当前位置: 首页 > news >正文

YOLOv12 ——基于卷积神经网络的快速推理速度与注意力机制带来的增强性能结合

概述

实时目标检测对于许多实际应用来说已经变得至关重要,而Ultralytics公司开发的YOLO(You Only Look Once,只看一次)系列一直是最先进的模型系列,在速度和准确性之间提供了稳健的平衡。注意力机制的低效阻碍了它们在像YOLO这样的高速系统中的应用。YOLOv12旨在通过将注意力机制集成到YOLO框架中来改变这一现状。

1.新特性

大多数目标检测架构传统上依赖于卷积神经网络(CNN),因为注意力机制效率低下,面临着二次计算复杂度和低效的内存访问操作问题。因此,在对推理速度要求很高的YOLO框架中,基于CNN的模型通常比基于注意力的系统表现更好。

YOLOv12通过引入三个关键改进来克服这些限制:

区域注意力模块(A2):

  • YOLOv12引入了一个简单而高效的区域注意力模块(A2),该模块将特征图分割成多个片段,在保留大感受野的同时降低了传统注意力机制的计算复杂度。这种简单的修改使模型在保持较大视野的同时提高了速度和效率。

残差高效层聚合网络(R - ELAN):

  • YOLOv12利用R - ELAN来解决注意力机制带来的优化挑战。R - ELAN对之前的ELAN架构进行了改进,具体如下:
    • 块级残差连接和缩放技术,以确保训练的稳定性。
    • 重新设计的特征聚合方法,提高了性能和效率。

架构改进:

  • 快速注意力(Flash Attention):快速注意力的集成解决了注意力机制的内存访问瓶颈问题,优化了内存操作并提高了速度。
  • 去除位置编码:通过消除位置编码,YOLOv12简化了模型,使其更快、更简洁,同时不牺牲性能。
  • 调整多层感知机(MLP)比率:多层感知机的扩展比率从4降低到1.2,以平衡注意力网络和前馈网络之间的计算负载,提高效率。
  • 减少块深度:通过减少架构中堆叠块的数量,YOLOv12简化了优化过程并提高了推理速度。
  • 卷积算子:YOLOv12广泛使用卷积操作以利用其计算效率,进一步提高性能并降低延迟。

注:

由于两个因素,注意力机制本质上比卷积神经网络(CNN)慢:

  1. 复杂性。首先,自注意力操作的计算复杂度随输入序列长度 L 呈二次方增长。此外,另一个重要因素是,大多数基于注意力的视觉变压器由于其复杂的设计(例如,Swin 变压器中的窗口划分/反转
    )和额外模块的引入(例如,位置编码),逐渐积累了速度开销。
  2. 计算。其次,在注意力计算过程中,与 CNN 相比,内存访问模式效率较低,例如注意力图和 softmax 图。此外,与 CNN 相比,注意力中的不规则内存访问模式会引入更多的延迟。

2.YOLOv12的架构概述


图1:YOLOv12的主干网络和头部网络架构

3.区域注意力模块

图2:区域注意力可视化

为了解决普通注意力机制相关的计算成本问题,YOLOv12利用了局部注意力机制,如移位窗口注意力、十字交叉注意力和轴向注意力。虽然这些方法通过将全局注意力转换为局部注意力来降低复杂度,但由于感受野减小,它们在速度和准确性方面存在局限性。

  • 提出的解决方案:YOLOv12引入了一个简单而高效的区域注意力模块。该模块将分辨率为(H,W)的特征图分割成L个大小为(H/L,W)或(H,W/L)的片段。它不是使用显式的窗口划分,而是应用了一个简单的重塑操作。
  • 优点:这将感受野减小到原来的四分之一,但与其他局部注意力方法相比,仍然保持了较大的感受野。通过将计算成本从传统的(2n²hd)降低到(n²hd)/2,模型在不牺牲准确性的情况下变得更加高效。

4.残差高效层聚合网络(R - ELAN)


图3:YOLOv12中使用的R - ELAN

ELAN概述:

高效层聚合网络(ELAN) 在早期的YOLO模型中用于改进特征聚合。ELAN的工作方式如下:

  1. 对1×1卷积层的输出进行分割。
  2. 通过多个模块处理这些分割后的部分。
  3. 在应用另一个1×1卷积以对齐最终维度之前,将输出进行拼接。

ELAN存在的问题

  1. 梯度阻塞:由于从输入到输出缺乏残差连接,导致训练不稳定。
  2. 优化挑战:注意力机制和架构可能会导致收敛问题,L规模和X规模的模型即使使用Adam或AdamW优化器也无法收敛或保持不稳定。

提出的解决方案——R - ELAN

  1. 残差连接:引入了从输入到输出的残差捷径,带有一个缩放因子(默认值为0.01),以提高稳定性。
  2. 层缩放类比:类似于深度视觉Transformer中使用的层缩放,但避免了将层缩放应用于每个区域注意力模块而导致的速度下降。

新的聚合方法

  1. 修改后的设计:新方法不是在过渡层之后分割输出,而是调整通道维度并创建单个特征图。
  2. 瓶颈结构:在拼接之前通过后续块处理特征图,形成更高效的聚合方法。

5.架构改进

  • 快速注意力(Flash Attention):YOLO12利用了快速注意力,它最大限度地减少了内存访问开销。这解决了注意力机制的主要内存瓶颈问题,缩小了与CNN的速度差距。
  • MLP比率调整:前馈网络的扩展比率从Transformer中通常的4降低到YOLOv12中的约1.2。这防止了MLP在运行时占据主导地位,从而提高了整体效率。
  • 去除位置编码:YOLOv12在其注意力层中省略了显式的位置编码。这使得模型“快速且简洁”,同时在检测性能上没有损失。
  • 减少堆叠块:最近的YOLO主干网络在最后一个阶段堆叠了三个注意力/CNN块;而YOLOv12在该阶段只使用了一个R - ELAN块。较少的顺序块简化了优化过程并提高了推理速度,尤其是在更深的模型中。
  • 卷积算子:该架构还使用了带有批量归一化的卷积,而不是带有层归一化的线性层,以充分利用卷积算子的效率。

6.基准测试


图4:YOLOv12的比较

数据集:所有模型均在MS COCO 2017目标检测基准上进行评估。

YOLOv12 - N的性能:最小的YOLOv12 - N模型实现了40.6%的更高平均精度均值(mAP),相比之下,YOLOv10 - N为38.5%,YOLOv11 - N为39.4%,同时保持了相似的推理延迟。

YOLOv12 - S与RT - DETR的比较:YOLOv12 - S模型也优于RT - DETR模型。值得注意的是,它的运行速度比RT - DETR - R18模型快约42%,同时只使用了RT - DETR - R18模型约36%的计算量和约45%的参数。

每个YOLOv12模型(从N到X)在与YOLOv8、YOLOv9、YOLOv10、YOLOv11等类似大小的模型相比时,在相当或更低的延迟下实现了更好的mAP。这种优势从小型模型到大型模型都存在,证明了YOLOv12改进的可扩展性。

7. 最先进技术比较

例如:对于N 规模的模型,YOLOv12 - N 在平均精度均值(mAP)上分别比 YOLOv6–3.0 - N [32]、 YOLOv8-N [58]、 YOLOv10-N [53] 和 YOLOv11 [28] 高出 3.6%、3.3%、2.1% 和 1.2%,同时保持相似甚至更少的计算量和参数,并实现了1.64 毫秒/图像的快速延迟速度

  • 对于S 规模的模型,YOLOv12 - S 具有 21.4G 浮点运算量(FLOPs)和 9.3M 参数,在 2.61 毫秒/图像的延迟下实现了 48.0 mAP。它在平均精度均值(mAP)上分别比 YOLOv8-S [24]、YOLOv9-S [58]、YOLOv10-S [53] 和 YOLOv11 - S [28] 高出 3.0%、1.2%、1.7% 和 1.1%,同时保持相似或更少的计算量。
  • 对于M 规模的模型,YOLOv12 - M 具有 67.5G 浮点运算量(FLOPs)和 20.2M 参数,实现了 52.5 mAP 的性能和 4.86 毫秒/图像的速度。
  • 对于L 规模的模型,YOLOv12 - L 甚至比 YOLOv10-L [53] 少 31.4G 浮点运算量(FLOPs)。
  • 对于X 规模的模型,YOLOv12 - X 在平均精度均值(mAP)上分别比 YOLOv10-X [53] / YOLOv11 - X [28] 高出 0.8% 和 0.6%,同时具有相当的速度、浮点运算量(FLOPs)和参数。

