使用YOLO系列txt目标检测标签的滑窗切割:批量处理图像和标签的实用工具
使用YOLO系列txt目标检测标签的滑窗切割:批量处理图像和标签的实用工具
- 使用YOLO的TXT目标检测标签的滑窗切割:批量处理图像和标签的实用工具
- 背景
- 1. 代码概述
- 2. 滑窗切割算法原理
- 滑窗切割步骤:
- 示例:
- 3. **代码实现**
- 1. **加载标签**
- 2. **切割标签**
- 3. **主函数**
- 4. **如何使用该工具**
- 4. **完整代码**
使用YOLO的TXT目标检测标签的滑窗切割:批量处理图像和标签的实用工具
背景
在计算机视觉领域,目标检测(Object Detection)是一个非常重要的任务。随着 YOLO(You Only Look Once)系列模型的普及,目标检测模型已经被广泛应用于各种实际场景中。对于目标检测任务,训练模型所需的标注数据至关重要。
当我们处理大规模图像数据集时,尤其是在图像的尺寸远大于模型输入尺寸时,往往需要使用 滑窗切割(Sliding Window)技术,将大图像分割成多个小块进行处理。这一过程不仅可以减小每次训练所需的计算资源,还能增强模型的鲁棒性。
本博客将介绍如何使用 YOLO 的TXT目标检测标签格式 对大图像进行滑窗切割,并确保标签的正确性。我们将逐步阐述该代码的工作原理、使用方法及其在目标检测中的实际意义。
1. 代码概述
该代码实现了对大图像及其对应标签的 滑窗切割,并确保切割后的标签正确地被裁剪并保存。它通过对图像和标签的逐块切割,将大图像分割成多个较小的图像块,同时调整标签的位置和大小,以符合新的图像尺寸。
主要步骤如下:
- 加载图像和标签:读取图片和标签文件,确保标签与图像对应。
- 滑窗切割:以给定的窗口大小和步长,对图像进行滑窗切割。
- 裁剪标签:对于每个切割窗口,检查标签是否位于窗口内,如果位于窗口内,调整标签坐标,并确保标签归一化。
- 保存切割后的图像和标签:将切割后的图像和标签保存到新的文件夹中。
2. 滑窗切割算法原理
滑窗切割是计算机视觉中常用的技术,通常用于:
- 大图像分块:当图像尺寸过大时,模型输入尺寸无法处理整个图像,可以将其切割成小块进行逐块处理。
- 多尺度检测:不同尺度的物体需要不同大小的窗口来检测。通过滑窗切割,能够在多个尺度上执行目标检测任务。
滑窗切割步骤:
-
指定窗口大小和步长:窗口大小和步长决定了滑窗的密集程度。步长越小,生成的窗口越多,计算量越大。窗口大小决定了每个块的输入尺寸。
-
标签裁剪:标签的裁剪是根据目标与滑窗的交集来进行的。每个标签会被裁剪到窗口内,并且坐标会被重新归一化到窗口的尺寸。
示例:
- 窗口大小:640x640像素。
- 横向步长:301像素。
- 纵向步长:180像素。
对于每个标签,代码会检查它是否位于当前滑窗内,如果是,标签的位置和尺寸会被重新计算并保存。
3. 代码实现
1. 加载标签
def load_labels(label_file):"""加载YOLO的标签文件"""labels = []with open(label_file, 'r') as f:for line in f:parts = line.strip().split()cls = int(parts[0]) # 类别x_center, y_center, w, h = map(float, parts[1:])labels.append((cls, x_center, y_center, w, h))return labels
这段代码用于读取每个标签文件,并将其转换为包含类别和坐标的格式,方便后续处理。
2. 切割标签
def save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels):"""根据滑窗切割标签,并确保标签正确裁剪"""new_labels = []for cls, x_center, y_center, w, h in labels:# 将归一化坐标转换为像素坐标x_center_px = x_center * img_widthy_center_px = y_center * img_heightw_px = w * img_widthh_px = h * img_height# 计算标签与当前窗口的交集区域intersection_x1 = max(x_center_px - w_px / 2, window_x)intersection_y1 = max(y_center_px - h_px / 2, window_y)intersection_x2 = min(x_center_px + w_px / 2, window_x + window_size)intersection_y2 = min(y_center_px + h_px / 2, window_y + window_size)# 如果标签和窗口相交if intersection_x1 < intersection_x2 and intersection_y1 < intersection_y2:# 计算交集区域的宽高和中心坐标intersection_w = intersection_x2 - intersection_x1intersection_h = intersection_y2 - intersection_y1intersection_x_center = (intersection_x1 + intersection_x2) / 2intersection_y_center = (intersection_y1 + intersection_y2) / 2# 将交集区域的坐标归一化normalized_x_center = (intersection_x_center - window_x) / window_sizenormalized_y_center = (intersection_y_center - window_y) / window_sizenormalized_w = intersection_w / window_sizenormalized_h = intersection_h / window_size# 生成新的标签new_labels.append(f"{cls} {normalized_x_center} {normalized_y_center} {normalized_w} {normalized_h}")return new_labels
