当前位置: 首页 > news >正文

【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真(基于运放的电流模BGR)

【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真

  • 前言
      • 工程文件&部分参数计算过程,私聊~
    • 一、 设计指标
      • 指标分析:
    • 二、 电路分析
    • 三、 仿真
      • 3.1仿真电路图
      • 3.2仿真结果
        • (1)运放增益
        • (2)基准温度系数仿真
        • (3)瞬态启动仿真
        • (4)静态电流仿真
        • (5)线性调整率仿真
        • (6)电源抑制PSR仿真
    • 四、仿真结果汇总
    • 五、总结
  • 优化结构(采用cascode电流镜)
    • 一、前言
    • 二、电路
    • 三、仿真
      • 3.1仿真电路图
      • 3.2仿真结果
        • (1)运放增益
        • (2)基准温度系数仿真
        • (3)瞬态启动仿真
        • (4)静态电流仿真
        • (5)线性调整率仿真
        • (6)电源抑制PSR仿真
    • 四、仿真结果汇总
    • 五、总结

前言

  此次设计,使用电流镜结构为基础的 B a n d g a p Bandgap Bandgap 来满足设计指标,主要目标是在结构简单的前提下满足设计指标要求,本文供学习参考。
  关于 B G R BGR BGR 的基础,可以看【笔记:模拟MOS集成电路】带隙基准(基本原理+电流模+电压模电路详解)

  文末附带核心管支路关键参数计算方法

工程文件&部分参数计算过程,私聊~

一、 设计指标

  本次设计指标,如表1所示

在这里插入图片描述
  (*线性调节率指输出基准电压随直流VDD的变化率,电源电压从电路正常工作的最小电压起到额定电源电压为止)

指标分析:

  本次Bandgap设计,选用的工艺是 T S M C 18 µ m TSMC 18µm TSMC18µm工艺,采用运放结构为基础,设计参数要求电源抑制 P S R < − 50 d B PSR < -50dB PSR<50dB ,如果不考虑具体电路,可以通过提升运放增益、减小BGR输出阻抗和Cascode结构提升PSR性能。
  以减小 B G R BGR BGR 输出阻抗提升 P S R PSR PSR 为例进行电路设计,此时 P S R PSR PSR 和整体功耗相互折中,一方面是运放增益尽可能大,另一方面是因为低的输出阻抗会需要大的电流偏置,如果PSR要求放宽,功耗可以迅速下降。
考虑到功耗指标,对电流进行分配,自偏置电流镜两支路共分配 10 µ A 10 µA 10µA,运放分配 80 µ A 80µA 80µA,两路核心管分别分配 10 µ A 10µA 10µA ,剩余电流分配给输出级。
  本次设计电源电压 3.3 V 3.3V 3.3V,对于TSMC18工艺, “ p m o s 3 v ” “pmos3v” pmos3v 晶体管, NMOS器件,选取 “ n m o s 3 v ” “nmos3v” nmos3v 晶体管。
优化措施也有很多,比如更换运放结构、采用Cascode层叠电流镜和单位增益的运放输出buffer等,都可以显著降低PSR然后减小功耗,但是电路会复杂一丢丢。

二、 电路分析

  通过对表1的指标分析,搭建的电路如图2.1所示。
在这里插入图片描述
   B G R BGR BGR 原理此处不再赘述,关于 B G R BGR BGR 的基础,参考:

    【笔记:模拟MOS集成电路】带隙基准(基本原理+电流模+电压模电路详解)

  另一个电路结构是采用cascode电流镜的结构:

    【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真(基于cascode电流镜的电流模BGR)

