当前位置: 首页 > news >正文

《机器学习数学基础》补充资料:过渡矩阵和坐标变换推导

尽管《机器学习数学基础》这本书,耗费了比较长的时间和精力,怎奈学识有限,错误难免。因此,除了在专门的网页( 勘误和修订 )中发布勘误和修订内容之外,对于重大错误,我还会以专题的形式发布,并做出更多的相关解释。

更欢迎有识之士、广大读者朋友,指出其中的错误。非常感谢大家的帮助。

在《机器学习数学基础》第29页到第30页,推导过渡矩阵和坐标变换的时候,原文有一些错误。下面将推导过程重新编写如下,并且增加一些更详细的说明。此说明没有写入原文,是为了协助理解这段推导而作。

针对性的修改,请参阅:勘误与修订


{ α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} α i \pmb{\alpha}_i αi 表示列向量) 是某个向量空间的一个基,则该空间中一个向量 O A → \overrightarrow{OA} OA 可以描述为:

O A → = x 1 α 1 + ⋯ + x n α n (1.3.4) \overrightarrow{OA} = x_1\pmb{\alpha}_1 + \cdots + x_n\pmb{\alpha}_n\tag{1.3.4} OA =x1α1++xnαn(1.3.4)
其中的 ( x 1 , ⋯ , x n ) (x_1, \cdots, x_n) (x1,,xn) 即为向量 O A → \overrightarrow{OA} OA 在基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn}坐标

如果有另外一个基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn} β i \pmb{\beta}_i βi 表示列向量),向量 O A → \overrightarrow{OA} OA 又描述为:

O A → = x 1 ′ β 1 + ⋯ + x n ′ β n (1.3.5) \overrightarrow{OA} = x_1'\pmb{\beta}_1 + \cdots + x_n'\pmb{\beta}_n\tag{1.3.5} OA =x1β1++xnβn(1.3.5)
那么,同一个向量空间的这两个基有没有关系呢?有。不要忘记,基是一个向量组,例如基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn} 中的每个向量也在此向量空间,所以可以用基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} 线性表出,即:

{ β 1 = b 11 α 1 + ⋯ + b n 1 α n ⋮ β n = b 1 n α 1 + ⋯ + b n n α n \begin{cases}\begin{split}\pmb{\beta}_1 &= b_{11}\pmb{\alpha}_1 + \cdots + b_{n1}\pmb{\alpha}_n \\ \vdots \\\pmb{\beta}_n &= b_{1n}\pmb{\alpha}_1 + \cdots + b_{nn}\pmb{\alpha}_n \end{split}\end{cases} β1βn=b11α1++bn1αn=b1nα1++bnnαn
以矩阵(这里提前使用了矩阵的概念,是因为本书已经在前言中声明,不假定读者完全没有学过高等数学。关于矩阵的更详细内容,请参阅第2章)的方式,可以表示为:

[ β 1 ⋯ β n ] = [ α 1 ⋯ α n ] [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] (1.3.6) \begin{equation} \begin{split} \begin{bmatrix}\pmb{\beta}_1&\cdots&\pmb{\beta}_n\end{bmatrix} = \begin{bmatrix}\pmb{\alpha}_1&\cdots&\pmb{\alpha}_n\end{bmatrix}\begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix} \end{split} \end{equation}\tag{1.3.6} [β1βn]=[α1αn] b11bn1b1nbnn (1.3.6)
其中:

P = [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] \pmb P = \begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix} P= b11bn1b1nbnn
称为基 { α 1 , ⋯ , α n } \{\pmb{\alpha}_1, \cdots, \pmb{\alpha}_n\} {α1,,αn} 向基 { β 1 , ⋯ , β n } \{\pmb{\beta}_1, \cdots, \pmb{\beta}_n\} {β1,,βn}过渡矩阵。显然,过渡矩阵实现了一个基向另一个基的变换。

