwframe_transfer_data(sw_frame, hw_frame, 0) < 0) {fprintf(stderr, "GPU→CPU 内存拷贝失败\n");continue;}// 在此处理 sw_frame(YUV420 数据)// 例如:保存到文件、渲染、转码等printf("解码一帧:宽度=%d, 高度=%d\n", sw_frame->width, sw_frame->height);}av_frame_unref(hw_frame);av_frame_unref(sw_frame);}}av_packet_unref(pkt);}cleanup:// 9. 释放资源av_frame_free(&hw_frame);av_frame_free(&sw_frame);av_packet_free(&pkt);avcodec_free_context(&codec_ctx);av_buffer_unref(&hw_device_ctx);avformat_close_input(&fmt_ctx);avformat_network_deinit();return 0;
}

说明:

AV_PIX_FMT_CUDA等像素格式对比。

格式存储位置典型用途性能优势
AV_PIX_FMT_CUDAGPU 显存硬解码、全流程 GPU 处理零拷贝、低延迟‌
AV_PIX_FMT_NV12CPU 内存软解码、跨设备处理兼容性强,但需拷贝‌
AV_PIX_FMT_RGB24CPU 内存图像显示、算法输入通用性强,但带宽占用高‌

‌五、注意事项

  1. 编译配置
    启用硬解码需在 FFmpeg 编译时添加对应选项(如 --enable-cuda --enable-cuvid --enable-nonfree)‌。
  2. 平台差异
    • Windows:常用 DXVA2 或 NVIDIA CUDA‌6。
    • Android:需启用 --enable-mediacodec 并关联 MediaCodec API‌。
  3. 兼容性回退
    硬解码失败时需切换至软解(如 h264 解码器)‌。
  4. 硬件类型选择
    若需使用其他硬件(如 Intel QSV 或 VAAPI):
    1)解码器名称改为 h264_qsv 或 h264_vaapi。
    2)修改 AV_HWDEVICE_TYPE_CUDA 为 AV_HWDEVICE_TYPE_QSV 或 AV_HWDEVICE_TYPE_VAAPI。
    • 滤镜处理‌:通过 libavfilter 实现缩放、裁剪、水印等操作‌。
    • 封装格式转换‌:使用 avformat_write_header() 和 av_write_frame() 实现转封装(如 MP4 转 TS)‌。

    ‌六、性能优化

    • 减少内存拷贝‌:直接在 GPU 内存中处理数据(如 OpenGL 渲染)‌。
    • 帧格式限制‌:硬解码输出格式通常为 NV12 或 YUV420P,需适配后续处理流程‌。

    相关文章:

    ffmpeg库视频硬解码使用流程

    FFmpeg 的硬解码&#xff08;Hardware Decoding&#xff09;通过调用 GPU 或专用硬件的编解码能力实现&#xff0c;能显著降低 CPU 占用率。 ‌一、FFmpeg 支持的硬件解码类型‌ FFmpeg 原生支持多种硬件加速类型&#xff0c;具体由 AVHWDeviceType 定义&#xff0c;包括&…...

    两个常用的用于读写和操作DXF文件C#库:netDxf 和 DXF.NET

    netDxf 和 DXF.NET 是两个常用的C#库&#xff0c;用于读取、写入和操作DXF文件。以下是它们的详细介绍和用法示例。 1. netDxf 简介 netDxf 是一个开源的DXF文件读写库&#xff0c;支持AutoCAD DXF格式的读取和写入。它支持大多数DXF实体和对象&#xff0c;并且易于使用。 Gi…...

    jmeter吞吐量控制器-Throughput Controller

    jmeter吞吐量控制器-Throughput Controller 新增吞吐量控制器名词解释测试场景场景1&#xff1a;场景2&#xff1a;场景3场景4场景5场景6场景7场景8 测试结论 根据百分比执行不同的接口测试场景测试结果 新增吞吐量控制器 名词解释 Based on: Total Executions(总执行数)/Perc…...

    windows 平台编译openssl

    文章目录 准备环境安装perl安装NASM获取源码 源码编译配置编译 准备环境 安装perl 下载Perl 5.40.0.1 Portable zip strawberryperl 解压后设置系统环境变量 测试安装是否成功 perl --versionThis is perl 5, version 40, subversion 0 (v5.40.0) built for MSWin32-x64-m…...

    【Linux】Makefile秘籍

    > &#x1f343; 本系列为Linux的内容&#xff0c;如果感兴趣&#xff0c;欢迎订阅&#x1f6a9; > &#x1f38a;个人主页:【小编的个人主页】 >小编将在这里分享学习Linux的心路历程✨和知识分享&#x1f50d; >如果本篇文章有问题&#xff0c;还请多多包涵&a…...