  这种方案的功耗会小很多,此次设计中,因为运放增益相对不高,并没有把“基于运放结构的BGR”优势完全发挥出来,最常见的优化措施,放文章末尾了。下面继续本次设计,输出电压可以表示为:
在这里插入图片描述
  对上式求导,得到
在这里插入图片描述
  典型情况下, ∂ V B E / ∂ T ≈ − 2 m V / K ∂V_{BE}/∂T≈-2mV/K VBE/T2mV/K,令 ∂ V r e f / ∂ T = 0 ∂V_{ref}/∂T=0 Vref/T=0,选取合适的 N N N值,可以得到 R 1 / R 4 R_1/R_4 R1/R4的关系;然后在 V B VB VB节点应用 K C L KCL KCL,设定核心管的静态电流 I Q I_Q IQ,便可解的具体的 R 1 R 3 R_1~R_3 R1 R3的具体值;最后根据输出电流镜的复制比 M M M,乘以静态电流 I Q I_Q IQ,得到输出支路电流 I o u t I_{out} Iout,最终的参考电压是 I o u t R 4 I_{out}R_4 IoutR4。至此得到 B G R BGR BGR所有设计参数。
  更详细计算过程,看第六部分内容~

三、 仿真

3.1仿真电路图

在这里插入图片描述

3.2仿真结果

(1)运放增益

  通过 a c ac ac 仿真,仿真得到运放的增益为 58.637 d B 58.637dB 58.637dB,仿真结果如图3.1所示。
在这里插入图片描述

(2)基准温度系数仿真

  通过 d c dc dc 仿真,将温度从 − 25 -25 25~ 125 ℃ 125℃ 125℃进行扫描,观察输出波形,温度特性良好,基准温度系数: T C V = V m a x − V m i n V r e f × ( T m a x − T m i n ) × 1 0 6 = 8.46 p p m / C TCV=\frac{V_{max}-V_{min}}{V_{ref}\times(T_{max}-T_{min})}\times10^{6}=8.46ppm/C TCV=Vref×(TmaxTmin)VmaxVmin×106=8.46ppm/C,测试结果如图3.3所示。
在这里插入图片描述

(3)瞬态启动仿真

  通过 t r a n tran tran 仿真,通过图3.4,该电路可正常启动。
在这里插入图片描述

(4)静态电流仿真

  通过 t r a n tran tran 仿真,电路稳定时,所有支路的总电流, 209 µ A 209µA 209µA
在这里插入图片描述

(5)线性调整率仿真

  通过 d c dc dc 仿真将电源电压从 0 3.3 V 0~3.3V 0 3.3V 进行扫描,在正常工作电源电压下,测量输出线性调整率: S L I N E = V m a x − V m i n V r e f × 100 % = 1.03 m V / V S_{LINE}=\frac{V_{max}-V_{min}}{V_{ref}}\times100\%=1.03\mathrm{mV/V} SLINE=VrefVmaxVmin×100%=1.03mV/V
在这里插入图片描述

(6)电源抑制PSR仿真

  通过 a c ac ac 仿真,在电源电压加小信号波动,观察输出,测量 P S R PSR PSR,通过图3.5可知,在低频为 P S R = − 50.8 d B PSR = -50.8dB PSR=50.8dB,最高 P S R = − 19.4 d B PSR = -19.4dB PSR=19.4dB
在这里插入图片描述

四、仿真结果汇总

  本次 B a n d g a p Bandgap Bandgap设计,通过仿真测得相关参数,结果汇总如表2所示。
在这里插入图片描述

五、总结

  本次Bandgap设计,通过基于运放结构的电路模BGR,因为最终要压低 P S R PSR PSR,所以减小了负载电阻,为了实现特定输出电压,需要进一步提升输出电流,因此功耗有些高,如前所示,优化措施也有很多,
  (1) 更换运放结构实现更大的增益;
  (2) 采用 C a s c o d e Cascode Cascode 层叠电流镜复制电流,有效提升 P S R PSR PSR
  (3) 运放和电流镜栅极之间插入单位增益的运放输出 b u f f e r buffer buffer 如图所示。
在这里插入图片描述

更新

优化结构(采用cascode电流镜)