定义 在同一个向量空间,由基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 向基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的过渡矩阵是 P \pmb{P} P ,则:
[ β 1 ⋯ β n ] = [ α 1 ⋯ α n ] P [\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n] = [\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n]\pmb P [β1βn]=[α1αn]P

根据(1.3.5)式,可得:

x 1 ′ β 1 + ⋯ + x n ′ β n = x 1 ′ b 11 α 1 + ⋯ + x 1 ′ b n 1 α n + ⋯ + x n ′ b 1 n α 1 + ⋯ + x n ′ b n n α n = ( x 1 ′ b 11 + ⋯ + x n ′ b 1 n ) α 1 + ⋯ + ( x 1 ′ b n 1 + ⋯ + x n ′ b n n ) α n \begin{split}x_1'\pmb{\beta}_1 + \cdots + x_n'\pmb{\beta}_n &= x_1'b_{11}\pmb{\alpha}_1 + \cdots + x_1'b_{n1}\pmb{\alpha}_n \\ & \quad + \cdots \\ & \quad + x_n'b_{1n}\pmb{\alpha}_1 + \cdots + x_n'b_{nn}\pmb{\alpha}_n \\ &=(x_1'b_{11}+ \cdots + x_n'b_{1n})\pmb{\alpha}_1 \\ & \quad + \cdots \\ &\quad+(x_1'b_{n1} + \cdots + x_n'b_{nn})\pmb{\alpha}_n\end{split} x1β1++xnβn=x1b11α1++x1bn1αn++xnb1nα1++xnbnnαn=(x1b11++xnb1n)α1++(x1bn1++xnbnn)αn
(1.3.4)式 和(1.3.5)式描述的是同一个向量,所以:

{ x 1 = x 1 ′ b 11 + ⋯ + x n ′ b 1 n ⋮ x n = x 1 ′ b n 1 + ⋯ + x n ′ b n n \begin{cases}\begin{split}x_1 &= x_1'b_{11} + \cdots + x_n'b_{1n}\\&\vdots\\x_n &= x_1'b_{n1} + \cdots + x_n'b_{nn}\end{split}\end{cases} x1xn=x1b11++xnb1n=x1bn1++xnbnn
如果写成矩阵形式,即:

[ x 1 ⋮ x n ] = [ b 11 ⋯ b 1 n ⋮ b n 1 ⋯ b n n ] [ x 1 ′ ⋮ x n ′ ] (1.3.7) \begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} = \begin{bmatrix}b_{11} & \cdots & b_{1n}\\\vdots\\b_{n1} & \cdots &b_{nn}\end{bmatrix}\begin{bmatrix}x_1'\\\vdots\\x_n'\end{bmatrix}\tag{1.3.7} x1xn = b11bn1b1nbnn x1xn (1.3.7)
表示了在同一个向量空间中,向量在不同基下的坐标之间的变换关系,我们称为坐标变换公式

定义 在某个向量空间中,由基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 向基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的过渡矩阵是 P \pmb{P} P 。某向量在基 { α 1 ⋯ α n } \{\pmb{\alpha}_1\quad\cdots\quad\pmb{\alpha}_n\} {α1αn} 的坐标是 x = [ x 1 ⋮ x n ] \pmb{x}=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix} x= x1xn ,在基 { β 1 ⋯ β n } \{\pmb{\beta}_1\quad\cdots\quad\pmb{\beta}_n\} {β1βn} 的坐标是 x ′ = [ x 1 ′ ⋮ x n ′ ] \pmb x'=\begin{bmatrix}x_1'\\\vdots \\x_n'\end{bmatrix} x= x1xn ,这两组坐标之间的关系是:
x = P x ′ \pmb x = \pmb P \pmb x' x=Px


《机器学习数学基础》第29页到第30页的错误,是我讲授《机器学习数学基础》的课程时发现的。现在深刻体会到:教,然后知不足。教学相长,认真地研究教学,也是自我提升。

相关文章:

《机器学习数学基础》补充资料:过渡矩阵和坐标变换推导

尽管《机器学习数学基础》这本书,耗费了比较长的时间和精力,怎奈学识有限,错误难免。因此,除了在专门的网页( 勘误和修订 )中发布勘误和修订内容之外,对于重大错误,我还会以专题的形…...