8. 推理速度比较

YOLOv12 的推理速度比 YOLOv9 ** 显著提高**,同时与 YOLOv10 和 YOLOv11 相当

总结

YOLOv12目前的一个局限性是它依赖于快速注意力(FlashAttention)来实现最佳速度。快速注意力仅在相对较新的GPU架构(NVIDIA的图灵、安培、阿达·洛芙莱斯或霍珀系列)上得到支持,例如特斯拉T4、RTX 20/30/40系列、A100、H100等。

这意味着缺乏这些架构的旧GPU无法充分受益于YOLOv12的优化注意力实现。使用不支持的硬件的用户将不得不回退到标准注意力内核,从而失去一些速度优势。

相关文章:

YOLOv12 ——基于卷积神经网络的快速推理速度与注意力机制带来的增强性能结合

概述 实时目标检测对于许多实际应用来说已经变得至关重要,而Ultralytics公司开发的YOLO(You Only Look Once,只看一次)系列一直是最先进的模型系列,在速度和准确性之间提供了稳健的平衡。注意力机制的低效阻碍了它们在…...

一个行为类似标准库find算法的模板

函数需要两个模板类型参数&#xff0c;一个表示函数的迭代器参数&#xff0c;另一个表示值的类型。 代码 #include<iostream> #include<string> #include<vector> #include<list>using namespace std;template <typename IterType,typename T>…...

LLC谐振变换器恒压恒流双竞争闭环simulink仿真

1.模型简介 本仿真模型基于MATLAB/Simulink&#xff08;版本MATLAB 2017Ra&#xff09;软件。建议采用matlab2017 Ra及以上版本打开。&#xff08;若需要其他版本可联系代为转换&#xff09;针对全桥LLC拓扑&#xff0c;利用Matlab软件搭建模型&#xff0c;分别对轻载&#xf…...

Elasticsearch 的分布式架构原理:通俗易懂版

Elasticsearch 的分布式架构原理&#xff1a;通俗易懂版 Lucene 和 Elasticsearch 的前世今生 Lucene 是一个功能强大的搜索库&#xff0c;提供了高效的全文检索能力。然而&#xff0c;直接基于 Lucene 开发非常复杂&#xff0c;即使是简单的功能也需要编写大量的 Java 代码&…...

[深度学习]基于C++和onnxruntime部署yolov12的onnx模型

基于C和ONNX Runtime部署YOLOv12的ONNX模型&#xff0c;可以遵循以下步骤&#xff1a; 准备环境&#xff1a;首先&#xff0c;确保已经下载后指定版本opencv和onnruntime的C库。 模型转换&#xff1a; 安装好yolov12环境并将YOLOv12模型转换为ONNX格式。这通常涉及使用深度学习…...

seacmsv9报错注入

1、seacms的介绍 ​ seacms中文名&#xff1a;海洋影视管理系统。是一个采用了php5mysql架构的影视网站框架&#xff0c;因此&#xff0c;如果该框架有漏洞&#xff0c;那使用了该框架的各个网站都会有相同问题。 2、源码的分析 漏洞的部分源码如下&#xff1a; <?php …...

剑指 Offer II 033. 变位词组

comments: true edit_url: https://github.com/doocs/leetcode/edit/main/lcof2/%E5%89%91%E6%8C%87%20Offer%20II%20033.%20%E5%8F%98%E4%BD%8D%E8%AF%8D%E7%BB%84/README.md 剑指 Offer II 033. 变位词组 题目描述 给定一个字符串数组 strs &#xff0c;将 变位词 组合在一起…...

【2025全网最新最全】前端Vue3框架的搭建及工程目录详解

文章目录 安装软件Node.js搭建Vue工程创建Vue工程精简Vue项目文件 Vue工程目录的解读网页标题的设置设置全局样式路由配置 安装软件Node.js 下载地址&#xff1a;https://nodejs.org/zh-cn/ 安装完成后&#xff0c;打开cmd,查看环境是否准备好 node -v npm -vnpm使用之前一定…...