一、前言

  其他不再赘述,本节续前文,为了解决上一个结构 P S R PSR PSR 与功耗的折中,采用 C a s c o d e Cascode Cascode 电流镜,重新分配电流。

二、电路

  通过对表1的指标分析,搭建的电路如图 2.1 2.1 2.1 所示。

在这里插入图片描述

三、仿真

3.1仿真电路图

在这里插入图片描述

3.2仿真结果

(1)运放增益

  略

(2)基准温度系数仿真

  通过dc仿真,将温度从 − 25 -25 25~ 125 ℃ 125℃ 125℃进行扫描,观察输出波形,温度特性良好,基准温度系数 T C V = V m a x − V m i n V r e f × ( T m a x − T m i n ) × 1 0 6 = 8.47 p p m / C TCV=\frac{V_{max}-V_{min}}{V_{ref}\times(T_{max}-T_{min})}\times10^{6}=8.47ppm/C TCV=Vref×(TmaxTmin)VmaxVmin×106=8.47ppm/C,测试结果如图 3.2 3.2 3.2 所示。
在这里插入图片描述

(3)瞬态启动仿真

  通过 t r a n tran tran 仿真,通过图 3.3 3.3 3.3 ,该电路可正常启动。
在这里插入图片描述

(4)静态电流仿真

  通过 t r a n tran tran 仿真,电路稳定时,所有支路的总电流, 50.9 µ A 50.9µA 50.9µA
在这里插入图片描述

(5)线性调整率仿真

  通过 d c dc dc 仿真将电源电压从 0 0 0~ 3.3 V 3.3V 3.3V进行扫描,在正常工作电源电压下,测量输出线性调整率 S L I N E = V m a x − V m i n V r e f × 100 % = 239.417 μ V / V S_{LINE}=\frac{V_{max}-V_{min}}{V_{ref}}\times100\%=239.417\mu V/V SLINE=VrefVmaxVmin×100%=239.417μV/V
在这里插入图片描述

(6)电源抑制PSR仿真

  通过 A C AC AC 仿真,在电源电压加小信号波动,观察输出,测量 P S R PSR PSR ,通过图3.5可知,在低频为 P S R = − 54.6 d B PSR = -54.6dB PSR=54.6dB,最高 P S R = − 29.64 d B PSR = -29.64dB PSR=29.64dB
在这里插入图片描述

四、仿真结果汇总

  本次 B a n d g a p Bandgap Bandgap 设计,通过仿真测得相关参数,结果汇总如表2所示。
在这里插入图片描述

五、总结

  采用Cascode层叠电流镜复制电流,可以有效提升 P S R PSR PSR

相关文章:

【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真(基于运放的电流模BGR)

【模拟CMOS集成电路设计】带隙基准&#xff08;Bandgap&#xff09;设计与仿真 前言工程文件&部分参数计算过程&#xff0c;私聊~ 一、 设计指标指标分析&#xff1a; 二、 电路分析三、 仿真3.1仿真电路图3.2仿真结果(1)运放增益(2)基准温度系数仿真(3)瞬态启动仿真(4)静态…...

手写一个Tomcat

Tomcat 是一个广泛使用的开源 Java Servlet 容器&#xff0c;用于运行 Java Web 应用程序。虽然 Tomcat 本身功能强大且复杂&#xff0c;但通过手写一个简易版的 Tomcat&#xff0c;我们可以更好地理解其核心工作原理。本文将带你一步步实现一个简易版的 Tomcat&#xff0c;并深…...

QT显示网页控件QAxWidget、QWebEngineView及区别

一.QT种显示网页控件QAxWidget 1.介绍 QAxWidget 属于 QtAxContainer 模块&#xff0c;ActiveX 是微软提出的一种组件对象模型&#xff08;COM&#xff09;技术&#xff0c;允许不同的软件组件在 Windows 操作系统上进行交互和集成。QAxWidget 为开发者提供了在 Qt 应用程序中…...