掌握高效大模型任务流搭建术(二):链式流程如何赋能 AI 处理能力提升

前言: 在上一篇文章中,我们初步探索了 LangChain 的基础链式操作——LLMChain。它巧妙地将大语言模型(LLM)与提示模板(Prompt Template)相结合,为模型交互逻辑的封装提供了一种简洁而高效的方式…...

Linux——Docker容器内MySQL密码忘记了如何查看

目录 查看正在运行的MySQL的容器ID 方法一:查看MySQL容器的日志里的密码 方法二:通过环境变量密码登录 方法三:修改密码 查看正在运行的MySQL的容器ID docker ps 方法一:查看MySQL容器的日志里的密码 docker logs [MySQL的容器…...

深入剖析 Kubernetes 弹性伸缩:HPA 与 Metrics Server

引言 在 Kubernetes (K8s) 集群中,如何根据应用的实际负载自动调整 Pod 数量,实现资源的弹性利用,是保障服务稳定性和成本效益的关键。Horizontal Pod Autoscaler (HPA) 和 Metrics Server 正是实现这一目标的核心组件。本文将深入探讨 HPA …...

Qt5 C++ QMap使用总结

文章目录 功能解释代码使用案例代码解释注意事项代码例子参考 功能解释 QList<T> QMap::values() const Returns a list containing all the values in the map, in ascending order of their keys. If a key is associated with multiple values, all of its values wi…...

如何改变怂怂懦弱的气质(2)

你是否曾经因为害怕失败而逃避选择&#xff1f;是否因为不敢拒绝别人而让自己陷入困境&#xff1f;是否因为过于友善而被人轻视&#xff1f;如果你也曾为这些问题困扰&#xff0c;那么今天的博客就是为你准备的。我们将从行动、拒绝、自我认知、实力提升等多个角度&#xff0c;…...

【CVTE】嵌入式软件开发-Linux方向{一面}

文章目录 数组和链表的区别&#xff1f;特点&#xff1f;使用场景&#xff1f;**1. 数组&#xff08;Array&#xff09;****特点&#xff1a;****使用场景&#xff1a;** **2. 链表&#xff08;Linked List&#xff09;****特点&#xff1a;****使用场景&#xff1a;** **3. 数…...

自律linux 第 35 天

之前学习了UDP编程&#xff0c;UDP是可以实现多个用户向一个用户发送的&#xff0c;但是TCP一个服务端在同一时刻只能对应一个客户端&#xff0c;因为TCP的通信是使用管道通信的&#xff0c;如果要使用TCP实现一对多的通信&#xff0c;有如下几种办法&#xff1a;多进程&#x…...

云原生系列之本地k8s环境搭建

前置条件 Windows 11 家庭中文版&#xff0c;版本号 23H2 云原生环境搭建 操作系统启用wsl(windows subsystem for linux) 开启wsl功能&#xff0c;如下图 安装并开启github加速器 FastGithub 2.1 下载地址&#xff1a;点击下载 2.2 解压安装文件fastgithub_win-x64.zip 2…...

Cursor实战:Web版背单词应用开发演示

Cursor实战&#xff1a;Web版背单词应用开发演示 需求分析自行编写需求文档借助Cursor生成需求文档 前端UI设计后端开发项目结构环境参数数据库设计安装Python依赖运行应用 前端代码修改测试前端界面 测试数据生成功能测试Bug修复 总结 在上一篇《Cursor AI编程助手不完全指南》…...

每日一题----------枚举的注意事项和细节

注意事项&#xff1a; 1.当我们使用enum关键字开发一个枚举类时&#xff0c;默认会继承Enum类&#xff0c;而且是一个final类&#xff0c;利用javap反编译可查。 2.public static Season SPRING new Season("春天", "温暖");简化成SPRING("春天&qu…...

