基于YOLO11深度学习的苹果叶片病害检测识别系统【python源码+Pyqt5界面+数据集+训练代码】
《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 | 12.【基于YOLOv8深度学习的120种犬类检测与识别系统】 |
13.【基于YOLOv8深度学习的路面坑洞检测系统】 | 14.【基于YOLOv8深度学习的火焰烟雾检测系统】 |
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】 | 16.【基于YOLOv8深度学习的舰船目标分类检测系统】 |
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】 | 18.【基于YOLOv8深度学习的血细胞检测与计数系统】 |
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】 | 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】 |
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】 | 22.【基于YOLOv8深度学习的路面标志线检测与识别系统】 |
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】 | 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】 |
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】 | 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】 |
27.【基于YOLOv8深度学习的人脸面部表情识别系统】 | 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】 |
29.【基于YOLOv8深度学习的智能肺炎诊断系统】 | 30.【基于YOLOv8深度学习的葡萄簇目标检测系统】 |
31.【基于YOLOv8深度学习的100种中草药智能识别系统】 | 32.【基于YOLOv8深度学习的102种花卉智能识别系统】 |
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】 | 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】 |
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】 | 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】 |
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】 | 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】 |
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】 | 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】 |
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】 | 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】 |
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】 | 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】 |
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】 | 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】 |
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】 | 48.【基于深度学习的车辆检测追踪与流量计数系统】 |
49.【基于深度学习的行人检测追踪与双向流量计数系统】 | 50.【基于深度学习的反光衣检测与预警系统】 |
51.【基于深度学习的危险区域人员闯入检测与报警系统】 | 52.【基于深度学习的高密度人脸智能检测与统计系统】 |
53.【基于深度学习的CT扫描图像肾结石智能检测系统】 | 54.【基于深度学习的水果智能检测系统】 |
55.【基于深度学习的水果质量好坏智能检测系统】 | 56.【基于深度学习的蔬菜目标检测与识别系统】 |
57.【基于深度学习的非机动车驾驶员头盔检测系统】 | 58.【太基于深度学习的阳能电池板检测与分析系统】 |
59.【基于深度学习的工业螺栓螺母检测】 | 60.【基于深度学习的金属焊缝缺陷检测系统】 |
61.【基于深度学习的链条缺陷检测与识别系统】 | 62.【基于深度学习的交通信号灯检测识别】 |
63.【基于深度学习的草莓成熟度检测与识别系统】 | 64.【基于深度学习的水下海生物检测识别系统】 |
65.【基于深度学习的道路交通事故检测识别系统】 | 66.【基于深度学习的安检X光危险品检测与识别系统】 |
67.【基于深度学习的农作物类别检测与识别系统】 | 68.【基于深度学习的危险驾驶行为检测识别系统】 |
69.【基于深度学习的维修工具检测识别系统】 | 70.【基于深度学习的维修工具检测识别系统】 |
71.【基于深度学习的建筑墙面损伤检测系统】 | 72.【基于深度学习的煤矿传送带异物检测系统】 |
73.【基于深度学习的老鼠智能检测系统】 | 74.【基于深度学习的水面垃圾智能检测识别系统】 |
75.【基于深度学习的遥感视角船只智能检测系统】 | 76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统】 |