【AI智能体报告】开源AI助手的革命:OpenManus深度使用报告

一、引言&#xff1a;当开源智能体走进生活 2025年3月&#xff0c;MetaGPT团队用一场"开源闪电战"改写了AI Agent的竞争格局。面对商业产品Manus高达10万元的邀请码炒作&#xff0c;他们仅用3小时便推出开源替代品OpenManus&#xff0c;首日即登顶GitHub趋势榜。 …...

VS Code连接服务器教程

VS Code是什么 VS Code&#xff08;全称 Visual Studio Code&#xff09;是一款由微软推出的免费、开源、跨平台的代码编辑神器。VS Code 支持 所有主流操作系统&#xff0c;拥有强大的功能和灵活的扩展性。 官网&#xff1a;https://code.visualstudio.com/插件市场&#xff1…...

装饰器模式的C++实现示例

核心思想 装饰器设计模式是一种结构型设计模式&#xff0c;它允许动态地为对象添加额外的行为或职责&#xff0c;而无需修改其原始类。装饰器模式通过创建一个装饰器类来包装原始对象&#xff0c;并在保持原始对象接口一致性的前提下&#xff0c;扩展其功能。 装饰器模式的核…...

C 语言数据结构(二):顺序表和链表

目录 1. 线性表 2. 顺序表 2.1 概念及结构 2.1.1 静态顺序表&#xff08;不常用&#xff09; 2.1.2 动态顺序表&#xff08;常用&#xff09; ​编辑 2.2 练习 2.2.1 移除元素 2.2.2 删除有序数组中的重复项 2.2.3 合并两个有序数组 2.3 顺序表存在的问题 3. 链表 …...

TDengine 服务无法启动常见原因

taosd 是 TDengine 的核心服务进程&#xff0c;如果无法启动将导致整个数据库无法使用&#xff0c;了解常导致无法启动的原因&#xff0c;可以帮你快速解决问题。 1. 如何查找日志 无法启动的原因记录在日志中&#xff0c;日志文件默认在 /var/log/taos 的 taosdlog.0 或者 t…...

在 UniApp 中实现stream流式输出 AI 聊天功能,AI输出内容用Markdown格式展示

在 UniApp 中实现流式 AI 聊天功能 介绍 在现代 Web 开发中&#xff0c;流式 API 响应能够显著提升用户体验&#xff0c;尤其是在与 AI 聊天接口进行交互时。本文将介绍如何在 UniApp 中使用 Fetch API 实现一个流式响应的 AI 聊天功能&#xff0c;包括实时更新聊天内容和滚动…...

数据库SQL的配置和练习题

一、MySQL的安装 1.安装包下载 下载地址&#xff1a;https://downloads.mysql.com/archives/community/ 2.解压软件包 将MySQL软件包解压在没有中文和空格的目录下 3.设置配置文件 在解压目录下创建my.ini文件并添加内容如下&#xff1a; ​ [client] #客户端设置&…...

Pytorch的一小步,昇腾芯片的一大步

Pytorch的一小步&#xff0c;昇腾芯片的一大步 相信在AI圈的人多多少少都看到了最近的信息&#xff1a;PyTorch最新2.1版本宣布支持华为昇腾芯片&#xff01; 1、 发生了什么事儿&#xff1f; 在2023年10月4日PyTorch 2.1版本的发布博客上&#xff0c;PyTorch介绍的beta版本…...

AI+办公 Task1

作业 题目1&#xff1a;提示词除了三要素“角色”、“背景”、“要求”之外&#xff0c;还有哪些关键要素 提示词有一个框架叫CO-STAR框架&#xff0c;还有的关键要素有风格、任务、响应格式等。 要素适用场景实际案例​Context需要限定领域或场景的任务"作为医学助手&…...