【Java学习】异常

一、异常的处理过程 异常类的似复刻变量被throw时&#xff0c;会立即中止当前所在的这层方法&#xff0c;即当层方法里throw异常类似复刻变量之后的语句就不会执行了&#xff0c;如果throw异常语句在当层方法中被try{}包裹&#xff0c;则中止就先发生被包裹在了try{}层&#xf…...

使用STM32CubeMX实现LED灯每秒闪烁一次(STM32G070CBT6单片机)

1.打开STM32CubeMX&#xff0c;点击File->New Project&#xff0c;新建一个新工程。 2.搜索芯片型号&#xff0c;选择正确的芯片封装规格&#xff0c;准备对芯片的引脚进行配置。 进行上面的操作后&#xff0c;跳转到如下的页面。 3.选择要配置的引脚进行配置。此处我的LED是…...

FastGPT 引申:如何基于 LLM 判断知识库的好坏

文章目录 如何基于 LLM 判断知识库的好坏方法概述示例 Prompt声明抽取器 Prompt声明检查器 Prompt 判断机制总结 下面介绍如何基于 LLM 判断知识库的好坏&#xff0c;并展示了如何利用声明抽取器和声明检查器这两个 prompt 构建评价体系。 如何基于 LLM 判断知识库的好坏 在知…...

rabbitmq版本升级并部署高可用

RabbitMQ版本升级 先检查是否已经安装rabbitmq rpm -qa|grep rabbitmq|wc -l //如果结果是0&#xff0c;表示没有安装 rpm -e --nodeps $(rpm -qa|grep rabbitmq) //如安装了&#xff0c;则进行卸载 先检查是否已经安装erlang rpm -qa|grep erlang|wc -l //如果结果…...

了解JVM

目录 一、内存区域划分 1.方法区&#xff08;元数据区&#xff09; 2.堆 3.栈 4.程序计数器 5.本地方法栈 总结&#xff1a; 二、类加载 1.加载 2.验证 3.准备 4.解析 5.初始化 三、双亲委派模型 四、垃圾回收 1.找到垃圾 1&#xff09;引用计数 2&#xff09;…...

Linux - 工具

一、 代码编译&#xff08;g/gcc&#xff09; 1) 预处理 g –E hello.c –o hello.i宏替换 条件编译 头文件展开 去注释 2) 编译 g –S hello.i –o hello.s检查语法将代码转为汇编 3) 汇编 g –c hello.s –o hello.o将汇编转为二进制代码 4) 链接 g hello.o –o …...

ASP.NET Core 6 MVC 文件上传

概述 应用程序中的文件上传是一项功能&#xff0c;用户可以使用该功能将用户本地系统或网络上的文件上传到 Web 应用程序。Web 应用程序将处理该文件&#xff0c;然后根据需要对文件进行一些验证&#xff0c;最后根据要求将该文件存储在系统中配置的用于保存文件的存储中&#…...

大模型LoRA微调训练原理是什么?

环境&#xff1a; LoRA 问题描述&#xff1a; 大模型LoRA微调训练原理是什么&#xff1f; 解决方案&#xff1a; LoRA&#xff08;Low-Rank Adaptation&#xff09;微调是一种高效的参数优化技术&#xff0c;专门用于大型语言模型的微调&#xff0c;旨在减少计算和内存需求…...

Ubuntu系统上部署Node.js项目的完整流程

以下是在Ubuntu系统上部署Node.js项目的完整流程&#xff0c;分为系统初始化、环境配置、项目部署三个部分&#xff1a; 一、系统初始化 & 环境准备 bash # 1. 更新系统软件包 sudo apt update && sudo apt upgrade -y# 2. 安装基础工具 sudo apt install -y buil…...

vue3:七、拦截器实现

一、前言 拦截器可以很好的统一处理请求和响应 ​请求拦截器&#xff1a;可以在请求发送之前对请求进行统一处理&#xff0c;比如添加认证信息&#xff08;如 token&#xff09;、设置请求头、添加公共参数等。​响应拦截器&#xff1a;可以在响应返回之后对响应数据进行统一…...