    Python散点图(Scatter Plot):数据探索的“第一张图表”

    在数据可视化领域,散点图是一种强大而灵活的工具,它能够帮助我们直观地理解和探索数据集中变量之间的关系。本文将深入探讨散点图的核心原理、应用场景以及如何使用Python进行高效绘制。 后续几篇将介绍高级技巧、复杂应用场景。 Python散点图(Scatter Plot):高阶分析、散点…...

    Spring AI Alibaba快速使用

    AI 时代&#xff0c;Java 程序员也需要与时俱进&#xff0c;这两个框架必须掌握。 一个是 Spring AI一个是 Spring Alibaba AI。 Spring AI 是一个AI工程领域的应用程序框架&#xff0c;它的目标是将 Spring生态系统的设计原则应用于人工智能领域。 但是&#xff0c; Spring…...

    Redis 跳表原理详解

    一、引言 在 Redis 中&#xff0c;有序集合&#xff08;Sorted Set&#xff09;是一种非常重要的数据结构&#xff0c;它可以实现元素的有序存储和高效查找。而实现有序集合的底层数据结构之一就是跳表&#xff08;Skip List&#xff09;。跳表是一种随机化的数据结构&#xff…...

    安全地自动重新启动 Windows 资源管理器Bat脚本

    安全地自动重新启动 Windows 资源管理器脚本 可以直接运行的 Windows 批处理脚本&#xff0c;用于安全地自动重新启动 Windows 资源管理器。该脚本会在杀死资源管理器之前检查是否有其他进程正在使用资源管理器相关的文件。 Bat脚本 echo off title 资源管理器安全重启工具 co…...

    【C++模板】

    模板初阶 前言1.定义模板2.函数模板2.1定义2.2实例化函数模板2.3模板参数的匹配原则 3.类模板3.1类模板实例化 前言 模板是C中泛型编程的基础&#xff0c;一个模板就是一个创建类和函数的蓝图或公式。 1.定义模板 假定我们希望编写一个函数来比较两个值&#xff0c;并指出第…...

    基于Debian搭建FTP服务器

    操作系统 Debian-9.6.0-amd64&#xff0c;图形化安装 基础操作 1.软件安装管理 命令方式&#xff1a; 在线安装 sudo apt-get install vim/ifconfig 查看安装软件 dpkg -l 图形化桌面方式 &#xff1a; 通过“软件管理”工具管理 2.网络管理 /etc/network/interfaces 3.文本…...

    如果我的项目是用ts写的,那么如何使用webpack的动态导入功能呢?

    在 TypeScript 项目中使用 Webpack 的动态导入&#xff08;Dynamic Imports&#xff09;功能&#xff0c;需要结合 TypeScript 的语法和 Webpack 的配置。以下是具体实现方法和注意事项&#xff1a; 一、基础配置 1. 修改 tsconfig.json 确保 TypeScript 支持动态导入语法&am…...

    构建高效的LinkedIn图像爬取工具

    一. 项目背景与目标 LinkedIn上的用户头像数据可以用于多种场景&#xff0c;例如&#xff1a; 人才招聘&#xff1a;通过分析目标职位候选人的头像&#xff0c;了解其职业形象。市场调研&#xff1a;收集特定行业从业者的头像&#xff0c;用于分析职业群体的特征。学术研究&a…...

    在windows下安装windows+Ubuntu16.04双系统(下)

    这篇文章的内容主要来源于这篇文章&#xff0c;为正式安装windowsUbuntu16.04双系统部分。在正式安装前&#xff0c;若还没有进行前期准备工作&#xff08;1.分区2.制作启动u盘&#xff09;&#xff0c;见《在windows下安装windowsUbuntu16.04双系统(上)》 二、正式安装Ubuntu …...

    浅分析 PE3R 感知高效的三维重建

    "近期&#xff0c;二维到三维感知技术的进步显著提升了对二维图像中三维场景的理解能力。然而&#xff0c;现有方法面临诸多关键挑战&#xff0c;包括跨场景泛化能力有限、感知精度欠佳以及重建速度缓慢。为克服这些局限&#xff0c;我们提出了感知高效三维重建框架&#…...

    调和Django与Sql server2019的关系

    数据库升级成sqlserver2019后&#xff0c;用户发现一些APP不能用了&#xff0c;检查发现是Django连接sqlserver的APP全部不能用了&#xff0c;页面打开都是500错误&#xff0c;进入Pycharm调试发现&#xff1a; 1.遇到错误1&#xff1a;django.db.backends.XXX错误 File "…...