前缀和专题练习 ——基于罗勇军老师的《蓝桥杯算法入门C/C++》

目录 一、0求和 - 蓝桥云课 算法代码&#xff1a; 代码思路概述 代码详细解释 数组定义 输入读取 前缀和计算部分 结果计算部分 输出结果 程序结束 总结 二、1.可获得的最小取值 - 蓝桥云课 算法代码&#xff1a; 代码思路概述 详细代码逻辑解释 输入初始化 …...

1.测试策略与计划设计指南

1.介绍 1.1项目介绍 完整项目组成&#xff1a;1.基于K8S定制开发的SaaS平台&#xff1b;2.多个团队提供的中台服务(微服务)&#xff1b;3.多个业务团队开发的系统平台。涉及多个项目团队、上百个微服务组件。 测试在所有团队开发测试后&#xff0c;自己搭建测试环境&#xff0c…...

pikachu

暴力破解 基于表单的暴力破解 【2024版】最新BurpSuit的使用教程&#xff08;非常详细&#xff09;零基础入门到精通&#xff0c;看一篇就够了&#xff01;让你挖洞事半功倍&#xff01;_burpsuite使用教程-CSDN博客 登录页面&#xff0c;随意输入抓包&#xff0c;发送到攻击…...

HDFS扩缩容及数据迁移

1.黑白名单机制 在HDFS中可以通过黑名单、白名单机制进行节点管理&#xff0c;决定数据可以复制/不可以复制到哪些节点。 黑名单通常是指在HDFS中被标记为不可用或不可访问的节点列表&#xff0c;这些节点可能由于硬件故障、网络问题或其他原因而暂时或永久性地无法使用。当一…...

设计模式-(状态模式,策略模式,代理模式,责任链模式)

状态模式 概念&#xff1a; 用于管理一个对象在不同状态下的行为变化。它允许对象在内部状态改变时改变其行为&#xff0c;从而让对象看起来像是改变了其类。状态模式的核心思想是将状态封装到独立的类中&#xff0c;每个状态类都定义了在该状态下对象的行为 状态模式主要涉…...

二、IDE集成DeepSeek保姆级教学(使用篇)

各位看官老爷好&#xff0c;如果还没有安装DeepSeek请查阅前一篇 一、IDE集成DeepSeek保姆级教学(安装篇) 一、DeepSeek在CodeGPT中使用教学 1.1、Edit Code 编辑代码 选中代码片段 —> 右键 —> CodeGPT —> Edit Code, 输入自然语言可编辑代码&#xff0c;点击S…...

通义灵码插件安装入门教学 - IDEA(安装篇)

在开发过程中&#xff0c;使用合适的工具和插件可以极大地提高我们的工作效率。今天&#xff0c;我们将详细介绍如何在 IntelliJ IDEA 中安装并配置通义灵码插件&#xff0c;这是一款旨在提升开发者效率的实用工具。无论你是新手还是有经验的开发者&#xff0c;本文都将为你提供…...

每天一个Flutter开发小项目 (4) : 构建收藏地点应用 - 深入Flutter状态管理

引言 欢迎回到 每天一个Flutter开发小项目 系列博客!在前三篇博客中,我们从零开始构建了计数器应用、待办事项列表应用,以及简易天气应用。您不仅掌握了 Flutter 的基础组件和布局,还学习了网络请求、JSON 解析等实用技能,更重要的是,我们一起探讨了高效的 Flutter 学习…...

qt-C++笔记之QtCreator新建项目即Create Project所提供模板的逐个尝试

qt-C笔记之QtCreator新建项目即Create Project所提供模板的逐个尝试 code review! 文章目录 qt-C笔记之QtCreator新建项目即Create Project所提供模板的逐个尝试1.Application(Qt):Qt Widgets Application1.1.qmake版本1.2.cmake版本 2.Application(Qt):Qt Console Applicati…...