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】 | 78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】 |
79.【基于深度学习的果园苹果检测与计数系统】 | 80.【基于深度学习的半导体芯片缺陷检测系统】 |
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统】 | 82.【基于深度学习的运动鞋品牌检测与识别系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
目录
- 基本功能演示
- 研究背景
- 应用场景:
- 主要工作内容
- 一、软件核心功能介绍及效果演示
- 软件主要功能
- 界面参数设置说明
- 检测结果说明
- 主要功能说明
- (1)图片检测说明
- (2)视频检测说明
- (3)摄像头检测说明
- (4)保存图片与视频检测说明
- 二、YOLO11简介
- 三、模型训练、评估与推理
- 1. 数据集准备与训练
- 2.模型训练
- 3. 训练结果评估
- 4. 使用模型进行推理
- 四、可视化系统制作
- Pyqt5详细介绍
- 系统制作
- 【获取方式】
基本功能演示
基于YOLO11深度学习的苹果叶片病害检测识别系统【python源码+Pyqt5界面+数据集+训练代码】
摘要:传统的苹果叶片病害检测主要依赖于农业专家的经验判断,这种方法不仅耗时费力,而且在面对大规模果园管理时显得效率低下且容易出错。本文基于
YOLO11的深度学习框架
,通过4886
张实际场景中苹果叶片病害
的相关图片,训练了可进行苹果叶片病害
目标检测的模型,可以很好的检测并识别苹果叶片的病害种类。最终基于训练好的模型制作了一款带UI界面的苹果叶片病害检测识别系统
,更便于进行功能的展示。该系统是基于python
与PyQT5
开发的,支持图片
、视频
以及摄像头
进行目标检测
,并保存检测结果
。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
点击跳转至文末《完整相关文件及源码》获取
研究背景
苹果作为全球广泛种植的重要水果之一,其产量和质量直接受到病害的影响。传统的苹果叶片病害检测主要依赖于农业专家的经验判断,这种方法不仅耗时费力,而且在面对大规模果园管理时显得效率低下且容易出错。基于YOLO深度学习框架开发的苹果叶片病害检测识别系统,能够实时自动识别并定位苹果叶片上的病害位置及其类型。该系统的应用极大地提高了病害诊断的速度与准确性,有助于实现精准施药、减少农药使用量,并有效预防病害扩散,从而保障苹果的质量与产量,促进农业可持续发展。
应用场景:
- 果园管理:帮助果农快速准确地识别叶片病害,及时采取防治措施,如选择合适的农药或调整灌溉施肥方案,以减少病害对果树生长的影响。
- 病害预警:通过定期监测不同区域的苹果园,系统可以提前预测病害爆发的风险,为果农提供预警信息,便于制定预防策略。
- 科研支持:为农业科学家提供大量详细的病害数据,用于研究病害发生规律、环境影响因素等,助力开发更有效的防治方法。
- 远程咨询:结合移动应用程序,果农可以上传疑似患病叶片的照片至云端平台,由系统分析后给出初步诊断结果,必要时还可以联系专家进行进一步指导。
- 政府监管与政策制定:政府部门可以通过收集区域内苹果病害情况的数据,评估灾害风险,合理规划资源分配,并制定相应的农业扶持政策。
主要工作内容
本文的主要内容包括以下几个方面:
搜集与整理数据集:
搜集整理实际场景中苹果叶片病害
的相关数据图片,并进行相应的数据标注与处理,为模型训练提供训练数据集;训练模型:
基于整理的数据集,根据最前沿的YOLOv11目标检测技术
训练目标检测模型,实现对需要检测的对象进行有效检测的功能;模型性能评估:对训练出的模型在验证集上进行了充分的结果评估和对比分析
,主要目的是为了揭示模型在关键指标(如Precision、Recall、mAP50和mAP50-95等指标)上的表现情况
。可视化系统制作:
基于训练出的目标检测模型
,搭配Pyqt5
制作的UI界面,用python
开发了一款界面简洁的软件系统,可支持图片、视频以及摄像头检测
,同时可以将图片或者视频检测结果进行保存
。其目的是为检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。
软件初始界面如下图所示:
检测结果界面如下:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可用于实际场景中的苹果叶片病害
检测,分6个检测类别:['苹果褐斑病','苹果黑星病','苹果蛙眼病','苹果锈病','健康叶片','不健康叶片']
;
2. 支持图片、视频及摄像头
进行检测,同时支持图片的批量检测
;
3. 界面可实时显示目标位置
、目标总数
、置信度
、用时
、检测结果
等信息;
4. 支持图片
或者视频
的检测结果保存
;
5. 支持将图片的检测结果保存为csv文件
;
界面参数设置说明
置信度阈值:也就是目标检测时的conf参数,只有检测出的目标框置信度大于该值,结果才会显示;
交并比阈值:也就是目标检测时的iou参数,对检测框重叠比例iou大于该阈值的目标框进行过滤【也就是说假如两检测框iou大于该值的话,会过滤掉其中一个,该值越小,重叠框会越少】;
检测结果说明
显示标签名称与置信度:
表示是否在检测图片上标签名称与置信度,显示默认勾选,如果不勾选则不会在检测图片上显示标签名称与置信度;
总目标数
:表示画面中检测出的目标数目;
目标选择
:可选择单个目标进行位置信息、置信度查看。
目标位置
:表示所选择目标的检测框,左上角与右下角的坐标位置。默认显示的是置信度最大的一个目标信息;
主要功能说明
功能视频演示见文章开头,以下是简要的操作描述。
(1)图片检测说明
点击打开图片
按钮,选择需要检测的图片,或者点击打开文件夹
按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。
点击保存
按钮,会对检测结果进行保存,存储路径为:save_data
目录下,同时会将图片检测信息保存csv文件