文件系统调用─── linux第17课

目录 linux 中man 2和man 3的区别 文件内容介绍 C语言文件接口 示例: 输出信息到显示器&#xff0c;你有哪些方法 总结: 系统文件I/O 文件类的系统调用接口介绍 示例 open 函数具体使用哪个,和具体应用场景相关&#xff0c; write read close lseek ,类比C文件相关接…...

概念|RabbitMQ 消息生命周期 待消费的消息和待应答的消息有什么区别

目录 消息生命周期 一、消息创建与发布阶段 二、消息路由与存储阶段 三、消息存活与过期阶段 四、消息投递与消费阶段 五、消息生命周期终止 关键配置建议 待消费的消息和待应答的消息 一、待消费的消息&#xff08;Unconsumed Messages&#xff09; 二、待应答的消息…...

Javaweb后端文件上传@value注解

文件本地存储磁盘 阿里云oss准备工作 阿里云oss入门程序 要重启一下idea&#xff0c;上面有cmd 阿里云oss案例集成 优化 用spring中的value注解...

DeepSeek技术演进与发展前瞻

如果喜欢可以订阅专栏哟(^U^)ノ~YO,至少更新6年 以下DeepSeek未来发展的技术分析框架及核心内容示范 # -*- coding: utf-8 -*- """ DeepSeek技术演进模拟器(概念验证代码) 本代码展示动态架构调整的核心逻辑 """class DynamicArchitect…...

Java常见面试技术点整理讲解——后端框架(整理中,未完成)

前言&#xff1a; 对于后端常用框架的技术整理&#xff0c;其实框架在平时就是会用就行&#xff0c;但面试时多半需要描述实现原理&#xff0c;这个要靠自己理解&#xff0c;不推荐死记硬背。 这篇和另外几篇文章区分开&#xff0c;主要用于规整Java后端各种框架&#xff0c;…...

目标检测YOLO实战应用案例100讲-基于毫米波雷达的多目标检测 (续)

目录 3.2 改进的CFAR目标检测算法 3.3 算法步骤描述 3.4 实验结果与分析 基于VGG16-Net的毫米波雷达目标检测算法 4.1 VGG16-Net网络模型 4.2 改进VGG16-Net网络的目标检测算法 4.3 算法步骤描述 4.4 实验结果与分析 知识拓展 基于毫米波雷达的多目标检测:使…...

python爬虫:Android自动化工具Auto.js的详细使用

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 1. Auto.js 简介2. 安装与配置2.1 安装 Auto.js2.2 安装 Python 环境2.3 安装 ADB 工具3. Python 与 Auto.js 结合3.1 通过 ADB 执行 Auto.js 脚本3.2 通过 Python 控制 Auto.js3.3 通过 Python 与 Auto.js 交互4. 常用…...

MyBatis-Plus 注解大全

精心整理了最新的面试资料和简历模板&#xff0c;有需要的可以自行获取 点击前往百度网盘获取 点击前往夸克网盘获取 MyBatis-Plus 注解大全 MyBatis-Plus 是基于 MyBatis 的增强工具&#xff0c;通过注解简化了单表 CRUD 操作和复杂查询的配置。以下是常用注解的分类及详细说…...

牛客周赛 Round 84——小红的陡峭值(四)

牛客竞赛_ACM/NOI/CSP/CCPC/ICPC算法编程高难度练习赛_牛客竞赛OJ 小红的陡峭值&#xff08;四&#xff09; 题目&#xff1a; 思路&#xff1a; 题目告诉我们关于树的陡峭值的定义&#xff0c;那一开始看起来无从下手&#xff0c;但是当我们选取某一个节点为根节点时&#…...

Redis 内存淘汰策略深度解析

Redis 作为高性能的内存数据库&#xff0c;其内存资源的高效管理直接关系到系统的稳定性和性能。当 Redis 的内存使用达到配置的最大值&#xff08;maxmemory&#xff09;时&#xff0c;新的写入操作将触发内存淘汰机制&#xff08;Eviction Policy&#xff09;&#xff0c;以释…...