【NestJS系列】安装官方nestjs CLI 工具

环境搭建指南:从零开始创建 NestJS 项目 一、工具准备 1. 安装 Node.js 环境 推荐使用 LTS 版本(目前 20.x 以上)验证安装:终端执行 node -v 和 npm -vNode.js 官网下载2. 包管理器选择 这里选用更高效的 pnpm,你也可选择 npm 或 yarn # 安装 pnpm npm install -g pnp…...

【Springboot知识】Logback从1.2.x升级到1.3.x需要注意哪些点?

文章目录 **1. 确认依赖版本**示例依赖配置&#xff08;Maven&#xff09;&#xff1a; **2. 处理 StaticLoggerBinder 的移除**解决方案&#xff1a; **3. 修改日志配置文件**示例 logback.xml 配置&#xff1a; **4. 检查兼容性问题**Spring Boot 2.x 的兼容性解决方案&#…...

【Linux C | 时间】localtime 的介绍、死机、死锁问题以及 localtime_r 函数的时区问题

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

每日一题——LRU缓存机制的C语言实现详解

LRU缓存机制的C语言实现详解 参考1. 数据结构设计双向链表节点哈希表节点哈希表LRU缓存结构 2. 初始化哈希表和双向链表哈希函数初始化哈希表初始化双向链表创建LRU缓存 3. 更新双向链表4. 实现Get操作5. 实现Put操作更新节点值删除最久未使用节点插入或更新节点 6. 释放缓存释…...

虚函数表和虚函数表指针

1.虚函数表什么时候生成&#xff1f; 编译器编译的时候生成 2.虚函数表存放在哪里&#xff1f; 讨论两种情况&#xff1a;在磁盘&#xff08;可执行程序&#xff09;、在内存&#xff08;运行状态&#xff09; 3.虚函数表与虚函数表指针的关系 每个类只有一个虚函数&#x…...

计算机毕业设计SpringBoot+Vue.js图书进销存管理系统(源码+文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

3-2 WPS JS宏 工作簿的打开与保存(模板批量另存为工作)学习笔记

************************************************************************************************************** 点击进入 -我要自学网-国内领先的专业视频教程学习网站 *******************************************************************************************…...

大白话Vuex 核心概念(state、mutations、actions)的使用案例与原理

大白话Vuex 核心概念&#xff08;state、mutations、actions&#xff09;的使用案例与原理 Vuex是Vue.js应用程序中专门用来管理状态的工具&#xff0c;就好像是一个大管家&#xff0c;帮你把项目里一些重要的数据和操作管理得井井有条。下面用大白话结合案例来介绍Vuex核心概…...

【学写LibreCAD】1 LibreCAD主程序

一、源码 头文件&#xff1a; #ifndef MAIN_H #define MAIN_H#include<QStringList>#define STR(x) #x #define XSTR(x) STR(x)/*** brief handleArgs* param argc cli argument counter from main()* param argv cli arguments from main()* param argClean a list…...

CentOS7最小化安装中使用curl安装yum和wget

在 CentOS 7 最小化安装中&#xff0c;如果已经有curl工具&#xff0c;可以按照以下步骤使用它来安装yum和wget&#xff1a; 1. 备份原有的 yum 源配置文件 为了避免配置冲突或后续需要恢复&#xff0c;先备份原有的yum源配置文件。 mv /etc/yum.repos.d/CentOS-Base.repo /…...

【Linux】learning notes(3)make、copy、move、remove

文章目录 1、mkdir &#xff08;make directory&#xff09;2、rmdir &#xff08;remove directory&#xff09;3、rm&#xff08;remove&#xff09;4、>5、touch 新建文件6、mv&#xff08;move&#xff09;7、cp&#xff08;copy&#xff09; 1、mkdir &#xff08;make…...

P10108 [GESP202312 六级] 闯关游戏

题目大意 如题 分析 设最佳通关方案为 { s 1 , s 2 , . . . , s k } \{s_1,s_2,...,s_k\} {s1​,s2​,...,sk​}&#xff0c;其中 s i s_i si​ 代表第 i i i 次到达的关卡&#xff08; ≥ N \ge N ≥N 的不算&#xff09;。 当 a k N − 1 a_kN-1 ak​N−1 时&#…...