。
注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。
(2)视频检测说明
点击视频
按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
(3)摄像头检测说明
点击打开摄像头
按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。
(4)保存图片与视频检测说明
点击保存
按钮后,会将当前选择的图片【含批量图片】或者视频
的检测结果进行保存,对于图片图片检测还会保存检测结果为csv文件
,方便进行查看与后续使用。检测的图片与视频结果会存储在save_data
目录下。
【注:暂不支持视频文件的检测结果保存为csv文件格式。】
保存的检测结果文件如下:
图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置
。
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。
二、YOLO11简介
YOLO11源码地址:https://github.com/ultralytics/ultralytics
Ultralytics YOLO11是一款前沿的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
YOLO11创新点如下:
YOLO 11主要改进包括:
增强的特征提取
:YOLO 11采用了改进的骨干和颈部架构,增强了特征提取功能,以实现更精确的目标检测。
优化的效率和速度
:优化的架构设计和优化的训练管道提供更快的处理速度,同时保持准确性和性能之间的平衡。
更高的精度,更少的参数
:YOLO11m在COCO数据集上实现了更高的平均精度(mAP),参数比YOLOv8m少22%,使其在不影响精度的情况下提高了计算效率。
跨环境的适应性
:YOLO 11可以部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统。
广泛的支持任务
:YOLO 11支持各种计算机视觉任务,如对象检测、实例分割、图像分类、姿态估计和面向对象检测(OBB)。
三、模型训练、评估与推理
本文主要基于YOLO11n
模型进行模型训练,训练完成后对模型在验证集上的表现进行全面的性能评估及对比分析。总体流程包括:数据集准备、模型训练、模型评估。
1. 数据集准备与训练
通过网络上搜集关于实际场景中苹果叶片病害
的相关图片,并使用Labelimg标注工具对每张图片进行标注,分6个检测类别
:['苹果褐斑病','苹果黑星病','苹果蛙眼病','苹果锈病','健康叶片','不健康叶片']
。
数据增强:
通过随机亮度调节、饱和度调节、裁剪、翻转
等方式进行图片数据增强,以扩充数据集。
最终数据集一共包含4886张图片
,其中训练集包含3901张图片
,验证集包含985张图片
。
部分图像及标注如下图所示:
数据集各类别数目分布情况如下:
2.模型训练
准备好数据集后,将图片数据以如下格式放置在项目目录中。在项目目录中新建datasets
目录,同时将检测的图片分为训练集与验证集放入Data
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv11在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
train: D:\2MyCVProgram\2DetectProgram\AppleLeafDiseaseDetection_v11\datasets\Data\train/images
val: D:\2MyCVProgram\2DetectProgram\AppleLeafDiseaseDetection_v11\datasets\Data/valid/imagesnc: 6
names: ['disease-Marssonina blotch', 'disease-apple scab', 'disease-frog eye', 'disease-rust', 'leaf_healthy', 'leaf_unhealthy']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,optimizer
设定的优化器为SGD
,训练代码如下:
#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/11/yolo11.yaml"
#数据集配置文件
data_yaml_path = 'datasets/Data/data.yaml'
#预训练模型
pre_model_name = 'yolo11n.pt'if __name__ == '__main__':#加载预训练模型model = YOLO(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150, # 训练轮数batch=4, # batch大小name='train_v11', # 保存结果的文件夹名称optimizer='SGD') # 优化器
模型常用训练超参数参数说明:
YOLO11 模型的训练设置包括训练过程中使用的各种超参数和配置
。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器、损失函数和训练数据集组成的选择也会影响训练过程。对这些设置进行仔细的调整和实验对于优化性能至关重要。
以下是一些常用的模型训练参数和说明:
参数名 | 默认值 | 说明 |
---|---|---|
model | None | 指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。 |
data | None | 数据集配置文件的路径(例如 coco8.yaml ).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。 |
epochs | 100 | 训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。 |