    【canvas】一键自动布局:如何让流程图节点自动找到最佳位置

    一键自动布局&#xff1a;如何让流程图节点自动找到最佳位置 引言 在流程图、拓扑图和系统架构图设计中&#xff0c;节点布局往往是最令人头疼的问题。如果手动调整每个节点位置&#xff0c;不仅耗时费力&#xff0c;还难以保证美观性和一致性。本文将深入解析如何实现自动布…...

    Flutter 学习之旅 之 flutter 使用 SQLite(sqflite) 实现简单的数据本地化 保存/获取/移除/判断是否存在 的简单封装

    Flutter 学习之旅 之 flutter 使用 SQLite&#xff08;sqflite&#xff09; 实现简单的数据本地化 保存/获取/移除/判断是否存在 的简单封装 目录 Flutter 学习之旅 之 flutter 使用 SQLite&#xff08;sqflite&#xff09; 实现简单的数据本地化 保存/获取/移除/判断是否存在…...

    [unity 组件] Content Size Fitter 横向填充不满解决办法

    可以看到&#xff0c;当只有3个或者4个元素的时候&#xff0c;布局组件并没有将横向宽度占满来布局。之所以有此困惑的原因是我以为他的布局策略是&#xff0c;从左到右&#xff0c;从上至下&#xff0c;尽量占满空间&#xff0c;不够了再换行&#xff0c;其实不然。 5到6个元…...

    Dify 项目开源大模型应用开发平台

    Dify 是一款开源的大语言模型&#xff08;LLM&#xff09;应用开发平台&#xff0c;旨在简化生成式 AI 应用的创建、部署和持续优化流程。以下从多个维度对该项目进行详细介绍&#xff1a; 一、项目定义与核心功能 Dify 的核心定位是结合 后端即服务&#xff08;BaaS&#xff…...

    使用 `pytest` 框架时,可以通过极限封装将 YAML 文件的读取、解析

    在使用 pytest 框架时,可以通过极限封装将 YAML 文件的读取、解析和测试用例的通用逻辑封装成共享的方法或 fixture,从而减少重复代码。以下是详细的实现步骤和示例。 1. 封装 YAML 文件读取和解析 将 YAML 文件的读取和解析逻辑封装到一个工具函数中,供所有测试用例调用。…...

    算法刷题记录——LeetCode篇(2) [第101~200题](持续更新)

    (优先整理热门100及面试150&#xff0c;不定期持续更新&#xff0c;欢迎关注) 101. 对称二叉树 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&am…...

    ruoyi 小程序使用笔记

    1.上传图片 页面 <uni-forms-item label"退休证明(退休证)" name"retire"><uni-file-picker ref"imageUploadRetire" :limit"1" :auto-upload"false" select"upload"/> </uni-forms-item>js …...

    计算机网络——总结

    01. 网络的发展及体系结构 网络演进历程 从1969年ARPANET的4个节点发展到如今覆盖全球的互联网&#xff0c;网络技术经历了电路交换到分组交换、有线连接到无线覆盖的革命性变革。5G时代的到来使得网络传输速度突破10Gbps&#xff0c;物联网设备数量突破百亿级别。 网络体系…...

    Stable Diffusion lora训练(一)

    一、不同维度的LoRA训练步数建议 2D风格训练 数据规模&#xff1a;建议20-50张高质量图片&#xff08;分辨率≥10241024&#xff09;&#xff0c;覆盖多角度、多表情的平面风格。步数范围&#xff1a;总步数控制在1000-2000步&#xff0c;公式为 总步数 Repeat Image Epoch …...

    再学:ERC20-Permit2、SafeERC20方法 详解ERC721,如何铸造一个NFT以及IPFS的作用

    目录 1.Permit2 2.尽量使用Safe方法 3.ERC721 4. 铸造NFT 1.Permit2 针对没有permit的代币实现的线下签名方式 通过approve方法&#xff0c;让Permit2拿到无限次数的授权。拿到授权之后&#xff0c;Permit2会生成签名。 当用户需要转账的时候&#xff0c;Permit2会发送签…...

    Docker 存储

    目录挂载 在执行run时设置参数-v即可实现目录映射, 实现原理会在宿主机器创建一个空文件夹 # 挂载宿主机的 /data 目录到容器的 /app 目录 docker run -d -v /data:/app --name my-app my-image # 挂载 docker 内的 /usr/share/nginx/html 目录到本地机的 /app/nghtml docker…...

    详细介绍VUE,带你了解VUE!!!

