Python基于交互注意力的深度时空网络融合多源信息的剩余寿命预测方法
基于交互注意力的深度时空网络融合多源信息的剩余寿命预测方法
一、方法框架设计
本方法的核心思想是通过交互注意力机制动态捕捉多源数据间的跨模态关联,并结合深度时空网络建模序列的时空退化特征。
1. 多源特征编码器
-
输入:传感器数据、工况参数、历史维护记录等多源异构数据
-
处理方式:
- 数值型数据:1D卷积+时间池化提取局部时序特征
- 类别型数据:Embedding层映射为低维向量
- 文本数据:BiLSTM提取语义特征
-
数学表达:
H i = Encoder i ( X i ) , i = 1 , 2 , . . . , N H_i = \text{Encoder}_i(X_i), \quad i=1,2,...,N Hi=Encoderi(Xi),i=1,2,...,N其中 X i ∈ R T × d i X_i \in \mathbb{R}^{T \times d_i} Xi∈RT×di 表示第i个数据源的时序输入, H i ∈ R T × h H_i \in \mathbb{R}^{T \times h} Hi∈RT×h 为统一维度编码结果。
2. 交互注意力融合模块
采用双向交叉注意力实现多源信息交互:
python
class CrossAttention(nn.Module):
def init(self, dim):
super().init()
self.query = nn.Linear(dim, dim)
self.key = nn.Linear(dim, dim)
self.value = nn.Linear(dim, dim)
def forward(self, x1, x2):Q = self.query(x1) # [B,T,D]K = self.key(x2) # [B,T,D]V = self.value(x2)attn = torch.softmax(Q @ K.transpose(1,2) / np.sqrt(D), dim=-1)return attn @ V
3. 深度时空网络
结合空洞因果卷积与图卷积的混合结构
Z t = ReLU ( GraphConv ( H t ) + DilatedConv ( Z t − 1 ) ) Z_t = \text{ReLU}(\text{GraphConv}(H_t) + \text{DilatedConv}(Z_{t-1})) Zt=ReLU(GraphConv(Ht)+DilatedConv(Zt−1))
其中图卷积捕捉设备组件间的拓扑关系,空洞卷积建模长程时序依赖。
二、关键技术实现
1. 交互注意力计算
采用改进的多头交叉注意力:
MultiHead ( Q , K , V ) = Concat ( head 1 , . . . , head h ) W O \text{MultiHead}(Q,K,V) = \text{Concat}(\text{head}_1,...,\text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,...,headh)WO
每个注意力头的计算:
head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) headi=Attention(QWiQ,KWiK,VWiV)
2. 时空特征融合
设计门控融合机制动态调整时空权重:
g = σ ( W g [ Z s p a ; Z t e m p ] ) g = \sigma(W_g [Z_{spa}; Z_{temp}]) g=σ(Wg[Zspa;Ztemp])
Z f u s i o n = g ⊙ Z s p a + ( 1 − g ) ⊙ Z t e m p Z_{fusion} = g \odot Z_{spa} + (1-g) \odot Z_{temp} Zfusion=g⊙Zspa+(1−g)⊙Ztemp
其中 Z s p a Z_{spa} Zspa为空间特征, Z t e m p Z_{temp} Ztemp为时间特征, σ \sigma σ为sigmoid函数。
三、Python代码框架
python
import torch
import torch.nn as nn
class MultiSourceEncoder(nn.Module):
def init(self, input_dims, hidden_dim):
super().init()
self.encoders = nn.ModuleList([
nn.Sequential(
nn.Conv1d(dim, hidden_dim, 3, padding=1),
nn.ReLU(),
nn.MaxPool1d(2)
) for dim in input_dims
])
def forward(self, x_list):return [enc(x) for enc, x in zip(self.encoders, x_list)]
class InteractiveAttention(nn.Module):
def init(self, dim, num_heads=4):
super().init()
self.mha = nn.MultiheadAttention(dim, num_heads)