patience | 100 | 在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。 |
batch | 16 | 批量大小,有三种模式:设置为整数(例如,’ Batch =16 ‘), 60% GPU内存利用率的自动模式(’ Batch =-1 ‘),或指定利用率分数的自动模式(’ Batch =0.70 ')。 |
imgsz | 640 | 用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。 |
device | None | 指定用于训练的计算设备:单个 GPU (device=0 )、多个 GPU (device=0,1 )、CPU (device=cpu ),或苹果芯片的 MPS (device=mps ). |
workers | 8 | 加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。 |
name | None | 训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。 |
pretrained | True | 决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。 |
optimizer | 'auto' | 为训练模型选择优化器。选项包括 SGD , Adam , AdamW , NAdam , RAdam , RMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性 |
lr0 | 0.01 | 初始学习率(即 SGD=1E-2 , Adam=1E-3 ) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。 |
lrf | 0.01 | 最终学习率占初始学习率的百分比 = (lr0 * lrf ),与调度程序结合使用,随着时间的推移调整学习率。 |
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv11在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5
值为0.565
,结果还是可以的,还有进一步的提升空间。
4. 使用模型进行推理
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/train/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IMG_20240815_150711_jpg.rf.4822b624482f19a05b3b16ff09b13876.jpg"# 加载预训练模型
model = YOLO(path, task='detect')# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("Detection Result", res)
cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
更多检测结果示例如下:
四、可视化系统制作
基于上述训练出的目标检测模型,为了给此检测系统提供一个用户友好的操作平台,使用户能够便捷、高效地进行检测任务。博主基于Pyqt5开发了一个可视化的系统界面,通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。【系统详细展示见第一部分内容】
Pyqt5详细介绍
关于Pyqt5的详细介绍可以参考之前的博客文章:《Python中的Pyqt5详细介绍:基本机构、部件、布局管理、信号与槽、跨平台》
,地址:
https://a-xu-ai.blog.csdn.net/article/details/143273797
系统制作
博主基于Pyqt5框架开发了此款苹果叶片病害检测识别系统
,即文中第一部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存
。
通过图形用户界面(GUI),用户可以轻松地在图片、视频和摄像头实时检测之间切换,无需掌握复杂的编程技能即可操作系统。这不仅提升了系统的可用性和用户体验,还使得检测过程更加直观透明,便于结果的实时观察和分析。此外,GUI还可以集成其他功能,如检测结果的保存与导出、检测参数的调整,从而为用户提供一个全面、综合的检测工作环境,促进智能检测技术的广泛应用。
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、训练好的模型、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
【获取方式】
关注末尾名片GZH【阿旭算法与机器学习】,发送【源码】获取下载方式
本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
注意:该代码基于Python3.9开发,运行界面的主程序为
MainProgram.py
,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt
配置软件运行所需环境。
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
相关文章:
基于YOLO11深度学习的苹果叶片病害检测识别系统【python源码+Pyqt5界面+数据集+训练代码】
《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...
Android MMKV集成指南
首先简单介绍一下MMKV当下Android Studio最版本及Gradle8.7 MMKV集成根据官方文档重新对mmkv重新包了一次(便于开发)总结首先简单介绍一下MMKV MMKV 是腾讯开源的一款专为移动端设计的高性能键值存储组件,旨在替代传统的 SharedPreferences 和 SQLite,尤其在频繁读写和数据…...