    Vue.js 是一个渐进式的 JavaScript 框架&#xff0c;用于构建用户界面。它的核心库专注于视图层&#xff0c;易于与其它库或现有项目进行集成&#xff0c;同时也可以与现代工具链和支持库结合使用&#xff0c;成为一个完整的开发框架。 以下是关于 Vue.js 的详细资料&#xff…...

    C++语法之命名空间二

    A.h头文件中代码&#xff1a; namespace a {void 输出(); }; A.cpp源文件中代码&#xff1a; #include <iostream> #include "A.h" void a::输出() {std::cout << "A.h里的输出函数" << std::endl; } B.h头文件中代码&#xff1a; …...

    【STM32】I²CC通信外设硬件I²CC读写MPU6050(学习笔记)

    相关文章笔记&#xff1a; 【STM32】I2C通信协议&MPU6050芯片-学习笔记-CSDN博客 【江协科技STM32】软件I2C协议层读写MPU6050驱动层-CSDN博客 IC通信外设 IC外设简介 STM32内部集成了硬件I2C收发电路&#xff0c;可以由硬件自动执行时钟生成、起始终止条件生成、应答…...

    Android Room 框架公共模块源码深度剖析(四)

    一、引言 在 Android 开发中&#xff0c;数据持久化是一个常见的需求。Android Room 框架作为 Android Jetpack 组件的一部分&#xff0c;为开发者提供了一个抽象层&#xff0c;使得在 SQLite 数据库上进行数据操作变得更加简单和高效。Room 框架包含多个模块&#xff0c;其中…...

    NumPy系列 - 创建矩阵

    目录 前传直接创建数组就只是创建数组1. np.array()2. np.arange()3. np.ones()4. numpy.ones_like()5. np.zeros()6. numpy.zeros_like() 定义数据类型 参考资料 前传 由于&#xff0c;某人在上智能相关课程的时候&#xff0c;总想着一大堆的事情&#xff0c;统计股市涨跌&am…...

    能“嘎嘎提升”提升用户居住体验的智能家居物联网框架推荐!

    智能家居在日常生活中给我们的带来了更多的便利&#xff0c;更让有些用户切实地体会到了科技的魅力&#xff0c;对于想要打造属于自己的智能家居氛围感的用户们&#xff0c;以下是一些能够帮助提升居住体验的智能家居物联网框架及应用&#xff1a; 1. 涂鸦智能&#xff08;Tuy…...

    python-leetcode 60.分割回文串

    题目&#xff1a; 给定一个字符串S,请将S分割成一些子串&#xff0c;使每个子串都是回文串&#xff0c;返回S所有可能的分割方案 方法一&#xff1a;回溯深度优先搜索 1. 主要思想 使用 深度优先搜索&#xff08;DFS&#xff09; 遍历 s 的所有可能划分方式。使用 回溯&…...

    Android Jetpack Compose介绍

    Android Jetpack Compose Android Jetpack Compose 是 Google 推出的现代 UI 工具包&#xff0c;用于以声明式的方式构建 Android 应用的 UI。它摒弃了传统的 XML 布局方式&#xff0c;完全基于 Kotlin 编写&#xff0c;提供了更简洁、更强大的 UI 开发体验。以下是 Compose 的…...

    文档搜索引擎项目测试

    目录 设计测试用例 功能测试 文档搜索功能 具体的逻辑 文档显示搜索结果功能 自动化测试 功能类介绍 最终测试套件的测试结果 性能测试 查看聚合报告 每秒处理事务数/吞吐量(TPS) 响应时间 生成测试报告 界面测试 初始页面 搜索页面 总结 后续改进: 设计测试…...

    Vue3项目技术点记录

    vue3项目技术点笔记 1 环境变量 - 不同环境用不同的配置 环境变量命名:.env.produciton .env.development Vite.config.ts 配置 envDir:‘’ 链接: VUE3+Vite 环境变量配置 2 axios的封装 http请求拦截,响应拦截。 src下建立公共文件夹Utils下建立request.ts import axios…...

    一和零 (leetcode 474

    leetcode系列 文章目录 一、核心操作二、外层配合操作三、核心模式代码总结 本题是一个01背包问题&#xff0c;只是背包是一个二维数组的背包&#xff0c;分别为0的个数不能超过m&#xff0c;1的个数不能超过n&#xff0c;而物品就是题目中的字符串&#xff0c;其容量为0和1的…...

    Linux vim mode | raw / cooked

    注&#xff1a;机翻&#xff0c;未校。 vim terminal “raw” mode Vim 终端 “raw” 模式 1. 原始模式与已处理模式的区别 We know vim puts the terminal in “raw” mode where it receives keystrokes as they are typed, opposed to “cooked” mode where the command…...