微前端之 Garfish.js 的基础使用教程和进阶配置

前言 在现代前端开发中&#xff0c;微前端架构逐渐成为一种流行的解决方案。它允许将大型应用拆分成多个小型独立的子应用&#xff0c;从而提高开发效率和可维护性。Garfish.js 是一个强大的微前端框架&#xff0c;可以帮助我们轻松实现这一架构。在本文中&#xff0c;通过一个…...

Rabbitmq--延迟消息

13.延迟消息 延迟消息&#xff1a;生产者发送消息时指定一个时间&#xff0c;消费者不会立刻收到消息&#xff0c;而是在指定时间之后才会收到消息 延迟任务&#xff1a;一定时间之后才会执行的任务 1.死信交换机 当一个队列中的某条消息满足下列情况之一时&#xff0c;就会…...

Webshell原理与利用

本文内容仅用于技术研究、网络安全防御及合法授权的渗透测试&#xff0c;严禁用于任何非法入侵、破坏或未经授权的网络活动。 1. WebShell的定义与原理 定义&#xff1a;WebShell是一种基于Web脚本语言&#xff08;如PHP、ASP、JSP&#xff09;编写的恶意后门程序&#xff0c;…...

Android 内存泄漏实战:从排查到修复的完整指南

通过实战示例和工具使用&#xff0c;帮助开发者理解、排查和修复 Android 应用中的内存泄漏问题 1. 什么是内存泄漏&#xff1f; 定义&#xff1a;内存泄漏是指程序中已动态分配的内存由于某种原因未能释放&#xff0c;导致系统内存的浪费&#xff0c;最终可能导致应用崩溃或性…...

Liunx系统 : 进程间通信【IPC-Shm共享内存】

文章目录 System V共享内存创建共享内存shmget 控制共享内存shmctl shm特性 System V System V是Liunx中的重要的进程间通信机制&#xff0c;它包括&#xff08;shm&#xff09;共享内存&#xff0c;&#xff08;msg&#xff09;消息队列和&#xff08;sem&#xff09;信号量。…...

c语言笔记 数组指针

数组指针是指针类型的一种&#xff0c;一般数组指针跟二维数组&#xff0c;一维数组结合比较多&#xff0c;下面我们通过图片来探讨一下数组指针的使用以及结合起来的联系。 1.数组指针与一维数组 int a[3]; //一维数组 int aa[2][3];//二维数组 数组元素类型 int [3] int (*p…...

SpringBoot + vue 管理系统

SpringBoot vue 管理系统 文章目录 SpringBoot vue 管理系统 1、成品效果展示2、项目准备3、项目开发 3.1、部门管理 3.1.1、前端核心代码3.1.2、后端代码实现 3.2、员工管理 3.2.1、前端核心代码3.2.2、后端代码实现 3.3、班级管理 3.3.1、前端核心代码3.3.2、后端代码实现 …...

Python语法核心架构与核心知识点:从理论到实践

一、Python的核心设计哲学 Python以“简洁优雅”为核心理念&#xff0c;遵循以下原则&#xff1a; # Zen of Python&#xff08;输入 import this 可查看&#xff09; >>> import this The Zen of Python, by Tim Peters ... Simple is better than complex. Readab…...

OpenHarmony子系统开发 - 编译构建Kconfig可视化配置指导

OpenHarmony子系统开发 - 编译构建Kconfig可视化配置指导 概述 功能简介 该功能基于Kconfiglib与Kconfig实现&#xff0c;方便用户个性化配置OpenHarmony产品子系统部件。 基于Kconfig实现的可视化配置功能具有以下优点&#xff1a; 能直观且全面地展示软件的部件选项。可…...