React七Formik
Formik是一个专为React构建的开源表单库。它提供了一个易于使用的API来处理表单状态管理,表单验证以及表单提交。Formik支持React中的所有表单元素和事件,可以很好地与React生态系统中的其他库集成。同时,Formik还提供了一些高级功能…...
5分钟使用Docker部署Paint Board快速打造专属在线画板应用
文章目录 前言1.关于Paint Board2.本地部署paint-board3.使用Paint Board4.cpolar内网穿透工具安装5.创建远程连接公网地址6.固定Paint Board公网地址 💡 推荐 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住…...
可狱可囚的爬虫系列课程 14:10 秒钟编写一个 requests 爬虫
一、前言 当重复性的工作频繁发生时,各种奇奇怪怪提高效率的想法就开始萌芽了。当重复代码的模块化封装已经不能满足要求的时候,更高效的方式就被揭开了神秘的面纱。本文基于这样的想法,来和大家探讨如何 10 秒钟编写一个 requests 爬虫程序。…...
【深度学习神经网络学习笔记(三)】向量化编程
向量化编程 向量化编程前言1、向量化编程2、向量化优势3、正向传播和反向传播 向量化编程 前言 向量化编程是一种利用专门的指令集或并行算法来提高数据处理效率的技术,尤其在科学计算、数据分析和机器学习领域中非常常见。它允许通过一次操作处理整个数组或矩阵的…...
PHP入门基础学习四(PHP基本语法)
运算符 运算符,专门用于告诉程序执行特定运算或逻辑操作的符号。根据运算符的作用,可以将PHP语言中常见的运算符分为9类 算数运算符: 是用来处理加减乘除运算的符号 也是最简单和最常用的运算符号 赋值运算符 1. 是一个二元运算符&#x…...
【十二】Golang 映射
💢欢迎来到张胤尘的开源技术站 💥开源如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌💥 文章目录 映射映射的定义映射初始化make 函数使用字面量 源…...
简单理解Oracle中的latch
可以用一个小卖部抢购的例子来理解 Oracle 数据库中的 Latch: 1、 什么是 Latch? 打个比方,假设数据库的某个内存区域(比如缓存的数据块)是小卖部货架上的最后一包辣条,Latch 就像是货架前的一个狭窄通道&a…...
hbase集群部署
1.hbase集群的搭建(以及内部逻辑) 虽然Hmaster有多个,但是属于热备,起作用的就active上的这个。 部署流程: 因为我配置的hadoop是一个非HA的,所以修改为以下 如果是HA的hadoop一定要做以下这一步。 在启动…...
塔能物联运维保障智慧地下停车场安全与高效
一、智慧地下停车场安全在城市升级改造中的关键地位 随着城市的不断发展和升级改造,智慧地下停车场的重要性日益凸显。在现代城市中,土地资源愈发珍贵,地下停车场成为解决停车难题的关键设施。然而,停车场的安全问题是其正常运行和…...
面试八股文--数据库基础知识总结(2) MySQL
本文介绍关于MySQL的相关面试知识 一、关系型数据库 1、定义 关系型数据库(Relational Database)是一种基于关系模型的数据库管理系统(DBMS),它将数据存储在表格(表)中,并通过表格…...
深入理解指针2
深入理解指针2 数组名的理解 数组名就是首元素的地址 int arr[]{1,3,2}; printf("%p\n",arr); printf("%p\n",&arr[0]);但是有两种情况除外, 1.sizeof(数组名),sizeof操作符统计的是整个数组的大小,并不是第一个元素…...
QT各种版本下载安装
参考链接: 【Qt】超详细!Qt4.8.6和VS2010的配置及使用 由于QT官网一般现在进不去,所以下载一些QT版本只能通过镜像或者以前下载存储的安装包来进行,现在推荐两种方法 从参考链接中搬过来: 方案一:国内镜…...
java进阶学习脑图
今天开始分享我的第一篇博客,先放上我自己花费一个月完成的java进阶学习脑图吧! 谁都想像R大一样对JVM可以知无不言,言无不尽; 谁都想像Doug Lea一样可以参与JUC这种核心模块的开发; 但是,不能只停留在想…...