该函数根据当前窗口的位置,裁剪标签,并将裁剪后的标签归一化到当前窗口大小。
3. 主函数
def main():image_folder = 'images' # 输入图片文件夹label_folder = 'labels' # 输入标签文件夹output_image_folder = 'output_images'output_label_folder = 'output_labels'if not os.path.exists(output_image_folder):os.makedirs(output_image_folder)if not os.path.exists(output_label_folder):os.makedirs(output_label_folder)image_files = sorted(os.listdir(image_folder))label_files = sorted(os.listdir(label_folder))window_size = 640 # 滑窗大小step_x = 301 # 横向步长step_y = 180 # 纵向步长# 遍历所有图片和标签文件for image_file, label_file in zip(image_files, label_files):# 读取图片image_path = os.path.join(image_folder, image_file)image = cv2.imread(image_path)img_height, img_width, _ = image.shape# 读取对应的标签label_path = os.path.join(label_folder, label_file)labels = load_labels(label_path)# 计算横向和纵向可以切割的窗口数量num_windows_x = (img_width - window_size) // step_x + 1num_windows_y = (img_height - window_size) // step_y + 1# 遍历所有切割窗口for i in range(num_windows_x):for j in range(num_windows_y):window_x = i * step_xwindow_y = j * step_y# 获取当前窗口内的标签windowed_labels = save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels)if windowed_labels: # 如果窗口内有标签# 保存切割后的图片windowed_image = image[window_y:window_y + window_size, window_x:window_x + window_size]output_image_path = os.path.join(output_image_folder, f"{os.path.splitext(image_file)[0]}_window_{i}_{j}.jpg")cv2.imwrite(output_image_path, windowed_image)# 保存切割后的标签output_label_path = os.path.join(output_label_folder, f"{os.path.splitext(label_file)[0]}_window_{i}_{j}.txt")with open(output_label_path, 'w') as f:for label in windowed_labels:f.write(label + '\n')
4. 如何使用该工具
-
准备工作:
- 将你的图片和标签放在
images/
和labels/
文件夹中。 - 确保标签格式为 YOLOv5 格式,即每行包含
class_id x_center y_center width height
(所有值均为归一化形式)。
- 将你的图片和标签放在
-
运行脚本:
- 运行上述代码,程序将自动读取图片和标签,进行滑窗切割,并将每个切割后的图像和标签保存到新的文件夹中。
-
输出结果:
- 切割后的图像会保存在
output_images/
文件夹中。 - 切割后的标签会保存在
output_labels/
文件夹中,标签内容与原标签一致,只是经过裁
- 切割后的图像会保存在
4. 完整代码
import os
import cv2def load_labels(label_path):"""加载YOLOv5标签文件"""labels = []with open(label_path, 'r') as f:for line in f.readlines():parts = line.strip().split()cls = int(parts[0]) # 类别x_center = float(parts[1]) # x中心y_center = float(parts[2]) # y中心w = float(parts[3]) # 宽度h = float(parts[4]) # 高度labels.append([cls, x_center, y_center, w, h])return labelsdef save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels):"""根据滑窗切割标签,并确保标签正确裁剪"""new_labels = []for cls, x_center, y_center, w, h in labels:# 将归一化坐标转换为像素坐标x_center_px = x_center * img_widthy_center_px = y_center * img_heightw_px = w * img_widthh_px = h * img_height# 计算标签与当前窗口的交集区域intersection_x1 = max(x_center_px - w_px / 