K8S高可用集群-小白学习之二进制部署(ansible+shell)

一.K8S高可用集群配置概述 序言:本文从一个小白的视角进行K8S的研究和部署,采用二进制的方式是为了更清楚了分解部署流程及了解这个集群是怎么运作的,加上ansible+shell是方便在这个过程中,遇到了问题,我们可以不断的快速重复部署来测试和研究问题的所在点,本文的架构图…...

学生管理信息系统的需求分析与设计

伴随教育的迅猛演进以及学生规模的不断扩增&#xff0c;学生管理信息系统已然成为学校管理的关键利器。此系统能够助力学校管控学生的课程成绩、考勤记载、个人资讯等诸多数据&#xff0c;提升学校的管理效能与服务品质。 一.需求分析 1.1 学生信息管理 学生信息在学校管理体…...

010---基于Verilog HDL的分频器设计

文章目录 摘要一、时序图二、程序设计2.1 rtl2.2 tb 三、仿真分析四、实用性 摘要 文章为学习记录。绘制时序图&#xff0c;编码。通过修改分频值参数&#xff0c;实现一定范围分频值内的任意分频器设计。 一、时序图 二、程序设计 2.1 rtl module divider #(parameter D…...

Pytorch使用手册—雅可比矩阵、海森矩阵、hvp、vhp 等:组合函数变换(专题四十四)

计算雅可比矩阵或海森矩阵在许多非传统深度学习模型中是非常有用的。使用 PyTorch 的常规自动微分 API(Tensor.backward(),torch.autograd.grad)计算这些量是困难的(或者很麻烦)。PyTorch 的受 JAX 启发的函数变换 API 提供了高效计算各种高阶自动微分量的方法。 注意: 本…...

OpenCV计算摄影学(16)调整图像光照效果函数illuminationChange()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 对选定区域内的梯度场应用适当的非线性变换&#xff0c;然后通过泊松求解器重新积分&#xff0c;可以局部修改图像的表观照明。 cv::illuminati…...

WPF框架---MvvmLight介绍

目录 1. MvvmLight 框架准备 2. MvvmLight 中的相关基类 3. MvvmLight 中的数据绑定与通知 a. 核心功能 b. 关键方法与属性 c. 完整示例 d. 高级用法 4. MvvmLight 中的命令对象 a. 命令对象的作用 b. 核心接口&#xff1a;ICommand c. MvvmLight 中的 RelayCommand…...

C语言基础之【指针】(下)

C语言基础之【指针】&#xff08;下&#xff09; 指针和字符串字符指针字符指针做函数参数const修饰的指针变量指针数组做为main函数的形参项目开发常用字符串应用模型while和do-while模型两头堵模型字符串反转模型 字符串处理函数strchr()strrchr()strstr()strtok()strcpy()st…...

Deepseek中的MoE架构的改造:动态可变参数激活的MoE混合专家架构(DVPA-MoE)的考虑

大家好,我是微学AI,今天给大家介绍一下动态可变参数激活MoE架构(Dynamic Variable Parameter-Activated MoE, DVPA-MoE)的架构与实际应用,本架构支持从7B到32B的等多档参数动态激活。该架构通过细粒度难度评估和分层专家路由,实现“小问题用小参数,大问题用大参数”的精…...

【0012】Python函数详解

如果你觉得我的文章写的不错&#xff0c;请关注我哟&#xff0c;请点赞、评论&#xff0c;收藏此文章&#xff0c;谢谢&#xff01; 本文内容体系结构如下&#xff1a; 编写代码往往是为了实现特定的功能&#xff0c;如果需要使用功能多次&#xff0c;也要写同样的代码多次吗…...

Stable Diffusion教程|快速入门SD绘画原理与安装

什么是Stable Diffusion&#xff0c;什么是炼丹师&#xff1f;根据市场研究机构预测&#xff0c;到2025年全球AI绘画市场规模将达到100亿美元&#xff0c;其中Stable Diffusion&#xff08;简称SD&#xff09;作为一种先进的图像生成技术之一&#xff0c;市场份额也在不断增长&…...