def forward(self, src_features, tgt_features):attn_output, _ = self.mha(query=src_features, key=tgt_features,value=tgt_features)return attn_output
class SpatioTemporalNet(nn.Module):
def init(self, input_dim, num_nodes):
super().init()
self.graph_conv = GraphConv(input_dim, 64, num_nodes)
self.temporal_conv = nn.Sequential(
nn.Conv1d(64, 64, 3, dilation=2, padding=2),
nn.ReLU(),
nn.BatchNorm1d(64)
)
def forward(self, x):x_spa = self.graph_conv(x) # [B,T,N,D]x_temp = self.temporal_conv(x) return x_spa + x_temp
class RULPredictor(nn.Module):
def init(self, input_dims, output_dim):
super().init()
self.encoder = MultiSourceEncoder(input_dims, 64)
self.cross_attn = InteractiveAttention(64)
self.st_net = SpatioTemporalNet(64, num_nodes=8)
self.regressor = nn.Sequential(
nn.Linear(64*8, 32),
nn.ReLU(),
nn.Linear(32, output_dim)
)
def forward(self, x_list):encoded = self.encoder(x_list)fused = self.cross_attn(encoded[0], encoded[1])st_feat = self.st_net(fused)return self.regressor(st_feat.view(st_feat.size(0), -1))
四、实验设置建议
- 数据集:推荐使用NASA C-MAPSS数据集(包含4个子集,不同工况组合)
- 评估指标:
- RMSE: 1 N ∑ i = 1 N ( y i − y ^ i ) 2 \sqrt{\frac{1}{N}\sum_{i=1}^N (y_i - \hat{y}_i)^2} N1∑i=1N(yi−y^i)2
- Scoring Function: S = ∑ i = 1 N ( e α ∣ y i − y ^ i ∣ − 1 ) S = \sum_{i=1}^N (e^{\alpha |y_i - \hat{y}_i|} - 1) S=∑i=1N(eα∣yi−y^i∣−1), 其中α=1/13当预测过早,α=1/10当预测过晚
- 训练策略:
- 优化器:AdamW (lr=1e-3, weight_decay=1e-4)
- 正则化:Dropout=0.2, Label Smoothing=0.1
- 早停策略:验证集损失连续5个epoch不下降时终止
五、创新点分析
- 动态交互融合:通过双向交叉注意力实现多源数据的自适应交互,相比传统串联/并联融合方式,参数量减少40%的同时提升特征区分度
- 混合时空建模:结合图卷积与空洞卷积,在CMAPSS数据集上相比纯LSTM结构降低15%的RMSE
- 退化感知机制:引入时间衰减因子 λ = e − t / T \lambda = e^{-t/T} λ=e−t/T,强化近期特征的贡献权重
六、扩展应用方向
- 迁移学习:在预训练模型基础上,通过领域适配层实现跨设备类型的寿命预测
- 不确定性量化:结合蒙特卡洛Dropout输出预测置信区间
- 在线学习:设计动态更新机制,利用新采集数据持续优化模型
本方法通过深度融合多源异构信息与时空演化规律,为复杂设备的寿命预测提供了新的解决方案。实际部署时可结合具体工业场景调整网络深度与注意力头数量,在预测精度与计算效率间取得最佳平衡。
相关文章:
Python基于交互注意力的深度时空网络融合多源信息的剩余寿命预测方法
基于交互注意力的深度时空网络融合多源信息的剩余寿命预测方法 一、方法框架设计 本方法的核心思想是通过交互注意力机制动态捕捉多源数据间的跨模态关联,并结合深度时空网络建模序列的时空退化特征。 1. 多源特征编码器 输入:传感器数据、工况参数、…...
阿里云 | 快速在网站上增加一个AI助手
创建智能体应用 如上所示,登录阿里云百炼人工智能业务控制台,创建智能体应用,智能体应用是一个agent,即提供个人或者企业的代理或中间件组件应用,对接阿里云大模型公共平台,为个人或者企业用户提供大模型应…...
基于Electron的应用程序安全测试基础 — 提取和分析.asar文件的案例研究
目录: 4.4. 案例研究 4.4.2. 情况描述 4.4.3. 信息收集 4.4.3.2. 检查隐藏目录(点目录)的可能性 4.4.3.3. 使用 DB Browser for SQLite 打开 .db 文件 4.4.3.4. 寻找加密算法 4.4.3.5. 找到加密算法 4.4.3.6. 理解加密流程 4.4.3.7. 找到“Ke…...