2, window_x)intersection_y1 = max(y_center_px - h_px / 2, window_y)intersection_x2 = min(x_center_px + w_px / 2, window_x + window_size)intersection_y2 = min(y_center_px + h_px / 2, window_y + window_size)# 如果标签和窗口相交if intersection_x1 < intersection_x2 and intersection_y1 < intersection_y2:# 计算交集区域的宽高和中心坐标intersection_w = intersection_x2 - intersection_x1intersection_h = intersection_y2 - intersection_y1intersection_x_center = (intersection_x1 + intersection_x2) / 2intersection_y_center = (intersection_y1 + intersection_y2) / 2# 将交集区域的坐标归一化normalized_x_center = (intersection_x_center - window_x) / window_sizenormalized_y_center = (intersection_y_center - window_y) / window_sizenormalized_w = intersection_w / window_sizenormalized_h = intersection_h / window_size# 生成新的标签new_labels.append(f"{cls} {normalized_x_center} {normalized_y_center} {normalized_w} {normalized_h}")# 如果没有标签,返回空列表return new_labelsdef main():image_folder = 'images' # 输入图片文件夹label_folder = 'labels' # 输入标签文件夹output_image_folder = 'output_images'output_label_folder = 'output_labels'if not os.path.exists(output_image_folder):os.makedirs(output_image_folder)if not os.path.exists(output_label_folder):os.makedirs(output_label_folder)image_files = sorted(os.listdir(image_folder))label_files = sorted(os.listdir(label_folder))window_size = 640 # 滑窗大小step_x = 301 # 横向步长step_y = 180 # 纵向步长# 遍历所有图片和标签文件for image_file, label_file in zip(image_files, label_files):# 读取图片image_path = os.path.join(image_folder, image_file)image = cv2.imread(image_path)img_height, img_width, _ = image.shape# 读取对应的标签label_path = os.path.join(label_folder, label_file)labels = load_labels(label_path)# 计算横向和纵向可以切割的窗口数量num_windows_x = (img_width - window_size) // step_x + 1num_windows_y = (img_height - window_size) // step_y + 1# 遍历所有切割窗口for i in range(num_windows_x):for j in range(num_windows_y):window_x = i * step_xwindow_y = j * step_y# 获取当前窗口内的标签windowed_labels = save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels)# 如果标签列表为空,说明此窗口没有标签,跳过该窗口if not windowed_labels:continue# 保存切割后的图片windowed_image = image[window_y:window_y + window_size, window_x:window_x + window_size]output_image_path = os.path.join(output_image_folder, f"{os.path.splitext(image_file)[0]}_window_{i}_{j}.jpg")cv2.imwrite(output_image_path, windowed_image)# 保存切割后的标签output_label_path = os.path.join(output_label_folder, f"{os.path.splitext(label_file)[0]}_window_{i}_{j}.txt")with open(output_label_path, 'w') as f:for label in windowed_labels:f.write(label + '\n')if __name__ == "__main__":main()
相关文章:
使用YOLO系列txt目标检测标签的滑窗切割:批量处理图像和标签的实用工具
使用YOLO系列txt目标检测标签的滑窗切割:批量处理图像和标签的实用工具 使用YOLO的TXT目标检测标签的滑窗切割:批量处理图像和标签的实用工具背景1. 代码概述2. 滑窗切割算法原理滑窗切割步骤:示例: 3. **代码实现**1. **加载标签…...