Dubbo RPC 原理

一、Dubbo 简介 Apache Dubbo 是一款高性能、轻量级的开源 RPC 框架&#xff0c;支持服务治理、协议扩展、负载均衡、容错机制等核心功能&#xff0c;广泛应用于微服务架构。其核心目标是解决分布式服务之间的高效通信与服务治理问题。 二、Dubbo 架构设计 1. 核心组件 Prov…...

网络安全 机器学习算法 计算机网络安全机制

&#xff08;一&#xff09;网络操作系统 安全 网络操作系统安全是整个网络系统安全的基础。操作系统安全机制主要包括访问控制和隔离控制。 访问控制系统一般包括主体、客体和安全访问政策 访问控制类型&#xff1a; 自主访问控制强制访问控制 访问控制措施&#xff1a; 入…...

【Jenkins】一种灵活定义多个执行label节点的jenkinsfile写法

确定执行机器和自定义工作目录&#xff08;忽略节点的workspace&#xff09; pipeline{agent {node {label "XXXXX"customWorkspace "E:/workspace/"}}parameters {}options {}stages {}post {} }仅确定执行机器 pipeline{agent { label "XXXXX&quo…...

Web自动化之Selenium控制已经打开的浏览器(Chrome,Edge)

在使用selenium进行web自动化或爬虫的时候,经常会面临登录的情况,对于这种情况,我们可以利用Selenium控制已经打开的浏览器&#xff0c;从而避免每次都需要重新打开浏览器并进行登录的繁琐步骤。 目录 说明 启动浏览器 注意 --user-data-dir说明 代码设定 代码 改进代…...

【万字长文】开源之播对话白鲸开源CEO郭炜--乐观主义的开源精神走得更远

本文为白鲸开源科技CEO郭炜1小时深度访谈全记录 来源于&#xff1a;开源之播」Episode15:对话郭炜–乐观主义的开源精神走得更远 大家好&#xff0c;我是郭炜&#xff0c;开源圈的“郭大侠”。作为 Apache 基金会的成员&#xff0c;我曾参与并孵化了多个开源项目&#xff0c;如…...

Verilog 位运算符和逻辑运算符的使用

Verilog 位运算符和逻辑运算符的使用 目录 前言 一、逻辑运算符 二、位运算符 总结 前言 本文详细描述了Verilog 逻辑运算符和位运算符的使用&#xff0c;随着编程的熟练&#xff0c;有时候总是喜欢混用它们&#xff0c;虽然能实现同样的功能&#xff0c;但最好还是注意一下…...

压测报告:DeepSeek-R1-Distill-Qwen-32B模型性能评估

1. 实验背景 本实验旨在评估DeepSeek-R1-Distill-Qwen-32B模型在特定硬件配置下的性能表现。测试硬件为GPU服务器。实验主要关注模型在不同并发请求数下的峰值生成速度。 吞吐量(Throughput): 测试模型在单位时间内可以处理多少请求,通常以“每秒生成的令牌数(tokens/s)…...

【论文笔记】ClipSAM: CLIP and SAM collaboration for zero-shot anomaly segmentation

原文链接 摘要 近年来&#xff0c;CLIP 和 SAM 等基础模型在零样本异常分割 (ZSAS) 任务中展现出良好的性能。然而&#xff0c;无论是基于 CLIP 还是基于 SAM 的 ZSAS 方法&#xff0c;仍然存在不可忽视的关键缺陷&#xff1a;1) CLIP 主要关注不同输入之间的全局特征对齐&am…...

DeepSeek:面向效率与垂直领域的下一代大语言模型技术解析

本文将深入剖析DeepSeek模型的核心算法架构&#xff0c;揭示其在神经网络技术上的突破性创新&#xff0c;并与主流大模型进行全方位技术对比。文章涵盖模型设计理念、训练范式优化、应用场景差异等关键维度&#xff0c;为读者呈现大语言模型领域的最新发展图景。 一、DeepSeek…...

win32汇编环境,加速键的应用示例

;运行效果 ;win32汇编环境,加速键的应用示例 ;加速键&#xff0c;就是按某个键&#xff0c;开启某个功能。不用鼠标点来点去的东西。 ;直接抄进RadAsm可编译运行。重要部分加备注。 ;下面为asm文件 ;>>>>>>>>>>>>>>>>>>…...