鸿蒙应用开发深度解析:API 14核心特性与实战指南

文章目录 一、HarmonyOS API 14架构升级解析1.1 系统架构演进1.2 核心能力对比 二、ArkUI 3.0开发实战2.1 声明式UI完整示例2.2 自定义组件开发 三、分布式能力深度开发3.1 跨设备数据同步流程3.2 分布式数据库操作 四、系统能力扩展开发4.1 后台任务管理4.2 硬件服务调用 五、…...

docker中kibana启动后,通过浏览器访问,出现server is not ready yet

问题&#xff1a;当我在浏览器访问kibana时&#xff0c;浏览器给我报了server is not ready yet. 在网上试了很多方法&#xff0c;都未能解决&#xff0c;下面是我的方法&#xff1a; 查看kibana日志&#xff1a; docker logs -f kibana从控制台打印的日志可以发现&#xff…...

2025年天梯赛第1场选拔赛

目录 A:徐老师的积木山峰 B:徐老师的最长上升子序列 C:徐老师的机器命令 D:徐老师的地下堡 E:徐老师的新鲜羊腿 F:徐老师的黄金矿工 G:徐老师的成绩统计 H:春节糖果 I:幸运函数 J:好坏钥匙 A:徐老师的积木山峰 徐老师有 n 块积木排成一排&#xff0c;从左往右数编号依次为 1∼…...

28-文本左右对齐

给定一个单词数组 words 和一个长度 maxWidth &#xff0c;重新排版单词&#xff0c;使其成为每行恰好有 maxWidth 个字符&#xff0c;且左右两端对齐的文本。 你应该使用 “贪心算法” 来放置给定的单词&#xff1b;也就是说&#xff0c;尽可能多地往每行中放置单词。必要时可…...

SpringBoot校园管理系统设计与实现

在现代校园管理中&#xff0c;一个高效、灵活的管理系统是不可或缺的。本文将详细介绍基于SpringBoot的校园管理系统的设计与实现&#xff0c;涵盖管理员、用户和院校管理员三大功能模块&#xff0c;以及系统的部署步骤和数据库配置。 管理员功能模块 管理员是系统的核心管理…...

thunder bird 配置邮箱

1.配 outlook https://cn.windows-office.net/?p22940 2.配 qq 邮箱 https://blog.csdn.net/lx_ros/article/details/124831850 3.QQ邮箱的授权码在 账号与安全 4.qq 邮箱 更换 foxmail 邮箱名 https://www.yigujin.cn/blog/p10094.html 结语 感觉网上搜到的都不咋好&…...

机器学习中的线性代数:奇异值分解 SVD

线性代数 奇异值分解&#xff08;SVD&#xff09; 参考资料&#xff1a; 超详细&#xff01;彻底搞懂矩阵奇异值分解&#xff08;SVD&#xff09;本质计算应用&#xff01;_哔哩哔哩_bilibili 非常好的视频&#xff0c;本文内容主要来自于该视频&#xff0c;在此表示感谢&#…...

机器学习深度学习基本概念:logistic regression和softmax

逻辑回归用来处理二分类问题 softmax用来处理多分类问题&#xff1a;比如llm在generate的时候&#xff0c;每个batch里面的一个样本的一个一次generate就是softmax生成一个大小为vocab_size的向量的概率分布&#xff0c;然后再采样 逻辑回归&#xff08;logistic regression&…...

机器学习(六)

一&#xff0c;决策树&#xff1a; 简介&#xff1a; 决策树是一种通过构建类似树状的结构&#xff08;颠倒的树&#xff09;&#xff0c;从根节点开始逐步对数据进行划分&#xff0c;最终在叶子节点做出预测结果的模型。 结构组成&#xff1a; 根节点&#xff1a;初始的数据集…...