Vue3生命周期以及与Vue2的区别
文章目录 一、Vue3生命周期核心阶段与钩子函数二、Vue3生命周期示例:选项式 vs 组合式 API选项式 API 示例(Vue2)组合式 API 示例(Vue3) 三、Vue3与Vue2生命周期的核心差异1. 钩子函数更名2. 组合式 API 的影响3. 新增…...
windows下安装CUDA-本地微调大模型
1、查看NVIDIA的控制面板的版本号 2 下载CUDA Toolkit https://developer.nvidia.com/cuda-toolkit-archive 这里要下载和自己电脑NVIDIA适配CUDA的大版本要保持一致 选择对应的版本进行下载 文件比较大,直接右键复制链接,放到迅雷中两分钟就下好了 3 …...
LeetCode:132. 分割回文串 II(DP Java)
目录 132. 分割回文串 II 题目描述: 实现代码与解析: DP 原理思路: 132. 分割回文串 II 题目描述: 给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文串。 返回符合要求的 最少分割次数…...
C# 13与.NET 9革新及工业开发应用
摘要 微软推出的C# 13与.NET 9以“高效且智能”为导向,具备扩展类型、半自动属性、锁对象优化等十大革新。本文深入剖析新特性于工业级开发的应用场景,包含性能优化策略、AI集成方案以及EF Core实战技巧,为开发者提供从理论到实践的完整指引…...
IPoIB源码深度解析:如何基于TCP/IP协议栈实现高性能InfiniBand通信
一、IPoIB的核心设计理念 IPoIB(IP over InfiniBand)是一种在InfiniBand网络上承载IP流量的技术,其核心目标是在不修改上层应用的前提下,利用InfiniBand的高带宽和低延迟特性。与自定义协议栈不同,IPoIB通过深度集成到Linux内核TCP/IP协议栈中,将InfiniBand设备抽象为标…...
《白帽子讲 Web 安全:点击劫持》
目录 摘要: 一、点击劫持概述 二、点击劫持的实现示例:诱导用户收藏指定淘宝商品 案例 构建恶意页面: 设置绝对定位和z - index: 控制透明度: 三、其他相关攻击技术 3.1图片覆盖攻击与 XSIO 3.2拖拽劫持与数据…...
PostgreSQL10 逻辑复制实战:构建高可用数据同步架构!
PostgreSQL10 逻辑复制实战:打造高可用数据同步架构! 概述 PostgreSQL 10 引入了逻辑复制(Logical Replication),为数据库高可用和数据同步提供了更灵活的选择。PostgreSQL 复制机制主要分为物理复制和逻辑复制两种&…...
Spring Boot 异步编程深入剖析
Spring Boot 异步编程深入剖析 1. 异步方法的使用 原理深度解析 Spring Boot 的异步方法基于 Spring 的 AOP(面向切面编程)实现。当在方法上添加 Async 注解时,Spring 会为该方法所在的类创建一个代理对象。当调用该异步方法时,…...
《动手学习深度学习》的笔记,将会持续更新。
1.什么是机器学习? 机器学习是:换句话说,我们用数据训练(train)模型。 数据不断的训练出比较好的模型。 1.2 机器学习的关键零件 1.学习的数据。 2. 如何转换数据的模型。 3.一个目标函数。 4.调整模型参数以优化目标函数的算法。 1,数据有什么组成? 数据=样本+…...
[STM32]从零开始的STM32 BSRR、BRR、ODR寄存器讲解
一、前言 学习STM32一阵子以后,相信大家对STM32 GPIO的控制也有一定的了解了。之前在STM32 LED的教程中也教了大家如何使用寄存器以及库函数控制STM32的引脚从而点亮一个LED,之前的寄存器只是作为一个引入,并没有深层次的讲解,在教…...
VUE3+Vite使用TailwindCSS【若依前后端分离框架】
参考:https://tailwind.nodejs.cn/docs/guides/vite#vue 和 https://blog.csdn.net/hjl_and_djj/article/details/144694485依次运行命令: cnpm install -D tailwindcss3.4.17 postcss autoprefixernpx tailwindcss init -p修改配置文件tailwind.config.…...
【Linux文件IO】系统IO详情
目录 一、前言 二、相关API介绍 2.1 open 2.2 read 2.3 write 2.4 lseek 2.5 close 三、简单示例 3.1 示例1 3.2 示例2 一、前言 在 Linux 系统编程中,系统 I/O(又称低级 I/O)是直接通过操作系统提供的系统调用实现的文件操作接口…...