Spring 原始注解详解与实战指南
📝 1. 前言 在 Spring 框架的发展过程中,注解的引入大大简化了配置,提升了开发效率 本文将详细介绍 Spring 最初引入的核心注解,包括 Component、Controller、Service、Repository、Autowired、Qualifier 和 Value 等,…...
uniapp封装请求
在uniapp中封装HTTP请求,通常我们会使用uni.request方法。uni.request是uni-app提供的一个网络请求API,可以用来发送各种类型的HTTP请求(GET、POST、PUT、DELETE等)。下面是如何在uniapp中封装一个通用的HTTP请求方法,…...
YOLOv10 解析与地平线 征程 6 模型量化
一,YOLOv10 解析 1.简介 近些年来,研究人员对 YOLO 的架构设计、优化目标、数据增强策略等进行了探索,取得了显著进展。然而,后处理对非极大值抑制(NMS)的依赖阻碍了 YOLO 的端到端部署,并对推…...
基本网络安全的实现
基本网络安全的实现 一 :AAA AAA 是Authentication,Authorization and Accounting(认证、授权和计费)的简 称,它提供了一个用来对认证、授权和计费这三种安全功能进行配置的一致性框架, 它是对网络安全…...
ROS2 强化学习:案例与代码实战
一、引言 在机器人技术不断发展的今天,强化学习(RL)作为一种强大的机器学习范式,为机器人的智能决策和自主控制提供了新的途径。ROS2(Robot Operating System 2)作为新一代机器人操作系统,具有…...
Java数据结构第十四期:走进二叉树的奇妙世界(三)
专栏:数据结构(Java版) 个人主页:手握风云 目录 一、二叉树OJ练习题 1.1. 相同的树 1.2. 另一棵树的子树 1.3. 翻转二叉树 1.4. 平衡二叉树 1.5. 对称二叉树 一、二叉树OJ练习题 1.1. 相同的树 判断两棵树是否相同,我们是否只能遍历一…...
GO 进行编译时插桩,实现零码注入
Go 编译时插桩 Go 语言的编译时插桩是一种在编译阶段自动注入监控代码的技术,目的是在不修改业务代码的情况下,实现对应用程序的监控和追踪。 基本原理 Go 编译时插桩的核心思想是通过在编译过程中对源代码进行分析和修改,将监控代码注入到…...
《炎龙骑士团 1 邪神之封印》游戏信息
发行公司:1994 年由汉堂国际资讯公司发行。 游戏类型:回合制角色扮演游戏 故事背景 远古之战:在远古时代,圣族与魔族爆发大战,魔族领导者大邪神力量强大,圣族处于下风。圣族派出十二战士突袭,虽…...
本地大模型编程实战(23)用智能体(Agent)实现基于SQL数据构建问答系统(2)
本文将用 智能体(Agent) 实现对 SQLite 数据库的查询:用户用自然语言提出问题,智能体也用自然语言根据数据库的查询结果回答问题。 本次将分别在英文、中文环境下,使用 qwen2.5 、 MFDoom/deepseek-r1-tool-calling:7b 以及 llama3.1 做实验。…...
Flash-03
1-问题:Flash软件画两个图形,若有部分重合则变为一个整体 解决方法1:两个图形分属于不同的图层 解决方法2:将每个图形都转化为【元件】 问题2:元件是什么? 在 Adobe Flash(现在称为 Adobe Anim…...
防火墙双机热备---VRRP,VGMP,HRP(超详细)
双机热备技术-----VRRP,VGMP,HRP三个组成 注:与路由器VRRP有所不同,路由器是通过控制开销值控制数据包流通方向 防火墙双机热备: 1.主备备份模式 双机热备最大的特点就是防火墙提供了一条专门的备份通道(心…...
PC端-发票真伪查验系统-Node.js全国发票查询接口
在现代企业的财务管理中,发票真伪的验证至关重要。随着电子发票的普及,假发票问题日益严峻,如何高效、准确的对发票进行真伪查验,已经成为各类企业在日常运营中必须解决的关键问题。翔云发票查验接口做企业财务管理、税务合规的好…...