在 Maven 中使用 <scope> 元素:全面指南

目录 前言 在 Maven 中&#xff0c; 元素用于定义依赖项的作用范围&#xff0c;即依赖项在项目生命周期中的使用方式。正确使用 可以帮助我们优化项目的构建过程&#xff0c;减少不必要的依赖冲突&#xff0c;并提高构建效率。本文将详细介绍 的使用步骤、常见作用范围、代码…...

Manus邀请码如何申请,有哪些办法

Manus是由Monica团队推出的一款通用型AI智能体产品&#xff0c;旨在通过自主任务规划与执行能力&#xff0c;将用户的想法转化为实际成果。它不仅能够理解复杂指令&#xff0c;还能通过调用虚拟环境中的工具&#xff08;如浏览器、代码编辑器、文件处理器等&#xff09;&#x…...

大型WLAN组网部署(Large scale WLAN network deployment)

大型WLAN组网部署 大型WLAN网络关键技术 技术 作用 VLAN Pool 通过VLAN Pool把接入的用户分配到不同的VLAN&#xff0c;可以减少广播域&#xff0c;减少网络中的广播报文&#xff0c;提升网络性能。 DHCP Option 43 & 52 当AC和AP间是三层组网时&#xff0c;AP通过…...

MQ保证消息的顺序性

在消息队列&#xff08;MQ&#xff09;中保证消息的顺序性是一个常见的需求&#xff0c;尤其是在需要严格按顺序处理业务逻辑的场景&#xff08;例如&#xff1a;订单创建 → 支付 → 发货&#xff09;。 一、消息顺序性被破坏的原因 生产者异步/并行发送&#xff1a;消息可能…...

SQL Server查询计划操作符(7.3)——查询计划相关操作符(9)

7.3. 查询计划相关操作符 78)Repartition Streams:该操作符消费多个输入流并产生多个输出流。期间,记录内容与格式保持不变。如果查询优化器使用一个位图过滤(bitmap filter),则输出流中的数据行数将会减少。一个输入流的每行记录被放入一个输出流。如果该操作符保留顺序…...

杨校老师课堂之零基础入门C++备战信息学奥赛-基础篇

零基础快速入门C C学习路线一、基础语法1. C基础框架2. C语言输出3. C 语言输入4. C 数据类型5. C 赋值6. 运算符与表达式7. 控制结构语句7.1 if分支结构语句7.1.1 单分支结构语句7.1.2 双分支结构语句7.1.3 多分支结构语句 7.2 switch开关语句 8. 循环结构语句8.1 for循环8.2 …...

wxWidgets GUI 跨平台 入门学习笔记

准备 参考 https://wiki.wxwidgets.org/Microsoft_Visual_C_NuGethttps://wiki.wxwidgets.org/Tools#Rapid_Application_Development_.2F_GUI_Buildershttps://docs.wxwidgets.org/3.2/https://docs.wxwidgets.org/latest/overview_helloworld.htmlhttps://wizardforcel.gitb…...

Aws batch task 无法拉取ECR 镜像unable to pull secrets or registry auth 问题排查

AWS batch task使用了自定义镜像&#xff0c;在提作业后出现错误 具体错误是ResourceInitializationError: unable to pull secrets or registry auth: The task cannot pull registry auth from Amazon ECR: There is a connection issue between the task and Amazon ECR. C…...

亚信安全发布2024威胁年报和2025威胁预测

在当今数字化时代&#xff0c;网络空间已成为全球经济、社会和国家安全的核心基础设施。随着信息技术的飞速发展&#xff0c;网络连接了全球数十亿用户&#xff0c;推动了数字经济的蓬勃发展&#xff0c;同时也带来了前所未有的安全挑战。2024年&#xff0c;网络安全形势愈发复…...

verb words

纠正correct remedy 修正modify 协商 confer 磋商/谈判 negotiate 通知notice notify *宣布announce 声明declare 宣告 declare *颁布 promulgate /introduce 协调coordinate 评估evaluate assess 撤离evacuate *规定stipulate 参与participate&#xff0c; 涉及refer…...