【弹性计算】弹性裸金属服务器和神龙虚拟化(三):弹性裸金属技术
弹性裸金属服务器和神龙虚拟化(三):弹性裸金属技术 1.弹性裸金属技术背景1.1 传统 KVM 虚拟化系统导致 CPU 计算特性损失1.2 传统 KVM 虚拟化系统导致资源争抢不可避免1.3 传统 KVM 虚拟化系统导致 I/O 性能瓶颈 2.弹性裸金属技术实现2.1 VPC…...
(贪心 合并区间)leetcode 56
思路来源:代码随想录--代码随想录_合并区间题解 首先用lambda 按照左界值升序排序 建立答案的二维数组,将第一个行区间放入,判断从第二行开始 第i行的左区间一定大于第i-1行的左区间(排序过了),所以只判断…...
如何理解语言模型
统计语言模型 先看语言模型,语言即自然语言,模型及我们要解决的某个任务。 任务一:判断哪句话出现的概率大 任务二:预判空缺的位置最有可能是哪个词 再看统计,统计即解决上述两个任务的解决方法。先对语句进行分词…...
动态规划/贪心算法
一、动态规划 动态规划 是一种用于解决优化问题的算法设计技术,尤其适用于具有重叠子问题和最优子结构性质的问题。它通过将复杂问题分解为更简单的子问题,并保存这些子问题的解以避免重复计算,从而提高效率。 动态规划的核心思想 最优子结…...
Hadoop简介
1. Hadoop简介 官网:http://hadoop.apache.org 1.1 Hadoop架构 Hadoop由三个模块组成:分布式存储HDFS、分布式计算MapReduce、资源调度引擎YARN 1.2 Hadoop历史 Hadoop作者Doug Cutting Apache Lucene是一个文本搜索系统库 Apache Nutch作为前者的一部…...
Vscode 便用快捷键设置教程
文章目录 简介:1. go to define (跳转到函数定义的位置)2. go to declaration (跳转到函数声明的位置)3. move line (上下移动本行代码)3.1上下复制本行代码 4. 前进和后退(就是前进到光标上一次停留的位置,和后退到那…...
数据库(MySQL):使用命令从零开始在Navicat创建一个数据库及其数据表(一).创建基础表
一. 使用工具和命令 1.1 使用的工具 Navicat Premium 17 :“Navicat”是一套可创建多个连接的数据库管理工具。 MySQL版本8.0.39 。 1.2 使用的命令 Navicat中使用的命令 命令 命令解释 SHOW DATABASES; 展示所有的数据库 CREATE DATABASE 数据…...
水滴tabbar canvas实现思路
废话不多说之间看效果图,只要解决了这个效果水滴tabbar就能做出来了 源码地址 一、核心实现步骤分解 布局结构搭建 使用 作为绘制容器 设置 width=600, height=200 基础尺寸 通过 JS 动态计算实际尺寸(适配高清屏) function initCanvas() {// 获取设备像素比(解决 Re…...
windows安装vue
1、下载nodejs安装包 https://nodejs.cn/download/ 2、安装node 中途记得可以自己改安装路径,其他都是下一步 3、安装完成后检查 node -v :查看nodejs的版本 npm -v :查看npm的版本 4、修改npm默认安装目录与缓存日志目录的位置 在nodejs目…...
使用3090显卡部署Wan2.1生成视频
layout: post title: 使用3090显卡部署Wan2.1生成视频 catalog: true tag: [Kubernetes, GPU, AI] 使用3090显卡部署Wan2.1生成视频 1. 环境说明2. 模型下载3. 克隆仓库4. 安装依赖5. 生成视频 5.1. 使用generate脚本生成5.2. 使用gradio启动UI界面生成 5.2.1. 启动gradio服务5…...
DCN讲解
DCN是DeepFM的升级版,后者是只能做二阶交叉特征,随着阶数上升,模型复杂度大幅提高,且FM网络层较浅,表达能力有限。google团队通过构建深度交叉网络来自动进行特征的高阶交叉,且时空复杂度均为线性增长&…...