《装甲车内气体检测“神器”:上海松柏 K-5S 电化学传感器模组详解》
《装甲车内气体检测“神器”:上海松柏 K-5S 电化学传感器模组详解》 一、引言二、K-5S 电化学传感器模组概述(一)产品简介(二)产品特点(三)产品适用场景 三、电化学传感器原理及优点(一…...
【笔记】文明、现代化与价值投资
文章目录 价值投资与理性思考资管行业特点及对从业人员的道德底线要求价值投资长期来看,各项资产的走势投资与投机 对文明的认知对文明的计量方式狩猎文明或1.0文明农业畜牧文明或2.0文明农业文明的天花板及三次冲顶农业文明中的思想革命和制度创新 科技文明或3.0文…...
排序学习整理(1)
1.排序的概念及运用 1.1概念 排序:所谓排序,就是使⼀串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作,以便更容易查找、组织或分析数据。 1.2运用 购物筛选排序 院校排名 1.3常见排序算法 2.实…...
提升分布式系统响应速度:分布式系统远程调用性能提升之道
目录 一、远程调用直接案例分析 二、并行调用 (一)核心思想 (二)并行调用的实现方式 1. 基本思路 2. 代码示例 3. 关键点说明 4.线程池配置建议 三、数据异构 (一)场景重提 (二&…...
通过MinIO+h2non/imaginary 搭建自己的阿里云OSS
安装MinIO Docker部署MinIO对象存储服务 图片访问地址:http://192.168.153.138:9000/public/su7_1.jpg 安装h2non/imaginary Docker部署h2non/imaginary 处理图片地址:http://192.168.153.138:7000/resize?urlhttp://192.168.153.138:9000/public/su…...
.NET 9 AOT的突破 - 支持老旧Win7与XP环境
引言 随着技术的不断进步,微软的.NET 框架在每次迭代中都带来了令人惊喜的新特性。在.NET 9 版本中,一个特别引人注目的亮点是 AOT( Ahead-of-Time)支持,它允许开发人员将应用程序在编译阶段就优化为能够在老旧的 Win…...
iOS与Windows间传文件
想用数据线从 windows 手提电脑传文件入 iPhone,有点迂回。 参考 [1],要在 windows 装 Apple Devices。装完、打开、插线之后会检测到手机,界面: 点左侧栏「文件」,不是就直接可以传,而是要通过某个应用传…...
ospf协议(动态路由协议)
ospf基本概念 定义 OSPF 是典型的链路状态路由协议,是目前业内使用非常广泛的 IGP 协议之一。 目前针对 IPv4 协议使用的是 OSPF Version 2 ( RFC2328 );针对 IPv6 协议使用 OSPF Version 3 ( RFC2740 )。…...
直击高频编程考点:聚焦新版综合编程能力考查汇总
目录 一、业务性编程和广度能力考查 (一)基本定义 (二)必要性分析 二、高频考查样题(编程扩展问法) 考题1: 用java 代码实现一个死锁用例,说说怎么解决死锁问题?(高…...
爬虫框架快速入门——Scrapy
适用人群:零基础、对网络爬虫有兴趣但不知道从何开始的小白。 什么是 Scrapy? Scrapy 是一个基于 Python 的网络爬虫框架,它能帮助你快速爬取网站上的数据,并将数据保存到文件或数据库中。 特点: 高效:支…...
Springfox、Swagger 和 Springdoc
Springfox、Swagger 和 Springdoc 是用于在 Spring Boot 项目中生成 API 文档的工具,但它们之间有显著的区别和演进关系: 1. Swagger 简介 Swagger 是一个开源项目,旨在为 RESTful APIs 提供交互式文档。最早由 SmartBear 开发,…...
Css、less和Sass(SCSS)的区别详解
文章目录 Css、less和Sass(SCSS)的区别详解一、引言二、CSS 简介1.1、CSS 示例 三、Less 简介2.1、Less 特性2.2、Less 示例 四、Sass(SCSS)简介3.1、Sass 特性3.2、SCSS 示例 五、总结 Css、less和Sass(SCSSÿ…...
新能源汽车充电基础设施短板问题多,如何实现高效、综合、智能化管理?