3.1部署filebeat:5044
beats是ELK体系中新增的一个工具,, 属于一个轻量的日志采集器。 1.安装(每台) # tar xf filebeat-6.4.1-linux-x86_64.tar.gz # mv filebeat-6.4.1-linux-x86_64 /usr/local/filebeat #yum -y install httpd #systemctl start httpd 2.测试…...
在 Windows 上配置 Ollama 服务并开放局域网访问
为了在局域网内共享 Ollama 服务,我们需要完成以下两步: 1、设置 Ollama 的环境变量 OLLAMA_HOST,使其监听局域网的 IP 地址。 (1) 配置 Ollama 服务的监听地址 Ollama 服务使用环境变量 OLLAMA_HOST 来指定监听的地…...
C#快速调用DeepSeek接口,winform接入DeepSeek查询资料 C#零门槛接入DeepSeek C#接入DeepSeek源代码下载
下载地址<------完整源码 在数字化转型加速的背景下,企业应用系统对智能服务的需求日益增长。DeepSeek作为先进的人工智能服务平台,其自然语言处理、图像识别等核心能力可显著提升业务系统的智能化水平。传统开发模式下,C#开发者需要耗费大…...
解决后端跨域问题
目录 一、什么是跨域问题? 1、跨域问题的定义 2、举例 3、为什么会有跨域问题的存在? 二、解决跨域问题 1、新建配置类 2、编写代码 三、结语 一、什么是跨域问题? 1、跨域问题的定义 跨域问题(Cross-Origin Resource Sh…...
【教程】使用docker+Dify搭建一个本地知识库
现在AI火的一塌糊涂,再不搭建一个自己的AI知识库就有点落伍了,这里我是自己的windows11电脑。用了dockerdifydeepseek。 一、安装docker 网址:https://www.docker.com/ 什么是docker? Docker 是一种开放源代码的容器化平台&…...
微信小程序数据绑定与事件处理:打造动态交互体验
在上一篇中,我们学习了如何搭建微信小程序的开发环境并创建了一个简单的“Hello World”页面。然而,一个真正的小程序不仅仅是静态内容的展示,它需要与用户进行动态交互。本文将深入探讨微信小程序中的数据绑定和事件处理机制,通过…...
Spring MVC 的执行流程解析:从用户请求到响应返回
Spring MVC 是一种基于 Model-View-Controller 设计模式的 Web 框架,用于处理用户请求、执行相应的业务逻辑并返回响应。它广泛应用于 Java Web 开发,提供了灵活的架构和丰富的功能。 本文将详细介绍 Spring MVC 的执行流程,帮助你理解它是如…...
c++day5
作业: 编写一个如下场景: 有一个英雄Hero类,私有成员,攻击,防御,速度,生命值,以及所有的set get 方法 编写一个 武器 Weapon 类,拥有私有成员攻击力,以及set …...
Deepseek 实战全攻略,领航科技应用的深度探索之旅
想玩转 Deepseek?这攻略别错过!先带你了解它的基本原理,教你搭建运行环境。接着给出自然语言处理、智能客服等应用场景的实操方法与代码。还分享模型微调、优化技巧,结合案例加深理解,让你全面掌握,探索科技…...
公共数据授权运营模式研究(总体框架、主要模式及发展趋势)
本报告以公共数据运营模式为核心,以释放公共数据价值为目标,深入分析公共数据概念及特征,厘清公共数据运营的内涵及本质,提出纵深分域数据要素市场运营体系的总体思路,构建了一座(一个数据底座)…...
本地开发用ASP.NET Core Web API项目创建及测试
1. 服务端代码(C#) 1.1 创建ASP.NET Core Web API项目 打开Visual Studio 2022。 选择“创建新项目”。 选择“ASP.NET Core Web API”模板,点击“下一步”。 输入项目名称(如OracleApi),选择项目位置&…...
【虚拟仪器技术】labview操作指南和虚拟仪器技术习题答案(一)
今天是2025年2月24日,画的是fate/Grand Order里面的阿尔托莉雅.卡斯特,武内老师的画。 目录 第1章 第2章 第3章 第4章 第5章 关注作者了解更多 我的其他CSDN专栏 毕业设计 求职面试 大学英语 过程控制系统 工程测试技术 虚拟仪器技术 可编程…...