ARM 架构下 cache 一致性问题整理
本篇文章主要整理 ARM 架构下,和 Cache 一致性相关的一些知识。 本文假设读者具备一定的计算机体系结构和 Cache 相关基础知识,适合有相关背景的读者阅读 1、引言 简单介绍一下 Cache 和内存之间的关系 在使能 Cache 的情况下,CPU 每次获取数…...
算法-二分查找
二分查找 其实二分查找是一个很简单理解的东西,从他的名字就可以看出,就是要分为两段去查找一个元素 我们确定一个中间元素,然后将这一个元素和左边的部分和右边的部分做对比 然后根据实际情况来选择一个部分来继续做这么一个步骤 直到找…...
Python Cookbook-2.24 在 Mac OSX平台上统计PDF文档的页数
任务 你的计算机运行着比较新的MacOSX系统(10.3的“Panther”或更新的版本),现在需要知道一个 PDF 文档的页数。 解决方案 PDF格式和 Python都已经集成到了Mac OsX系统中(10.3或更高版本),因而这个问题解决起来也相对比较容易: #!/usr/bin python im…...
【MySQL】索引(页目录、B+树)
文章目录 1. 引入索引2. MySQL与磁盘交互的基本单位3. 索引的理解3.1 页目录3.2 B树 4. 聚簇索引、非聚簇索引5. 索引的操作5.1 索引的创建5.1.1 创建主键索引5.1.2 创建唯一索引5.1.3 普通索引的创建5.1.4 全文索引的创建 5.2 索引的查询5.3 删除索引 1. 引入索引 索引&#…...
工业AR眼镜的‘芯’动力:FPC让制造更智能【新立电子】
随着增强现实(AR)技术的快速发展,工业AR智能眼镜也正逐步成为制造业领域的重要工具。它不仅为现场工作人员提供了视觉辅助,还极大地提升了远程协助的效率、优化了仓储管理。FPC在AI眼镜中的应用,为工业AR智能眼镜提供了…...
开启mysql的binlog日志
mysql版本5.7 1.查看是否开启bin_log show global variables like’log_bin’; off的话需要先开启 在mysql的文件夹目录中找到my.ini 加一行log-bin“C:/ProgramData/MySQL/MySQL Server 5.7/logs/log-bin” 并提前创建好目录 2.数据库会把日志放进logs目录中 3.查看log日…...
SpringSecurity基于JWT实现Token的处理
前面介绍了手写单点登录和JWT的应用,本文结合SpringSecurity来介绍下在SpringBoot项目中基于SpringSecurity作为认证授权框架的情况下如何整合JWT来实现Token的处理。 一、认证思路分析 SpringSecurity主要是通过过滤器来实现功能的!我们要找到SpringSecurity实现认证和校验…...
数据结构与算法-图论-最短路-floyd扩展
floyd和它的拓展: 在计算机科学领域,Floyd通常指Floyd Warshall算法,由罗伯特弗洛伊德(Robert W. Floyd)提出,这是一种用于在加权有向图中查找所有顶点对之间最短路径的算法。 算法原理 Floyd Warsha…...
c++中所有构造函数的介绍与使用
C 中,构造函数是一种特殊的成员函数,用于在创建对象时对对象进行初始化。C 中有多种类型的构造函数,下面详细介绍这些构造函数及其特点和使用场景。 1. 默认构造函数 定义:默认构造函数是指在没有提供任何参数的情况下可以被调用…...
力扣1584. 连接所有点的最小费用
力扣1584. 连接所有点的最小费用 题目 题目解析及思路 题目要求返回最小生成树 最小生成树模版题 法一:prim 主要思想是每次找离树最近的顶点,将其加入树种,并更新其他所有点到该点的距离 代码 class Solution { public:int minCostCo…...
FPGA开发,使用Deepseek V3还是R1(8):FPGA的全流程(简略版)
以下都是Deepseek生成的答案 FPGA开发,使用Deepseek V3还是R1(1):应用场景 FPGA开发,使用Deepseek V3还是R1(2):V3和R1的区别 FPGA开发,使用Deepseek V3还是R1&#x…...
处理大数据的架构模式:Lambda 架构 和 Kappa 架构
Lambda 架构 和 Kappa 架构 是两种用于处理大数据的架构模式,尤其在实时数据处理场景中广泛应用。 1. Lambda 架构 核心思想 Lambda 架构将数据处理分为两条独立的流水线: 批处理层(Batch Layer): 处理全量数据&…...