随着城市经济的发展,人民生活水平的提升,新能源汽车保有量快速增长,而日益增长的新能源汽车需求与充电基础设施建设不平衡的矛盾日益突出。由于停车泊位充电基础设施总量不足、布局待优化、利用效率低、建设运营存在短板问题等原因࿰…...
DBA面试题-1
面临失业,整理一下面试题,找下家继续搬砖 主要参考:https://www.csdn.net/?spm1001.2101.3001.4476 略有修改 一、mysql有哪些数据类型 1, 整形 tinyint,smallint,medumint,int,bigint;分别占用1字节、2字节、3字节…...
LAN,WAN,VLAN,WLAN,VPN了解笔记
局域网LAN---公司的内部网络就是局域网LAN。 提供有线连接的接口允许局域网内的设备(如台式电脑、网络打印机、网络存储设备等)通过以太网线连接到路由器并与其他局域网设备进行通信实现设备之间的数据传输和资源共享一种私有的网络相对其他网络传输速度…...
1.2 算法和算法评价
1.2.1 算法的基本概念 算法:对特定问题求解步骤的一种描述,它是指令的有限序列,其中的每条指令表示一个或多个操作。 算法的五个重要特性 “好”的算法的五个目标 1.2.2 算法效率的度量 一、时间复杂度 算法的时间复杂度是指一个算法每行…...
各大常见编程语言应用领域
不同编程语言因其特性和设计目标而适用于不同的应用领域。以下是一些常见编程语言及其主要应用领域: 1. Python 数据科学与人工智能:Python 在数据分析、机器学习、深度学习等领域广泛使用,因其丰富的库(如 NumPy、Pandas、Tens…...
【FFT】数据点数是否一定为2的n次方?不补零会如何处理?
一般来说,FFT的数据点个数为以2为基数的整数次方(采用以2为基的FFT算法,可以提升运算性能),但是并没有要求FFT的数据点个数一定为2的n次方。 因此针对数据点数不是以2为基数的整数次方,有两种处理方法&…...
shell脚本小练习#003:查找并拷贝目录
实例1: # 从当前执行脚本的路径位置开始向上搜索一个名为sourceProject目录名 # 并将这个文件目录的路径名称打印出来#!/bin/bashfunction find_dir() {local current_dir$PWDwhile [[ $current_dir ! "/" ]]; doif [[ -d "${current_dir}/sourcePr…...
frp内网穿透
目录 1,准备公网服务器 2,下载安装frp服务端 3,服务端安装 2)编辑服务端配置文件fprs.toml 3)配置启动服务 4)启动服务 5 )设置开机启动服务 6)查看服务启动状态 3,…...
Android电视项目焦点跨层级流转
1. 背景 在智家电视项目中,主要操作方式不是触摸,而是遥控器,通过Focus进行移动,确定点击进行的交互,所以在电视项目中焦点、选中、确定、返回这几个交互比较重要。由于电视屏比较大,在一些复杂页面中会存…...
时频转换 | Matlab基于S变换S-transform一维数据转二维图像方法
目录 基本介绍程序设计参考资料获取方式基本介绍 时频转换 | Matlab基于S变换S-transform一维数据转二维图像方法 程序设计 clear clc % close all load x.mat % 导入数据 x =...
转载 为nautilus安装rabbitvcs
# 添加 rabbitvcs 的 ppa 源 sudo add-apt-repository ppa:rabbitvcs/ppa sudo apt update # 安装 rabbitvcs sudo apt install rabbitvcs-cli rabbitvcs-core rabbitvcs-gedit rabbitvcs-nautilus # 注销后重新登录,右键即可使用 # 解决 RabbitVCS 无法自动保存…...
OpenCV 模板匹配全解析:从单模板到多模板的实战指南
简介:本文深入探讨 OpenCV 中的模板匹配技术。详细介绍构建输入图像与模板图像的步骤,包括读取、截取、滤波与存储等操作。剖析 cv2.matchTemplate 语法及其参数含义,阐述不同匹配方法下结果值的意义。同时讲解 cv2.minMaxLoc 语法࿰…...