【计算机网络】OSI模型、TCP/IP模型、路由器、集线器、交换机

一、计算机网络分层结构 计算机网络分层结构 指将计算机网络的功能划分为多个层次&#xff0c;每个层次都有其特定的功能和协议&#xff0c;并且层次之间通过接口进行通信。 分层设计的优势&#xff1a; 模块化&#xff1a;各层独立发展&#xff08;如IPv4→IPv6&#xff0c…...

[Web 安全] 反序列化漏洞 - 学习笔记

关注这个专栏的其他相关笔记&#xff1a;[Web 安全] Web 安全攻防 - 学习手册-CSDN博客 0x01&#xff1a;反序列化漏洞 — 漏洞介绍 反序列化漏洞是一种常见的安全漏洞&#xff0c;主要出现在应用程序将 序列化数据 重新转换为对象&#xff08;即反序列化&#xff09;的过程中…...

每日一题——字母异位词分组

字母异位词分组 1. 问题描述示例提示 2. 解题思路具体步骤 3. 代码实现4. 代码解析&#xff08;1&#xff09;排序法&#xff08;2&#xff09;哈希表存储&#xff08;3&#xff09;动态内存分配&#xff08;4&#xff09;释放内存1. HASH_FIND_STR 的作用2. 宏的定义4. 详细解…...

力扣 807. 保持城市天际线(Java实现)

题目分析 给定一个二维数组&#xff0c;行列长度相等&#xff0c;要保持四个方向仍一观察高度不变的情况下&#xff0c;适当添加建筑高度&#xff0c;问最大高度增量和。所谓四个方向高度不变的增量&#xff0c;其实就是arr[i][j]与同i行最大值同j列最大值之间的最小值的差&…...

【视频2 - 4】初识操作系统,Linux,虚拟机

&#x1f4dd;前言说明&#xff1a; ●本专栏主要记录本人的基础算法学习以及LeetCode刷题记录&#xff0c;主要跟随B站博主灵茶山的视频进行学习&#xff0c;专栏中的每一篇文章对应B站博主灵茶山的一个视频 ●题目主要为B站视频内涉及的题目以及B站视频中提到的“课后作业”。…...

重启securecmd失败

重启securecmd失败 问题描述&#xff1a;KES集群部署工具中&#xff0c;节点管理里新增节点下一步报错无法检查securecmd端口进程情况&#xff0c;安装依赖包后再次下一步提示如下报错&#xff1a; 解决办法&#xff1a; [rootlocalhost cluster]# cd /home/kingbase/cluster…...

python学习四

python运算符与表达式 表达式: Python中的表达式是一种计算结果的代码片段。它可以包 含变量、运算符、常数和函数调用,用于执行各种数学、逻辑 和功能操作 算术运算符: 比较(关系)运算符: 赋值运算符: 逻辑运算符: 位运算符: 成员运算符: 身份运算符 <...

LeetCode 236.二叉树的最近公共祖先

题目&#xff1a; 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个节点 p、q&#xff0c;最近公共祖先表示为一个节点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能大&#xff08;一个节…...

react 中,使用antd layout布局中的sider 做sider的展开和收起功能

一 话不多说&#xff0c;先展示效果&#xff1a; 展开时&#xff1a; 收起时&#xff1a; 二、实现代码如下 react 文件 import React, {useState} from react; import {Layout} from antd; import styles from "./index.module.less"; // 这个是样式文件&#…...

2025-02-26 学习记录--C/C++-C语言 整数格式说明符

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; C语言 整数格式说明符 【例如 】&#x1f380; &#xff1a;在 C 语言中&#xff0c;%ld 是 printf 或 scanf 等格式化输入输出函…...

绕过过滤order by

一、常见绕过技术 1、注释符截断 利用注释符&#xff08;如 --、#&#xff09;截断后续查询&#xff0c;消除过滤逻辑的影响。 ORDER BY 1-- 若原查询为 SELECT * FROM table ORDER BY 用户输入&#xff0c;注入后可能忽略后续过滤逻辑。 2、大小写混淆/编码绕过 若过滤是大…...