SpringCloud系列教程:微服务的未来(二十五)-基于注解的声明队列交换机、消息转换器、业务改造
前言 在现代分布式系统中,消息队列是实现服务解耦和异步处理的关键组件。Spring框架提供了强大的支持,使得与消息队列(如RabbitMQ、Kafka等)的集成变得更加便捷和灵活。本文将深入探讨如何利用Spring的注解驱动方式来配置和管理队…...
LLM之论文阅读——Context Size对RAG的影响
前言 RAG 系统已经在多个行业中得到广泛应用,尤其是在企业内部文档查询等场景中。尽管 RAG 系统的应用日益广泛,关于其最佳配置的研究却相对缺乏,特别是在上下文大小、基础 LLM 选择以及检索方法等方面。 论文原文: On the Influence of Co…...
C#实现本地AI聊天功能(Deepseek R1及其他模型)。
前言 1、C#实现本地AI聊天功能 WPFOllamaSharpe实现本地聊天功能,可以选择使用Deepseek 及其他模型。 2、此程序默认你已经安装好了Ollama。 在运行前需要线安装好Ollama,如何安装请自行搜索 Ollama下载地址: https://ollama.org.cn Ollama模型下载地址…...
git 查询包含某个文件夹的步骤
步骤 1:拉取最新的远程分支信息 确保本地缓存的远程分支信息是最新的: bash 复制 git fetch --all 步骤 2:遍历所有远程分支并检查目标文件夹 使用 git ls-tree 检查每个分支是否包含目标文件夹。以下脚本会列出所有包含 your_folder_pa…...
微软开源神器OmniParser-v2.0本地部署教程
安装python环境 我这里是以前安装好的版本:python 3.11.5,这里不再介绍,有需要的可以在网上找教程。 安装Anaconda 我这里是以前安装好的版本:conda 23.7.4,这里也不再介绍,有需要的可以在网上找教程。 …...
解决 Git 合并冲突:当本地修改与远程提交冲突时
目录 错误原因分析 解决方法 1. 暂存本地修改并合并(保留更改) 2. 丢弃本地修改(强制覆盖) 3. 暂存修改后合并(推荐:使用 git stash) 4. 选择性合并(手动处理冲突文件…...
VScode中Markdown PDF无法正确输出包含数学公式的pdf解决方案
在使用VScode的Markdown PDF插件时,可能会遇到无法正确输出包含公式的PDF文件的问题。下面为你提供一种有效的解决方案。 具体操作步骤 步骤一:定位模板文件 在安装Markdown PDF插件后,你需要找到对应的模板文件。该文件的路径通常如下&am…...
uniapp 网络请求封装(uni.request 与 uView-Plus)
一、背景 在开发项目中,需要经常与后端服务器进行交互;为了提高开发效率和代码维护性,以及降低重复性代码,便对网络请求进行封装统一管理。 二、创建环境文件 2.1、根目录新建utils文件夹,utils文件夹内新建env.js文…...
Jtti.cc:站群服务器SEO优化建议,如何分配多IP?
站群优化的核心目标之一是尽可能通过多个网站互相引导流量,从而提升主站的权重。这时候,多IP的分配至关重要,因为搜索引擎会检测到同一IP下的网站之间的关联性。如果一个IP地址下有过多的相似站点,搜索引擎可能会认为这些站点存在…...
银行系统功能架构设计元模型
1. 元模型核心目标 规范性:定义功能模块的标准化描述方式,便于跨团队协作。可复用性:抽象通用组件,减少重复开发。可扩展性:支持未来业务创新和技术升级(如开放银行API集成)。2. 元模型层级结构 采用分层架构模式,分为以下核心层级: **(1) 业务功能层** …...
uniapp写的h5跳转小程序
使用场景: 我们对接第三方支付的时候,对方只提供了原生小程序id和appid,由我们的app和h5平台跳转至小程序。 遇到的问题: app跳转本地正常,线上报错如下 解决办法: 需要去微信开放平台申请应用appid 易…...