手机控制载货汽车一键启动无钥匙进入广泛应用
移动管家载货汽车一键启动无钥匙进入手机控车系统, 该系统广泛应用于物流运输、工程作业等货车场景,为车主提供了高效、便捷的启动和熄火解决方案,体现了科技进步对物流行业的积极影响 核心功能:简化启动流程,提…...
Springboot——SseEmitter流式输出
文章目录 前言SseEmitter 简介测试demo注意点异常一 ResponseBodyEmitter is already set complete 前言 最近做AI类的开发,看到各大AI模型的输出方式都是采取的一种EventStream的方式实现。 不是通常的等接口处理完成后,一次性返回。 而是片段式的处理…...
【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读 引言 线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经…...
idea 自动导包,并且禁止自动导 *(java.io.*)
自动导包配置 进入 idea 设置,可以按下图所示寻找位置,也可以直接输入 auto import 快速定位到配置。 Add unambiguous imports on the fly:自动帮我们优化导入的包Optimize imports on the fly:自动去掉一些没有用到的包 禁止导…...
奇怪的编码2
1.当铺密码 当铺密码的标志是“田由中人工大王夫井羊” 口 0 田 0 由 1 中 2 人 3 工 4 大 5 王 6 夫 7 井 8 羊 9 解密脚本: s 田由中人工大王夫井羊 codeinput("请输入当铺密码:") code code.split(" ") w for i in code:k…...
AI服务器从HBM到CXL的技术变革
AI服务器从HBM到CXL变革 本文探讨了AI产业的新范式,特别是服务器变革。传统服务器价格通常在1万美金以内,而搭载8张H100算力卡的DGX H100AI服务器价值高达40万美金(约300万人民币)。这一变化将对AI产业产生深远影响。 自然语言和图形处理依赖大量存储器…...
将自定义 AWS S3 快照存储库连接到 Elastic Cloud
作者:来自 Elastic Annie Hansen, Stef Nestor 在本博客中,我们将介绍如何通过 Elasticsearch 的快照将我们已提交的集群数据备份到 AWS S3 存储桶中。在 Elastic Cloud(企业版)中,Elastic 在其 found-snapshots 存储…...
Java 多线程编程核心要点全解析:深度探秘关键方法与同步机制
1.Thread 类中的start() 和 run() 方法有什么区别? 在Java编程语言中,Thread 类的 start() 和 run() 方法有重要的区别: start() 方法: 当你调用 start() 方法时,它会启动一个新的线程,并且这个新线程会…...
个人博客接入github issue风格的评论,utteranc,gitment
在做个人博客的时候,如果你需要评论功能,但是又不想构建用户体系和评论模块,那么可以直接使用github的issue提供的接口,对应的开源项目有utteranc和gitment,尤其是前者。 它们的原理是一样的:在博客文章下…...
搞个项目之-esp32-cam ov2640模组搭建图像视频项目
开发版的介绍: 1、开发板使用的是:ESP32-CAM 2、摄像头模组:OV2640 3、烧录底座:ESP32-CAM开发板烧录座 4、mirco usb线,四线30cm 5、开发版的原理图像 项目前期的准备工作 一、安装arduino arduino官网地址地址…...
【FPGA开发】Vivado自定义封装IP核,绑定总线
支持单个文件的封装、整个工程的封装,这里用单个文件举例。 在文件工程目录下,自建一个文件夹,里面放上需要封装的verilog文件。 选择第三个,指定路径封装,找到文件所在目录 取个名,选择封装IP的路径 会…...
Leetcode51:N 皇后
题目描述: 按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n 皇后问…...
C#面向对象之访问限制,类基础,继承
文章目录 1 访问限制1.1 简介 2 类基础讲解2.1 类定义2.2 构造函数2.2.1 构造函数2.2.2 静态构造函数2.2.3 初始化顺序2.2.4 对象初始化器 2.3 析构函数2.4 类的静态成员2.5 匿名对象2.5.1 定义2.5.2 匿名对象的创建 3 继承3.1 基类和派生类3.2 基类初始化3.3 Partial类3.3.1 定…...