    利用Linux的I2C子系统和i2c-tools工具集写出的对I2C设备AP3216C读写的应用程序

    前言 由于NXP官方提供的BSP里已经包含了其片上I2C控制器的驱动并接入到了Linux的I2C子系统&#xff0c;所以我们可以直接去写与I2C有关的应用程序了。 在本篇博文中我们用两种方式对I2C设备AP3216C进行读写操作。 第一种&#xff1a;直接利用Linux的I2C子系统对I2C设备AP3216…...

    springCloud集成tdengine(原生和mapper方式) 其二 原生篇

    mapper篇请看另一篇文章 一、引入pom文件 <!-- TDengine 连接器--><dependency><groupId>com.taosdata.jdbc</groupId><artifactId>taos-jdbcdriver</artifactId><version>3.5.3</version></dependency>二、在nacos中填…...

    gralloc usage flags

    下面这些示例主要说明了 gralloc usage flags 在图像处理和多媒体应用中如何影响性能和正确性。让我们逐个详细分析每个问题的 根因 和 修复方案&#xff0c;并深入解析 gralloc 标志对 缓存管理 和 数据流 的影响。 ✅ Example 1: 长曝光快照耗时异常 &#x1f4cc; 问题描述…...

    RIP路由欺骗攻击与防御实验详解

    一、基础网络配置 1. 路由器R1配置 interface GigabitEthernet0/0/0ip address 192.1.2.254 255.255.255.0 ! interface GigabitEthernet0/0/1ip address 192.1.3.254 255.255.255.0 ! router rip 1version 2network 192.1.2.0network 192.1.3.0 2. 路由器R2配置 interface…...

    在 Linux下使用 Python 3.11 和 FastAPI 搭建带免费证书的 HTTPS 服务器

    在当今数字化时代&#xff0c;保障网站数据传输的安全性至关重要。HTTPS 协议通过使用 SSL/TLS 加密技术&#xff0c;能够有效防止数据在传输过程中被窃取或篡改。本教程将详细介绍如何在 Ubuntu 22.04 系统上&#xff0c;使用 Python 3.11 和 FastAPI 框架搭建一个带有免费 SS…...

    [QMT量化交易小白入门]-三十五、如何将聚宽策略信号转为QMT实盘交易

    本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。 QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。 文章目录 相关阅读一、聚宽模拟运行:构建交易策略的基础在聚宽…...

    国思RDIF低代码快速开发框架 v6.2版本发布

    1、平台介绍 国思RDIF企业级低代码开发平台&#xff0c;给用户和开发者最佳的框架平台方案&#xff0c;为企业快速构建跨平台、企业级的应用提供强大支持。致力于解决企业信息化项目交付难、实施效率低、开发成本高的问题。能帮助企业快速构建美观易用、架构专业、安全可控的企…...

    学习笔记 ASP.NET Core Web API 8.0部署到iis

    一.修改配置文件 修改Program.cs配置文件将 if (app.Environment.IsDevelopment()) {app.UseSwagger();app.UseSwaggerUI(); }修改为 app.UseSwagger(); app.UseSwaggerUI(); 二.安装ASP.NET Core Runtime 8.0.14 文件位置https://dotnet.microsoft.com/en-us/download/do…...

    【Linux】信号:产生信号

    &#x1f525;个人主页&#xff1a;Quitecoder &#x1f525;专栏&#xff1a;linux笔记仓 目录 01.信号信号处理简单理解信号的发送和保存由软件产生的信号由硬件&#xff08;异常&#xff09;产生的信号 01.信号 进程信号是操作系统提供的一种异步通知机制&#xff0c;用于…...

    单片机自学总结

    自从工作以来&#xff0c;一直努力耕耘单片机&#xff0c;至今&#xff0c;颇有收获。从51单片机&#xff0c;PIC单片机&#xff0c;直到STM32&#xff0c;以及RTOS和Linux&#xff0c;几乎天天在搞:51单片机&#xff0c;STM8S207单片机&#xff0c;PY32F003单片机&#xff0c;…...

    Idea集成docker通过ca加密实现镜像打包

    ​ Idea集成docker实现镜像打包_ideadocker镜像打包-CSDN博客 ​ 之前通过这种方式虽然可以实现idea通过maven打jar包的同时把docker镜像也进行打包&#xff0c;但是这种方式存在很大漏洞&#xff0c;就是服务器的2375端口大开&#xff0c;任何人拿着idea通过这种方式都可以连…...