管中窥豹数字预失真(DPD)

管中窥豹数字预失真&#xff08;DPD&#xff09; 数字预失真在通信领域发挥了巨大的作用&#xff0c;对提高功放效率、改善误码率起了不可忽略的作用&#xff0c;广泛运用与通信、雷达等各种领域。但是对于普通用户&#xff0c;它显得及其高深神秘。今天就用这个短文&#xff…...

spring-boot-starter和spring-boot-starter-web的关联

maven的作用是方便jar包的管理&#xff0c;所以每一个依赖都是对应着相应的一个或者一些jar包&#xff0c;从网上看到很多对spring-boot-starter的描述就是“这是Spring Boot的核心启动器&#xff0c;包含了自动配置、日志和YAML。”没看太明白&#xff0c;所参与的项目上也一直…...

梯度计算中常用的矩阵微积分公式

标量对向量求导的常用数学公式 设标量函数 y f ( x ) y f(\boldsymbol{x}) yf(x)&#xff0c;其中 x ( x 1 , x 2 , ⋯ , x n ) T \boldsymbol{x} (x_1, x_2, \cdots, x_n)^{\rm T} x(x1​,x2​,⋯,xn​)T是一个 n n n维列向量。标量 y y y对向量 x \boldsymbol{x} x的导数…...

vim 编写/etc/docker/daemon.json文件时,E212: 无法打开并写入文件

目录 问题描述 解决方法 1、创建/etc/docker目录 2、打开/etc/docker目录 3、创建daemon.json文件 4、vim 编辑daemon.json文件 问题描述 当我们输入代码&#xff1a;vim /etc/docker/daemon.json时&#xff0c;报E212: 无法打开并写入文件错误&#xff0c;如下图 vim /e…...

http 模块的概念及作用详细介绍

目录 1. http 模块概述 2. http 模块的作用 3. http 服务器代码示例 运行代码 4. http 客户端代码示例 运行代码 5. 总结 1. http 模块概述 http 模块是 Node.js 内置的核心模块之一&#xff0c;它用于创建 HTTP 服务器和客户端&#xff0c;支持处理 HTTP 请求和响应。…...

重生之我在学Vue--第5天 Vue 3 路由管理(Vue Router)

重生之我在学Vue–第5天 Vue 3 路由管理&#xff08;Vue Router&#xff09; 文章目录 重生之我在学Vue--第5天 Vue 3 路由管理&#xff08;Vue Router&#xff09;前言一、路由配置与导航1.1 什么是 Vue Router&#xff1f;1.2 安装 Vue Router1.3 基本路由配置步骤代码示例 1…...

常见排序算法深度评测:从原理到10万级数据实战

常见排序算法深度评测&#xff1a;从原理到10万级数据实战 摘要 本文系统解析冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序和基数排序8种经典算法&#xff0c;通过C语言实现10万随机数排序并统计耗时。测试显示&#xff1a;快速排序综合性能最优&…...

搭建BOA服务器

BOA服务器是嵌入式常用的服务器类型&#xff0c;嵌入式程序作为后端时候如果想配合网页进行显示&#xff0c;利用BOA服务器搭建网络界面是不错的选择 首先下载boa官方安装包 Boa Webserver 下载后传输到Ubuntu随便文件夹&#xff0c;解压 tar -xvf boa-0.94.13.tar.gz 进入…...

JSON.parse(JSON.stringify())深拷贝不会复制函数

深拷贝 是指创建一个新对象&#xff0c;并递归地复制原对象中所有层级的属性和值&#xff0c;从而确保新对象与原对象完全独立 深拷贝的实现方法 &#xff1a; 1. 使用 JSON.parse(JSON.stringify()) 函数会被忽略复制&#xff0c;比如&#xff0c;下面的对象的forma…...

debug_unpack_ios failed: Exception: Failed to codesign 解决方案(亲测有效)

debug_unpack_ios failed: Exception: Failed to codesign 解决方案&#xff08;亲测有效&#xff09; 背景原因解决方案tipsresult 背景 执行flutter doctor全通过后run项目依然报错 原因 1、检查flutter Mac的flutter项目在哪个文件夹内 2、检查flutter Sdk在哪个文件夹内 …...