科研小白成长记41——享受大起大落
一直内心对自己的定位是喜欢安安静静生活的人,但是朋友提醒我我的生活一直都是出于各种冒险之中,从GAP申博,到GAP找工作,都不是一个乐于安于现状的人会做出来的。仔细想想不无道理,既然如此,那就如享受安静…...
正则表达式笔记
一、基本正则 常见元字符 元字符说明^以某个字符开头$以某个字符结尾.匹配任意单字符*对前一项进行0次或者多次重复匹配{m,n}将前一项字符重复m-n次,{m,},{,n},{m,n}[]对方括号内的单字符进行匹配[^]不匹配方括号内的单字符^[]匹配以某个字符开头的行(…...
解决本地运行SuperPoint_SLAM报错ERROR: flag ‘flagfile‘ was defined more than once
解决本地运行SuperPoint_SLAM报错ERROR: flag flagfile was defined more than once 起因使用LD_DEBUG排查链接过程用ldd查看各自链接的库解决办法问题解决 起因 在之前本地编译了opencv-3.4.2,当时因为contrib模块需要gflags,重新下载了一个gflags在本…...
springboot信息化在线教学平台的设计与实现(代码+数据库+LW)
摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了信息化在线教学平台的开发全过程。通过分析信息化在线教学平台管理的不足,创建了一个计算机管理信息化在线教学平台的方案。文章介绍了信息化在线教…...
maxun爬虫工具docker搭建
思路来源开源无代码网络数据提取平台Maxun 先把代码克隆到本地(只有第一次需要) git clone https://github.com/getmaxun/maxun.git 转到maxun目录 cd maxun 启动容器 docker-compose --env-file .env up -d 成功启动六个容器 网址 http://local…...
高效 Python Web 开发:FastAPI 入门与实践
高效 Python Web 开发:FastAPI 入门与实践 目录 ✨ 1. 安装与环境配置 📦 安装 FastAPI 和 Uvicorn🗂️ 项目目录结构和初始化🚀 创建一个简单的 FastAPI 项目 🛠️ 2. FastAPI 路由与请求处理 🛣️ 基本…...
C++中的函数重载
函数重载是指在同一个作用域(通常是一个类或者一个命名空间)内,可以有多个同名函数,但是这些同名函数的参数列表(参数的个数、类型或者顺序)不同。当调用这个函数名时,编译器会根据传入的实际参…...
达梦数据库常用指令都是工作中常用的
达梦数据库连接配置文件名称 cd /etc/dm_svc.conf查询 sql 日志记录是否开启:0 关闭,1/2/3开启); select SF_GET_PARA_VALUE(1,SVR_LOG)union ALL select SF_GET_PARA_VALUE(2,SVR_LOG);关闭 sql 日志记录功能 call SP_SET_PARA_VALUE(1,SVR_LOG,0);开…...
【2024最新】基于Springboot+Vue的就业信息管理系统Lw+PPT
作者:计算机搬砖家 开发技术:SpringBoot、php、Python、小程序、SSM、Vue、MySQL、JSP、ElementUI等,“文末源码”。 专栏推荐:SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:Java精选实战项…...
linux一键部署apache脚本
分享一下自己制作的一键部署apache脚本: 脚本已和当前文章绑定,请移步下载(免费!免费!免费!) (单纯的分享!) 步骤: 将文件/内容上传到终端中 …...
修改MySQL数据库密码报1290
修改MySQL数据库密码报1290 错误 如下: alter user ‘root’‘localhost’ identified by ‘root’; ERROR 1290 (HY000): The MySQL server is running with the --skip-grant-tables option so it cannot execute this statement 需要刷新下配置 flush privileg…...
OpenCV4.8 开发实战系列专栏之 17 - 图像直方图
大家好,欢迎大家学习OpenCV4.8 开发实战专栏,长期更新,不断分享源码。 专栏代码全部基于C 与Python双语演示,领学习资料(Free) & 进专栏答疑群, VX: OpenCVXueTang_Asst 本文关键知识点:图…...