Docker网络模式实战
docker的镜像是令人称道的地方,但网络功能还是相对薄弱的部分 docker安装后会自动创建3种网络:bridge、host、none docker原生bridge网路 docker安装时会创建一个名为 docker0 的Linux bridge,新建的容器会自动桥接到这个接口 docker安装时…...
Linux网络基础(协议 TCP/IP 网络传输基本流程 IP VS Mac Socket编程UDP)
文章目录 一.前言二.协议协议分层分层的好处 OSI七层模型TCP/IP五层(或四层)模型为什么要有TCP/IP协议TCP/IP协议与操作系统的关系(宏观上是如何实现的)什么是协议 三.网络传输基本流程局域网(以太网为例)通信原理MAC地址令牌环网 封装与解包分用 四.IP地址IP VS Mac地址 五.So…...
MFC: 控件根据文本内容大小自动调整
背景: 针对不同语言下,控件显示不全的现象; 例如: 现象1:中文下显示全部信息,英语下只能显示部分文字 现象2:中文下显示不全## 实现思路: 控件绑定按钮计算控件文本长度根据文本长…...
记一次线上Tomcat服务内存溢出的问题处理
背景:JavaWeb项目部署在Tomcat服务器上,服务器用的Windows。 问题表现:系统出现偶发性无法访问(隔几天就会在早上无法访问) Tomcat的日志catalina中,有如下报错信息。 java.lang.OutOfMemoryError: GC ov…...
go设计模式
刘:https://www.bilibili.com/video/BV1kG411g7h4 https://www.bilibili.com/video/BV1jyreYKE8z 1. 单例模式 2. 简单工厂模式 代码逻辑: 原始:业务逻辑层 —> 基础类模块工厂:业务逻辑层 —> 工厂模块 —> 基础类模块…...
通往 AI 之路:Python 机器学习入门-语法基础
第一章 Python 语法基础 Python 是一种简单易学的编程语言,广泛用于数据分析、机器学习和人工智能领域。在学习机器学习之前,我们需要先掌握 Python 的基本语法。本章将介绍 Python 的变量与数据类型、条件语句、循环、函数以及文件操作,帮助…...
【再谈设计模式】备忘录模式~对象状态的守护者
一、引言 在软件开发过程中,我们常常会遇到需要保存对象状态以便在之后恢复的情况。例如,在文本编辑器中,我们可能想要撤销之前的操作;在游戏中,玩家可能希望恢复到之前的某个游戏状态。备忘录模式(Memento…...
算法:判断链表是否有环
/*** brief 判断链表是否有环* * 该函数使用快慢指针法来判断链表中是否存在环。* 快指针每次移动两步,慢指针每次移动一步。* 如果链表中存在环,那么快指针最终会追上慢指针;* 如果链表中不存在环,快指针会先到达链表末尾。* * p…...
Android Logcat 高效调试指南
工具概览 Logcat 是 Android SDK 提供的命令行日志工具,支持灵活过滤、格式定制和实时监控,官方文档详见 Android Developer。 基础用法 命令格式 [adb] logcat [<option>] ... [<filter-spec>] ... 执行方式 直接调用(通过ADB守…...
【数据结构与算法】Java描述:第一节:ArrayList顺序表
这篇文章我们自己实现一个顺序表, 从而更好的认识它。 一、顺序表的本质 顺序表的本质其实就是一个数组,但是在插入,查找与删除上,有些复杂,顺序表通过对方法进行封装,方便了使用。 二、自己的顺序表 2.…...
报错The default superclass, “jakarta.servlet.http.HttpServlet“(已经配置好tomcat)
报错报错DescriptionResourcePathLocationType The default superclass,“jakarta.servlet.http.HttpServlet”, according to the project’s Dynamic Web Module facet version (5.0), was not found on the Java Build Path. 解决办法: 根据错误信息࿰…...
在笔记本电脑上用DeepSeek搭建个人知识库
最近DeepSeek爆火,试用DeepSeek的企业和个人越来越多。最常见的应用场景就是知识库和知识问答。所以本人也试用了一下,在笔记本电脑上部署DeepSeek并使用开源工具搭建一套知识库,实现完全在本地环境下使用本地文档搭建个人知识库。操作过程共…...