Docker篇

1.docker环境搭建&#xff1a; 1.1软件仓库的配置rhel9&#xff1a; #cd/etc/yum.repos.d #vim docker.repo [docker] namedocker-ce baseurlhttps://mirrors.aliyun.com/docker-ce/linux/rhel/9/x86_64/stable gpgcheck0 1.2安装docker并且启动服务 yum install -y dock…...

【Linux】基本命令

目录 &#x1f525;一、基础命令 1.sudo su&#xff08;superuser do&#xff09; 2.pwd&#xff08;print working directory&#xff09; 3.ls&#xff08;list&#xff09; 4.cd&#xff08;change directory&#xff09; 5.mkdir&#xff08;make directory&#xff…...

win10电脑鼠标速度突然变的很慢?

电脑鼠标突然变很慢&#xff0c;杀毒检测后没问题&#xff0c;鼠标设置也没变&#xff0c;最后发现可能是误触鼠标的“DPI”调节键。 DPI调节键在鼠标滚轮下方&#xff0c;再次点击即可恢复正常鼠标速度。 如果有和-的按键&#xff0c;速度变快&#xff0c;-速度变慢。 图源&…...

前端(vue)学习笔记(CLASS 3):生命周期工程化开发入门

1、生命周期 Vue生命周期&#xff1a;一个Vue实例从创建到销毁的整个过程 生命周期四个阶段&#xff1a;创建、挂载、更新、销毁 1、创建阶段&#xff1a;响应式数据 2、挂载阶段&#xff1a;渲染模板 3、更新阶段&#xff1a;数据修改、更新视图&#xff08;执行多次&…...

Python写一个查星座的小程序,适合初学者练手——字典和if语句练习

一、界面预览 二、完整代码 # 导入必要的库 import tkinter as tk from tkinter import ttk # 导入ttk模块用于更现代的控件 from PIL import Image, ImageTk # 用于处理图片 import os # 用于文件路径操作class ZodiacApp:def __init__(self, root):self.root rootself.r…...

云上特权凭证攻防启示录:从根账号AK泄露到安全体系升级的深度实践

事件全景:一场持续17分钟的云上攻防战 2025年3月9日15:39,阿里云ActionTrail日志突现异常波纹——根账号acs:ram::123456789:root(已脱敏)从立陶宛IP(164.92.91.227)发起高危操作。攻击者利用泄露的AccessKey(AK)在17分钟内完成侦察→提权→持久化攻击链,完整操作序列…...

blazemeter工具使用--用于自动生成jmeter脚本并进行性能测试

1、安装blazemeter&#xff08;网上有很多详情的教程&#xff09; 2、开始录制&#xff1a;设置号你的文件名称后开始录制 3、录制完成后保存为jmeter(jmx)文件 4、在jmeter中打开文件 5、添加一个后置处理器&#xff1a;查看结果树&#xff0c;后运行看看能否成功&#xf…...

TypeScript系列07-类型声明文件

在现代前端开发中&#xff0c;TypeScript已成为提升代码质量和开发体验的利器。对于React和React Native项目&#xff0c;合理利用类型声明文件不仅能提供更好的智能提示和类型检查&#xff0c;还能显著减少运行时错误。本文将深入探讨类型声明文件的编写与使用。 1. 声明文件…...

【社交+陪玩服务】全场景陪玩系统源码 小程序+H5双端 社群互动+即时点单+搭建教程

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 找搭子系统源码&#xff0c;圈子源码、社交源码、陪玩源码&#xff0c;亲测 100% 可用&#xff0c;跟市场上卖 1w的那款一模一样&#xff0c;功能非常齐全&#xff0c;企业级别运营的…...