Java 大视界 -- 总结与展望:Java 大数据领域的新征程与无限可能(96)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!💖
一、欢迎加入【福利社群】
点击快速加入: 青云交灵犀技韵交响盛汇福利社群
点击快速加入2: 2024 CSDN 博客之星 创作交流营(NEW)
二、本博客的精华专栏:
- 大数据新视界专栏系列:聚焦大数据,展技术应用,推动进步拓展新视野。
- Java 大视界专栏系列(NEW):聚焦 Java 编程,细剖基础语法至高级框架。展示 Web、大数据等多领域应用,精研 JVM 性能优化,助您拓宽视野,提升硬核编程力。
- Java 大厂面试专栏系列:提供大厂面试的相关技巧和经验,助力求职。
- Python 魅力之旅:探索数据与智能的奥秘专栏系列:走进 Python 的精彩天地,感受数据处理与智能应用的独特魅力。
- Java 虚拟机(JVM)专栏系列:深入剖析 JVM 的工作原理和优化方法。
- Java 学习路线专栏系列:为不同阶段的学习者规划清晰的学习路径。
- JVM 万亿性能密码:在数字世界的浩瀚星海中,JVM 如神秘宝藏,其万亿性能密码即将开启奇幻之旅。
- AI(人工智能)专栏系列:紧跟科技潮流,介绍人工智能的应用和发展趋势。
- 智创 AI 新视界专栏系列(NEW):深入剖析 AI 前沿技术,展示创新应用成果,带您领略智能创造的全新世界,提升 AI 认知与实践能力。
- 数据库核心宝典:构建强大数据体系专栏系列:专栏涵盖关系与非关系数据库及相关技术,助力构建强大数据体系。
- MySQL 之道专栏系列:您将领悟 MySQL 的独特之道,掌握高效数据库管理之法,开启数据驱动的精彩旅程。
- 大前端风云榜:引领技术浪潮专栏系列:大前端专栏如风云榜,捕捉 Vue.js、React Native 等重要技术动态,引领你在技术浪潮中前行。
三、【青云交技术圈福利社群】和【架构师社区】的精华频道:
- 福利社群:无论你是技术萌新还是行业大咖,这儿总有契合你的天地,助力你于技术攀峰、资源互通及人脉拓宽之途不再形单影只。 点击快速加入【福利社群】 和 【CSDN 博客之星 创作交流营(NEW)】
- 今日看点:宛如一盏明灯,引领你尽情畅游社区精华频道,开启一场璀璨的知识盛宴。
- 今日精品佳作:为您精心甄选精品佳作,引领您畅游知识的广袤海洋,开启智慧探索之旅,定能让您满载而归。
- 每日成长记录:细致入微地介绍成长记录,图文并茂,真实可触,让你见证每一步的成长足迹。
- 每日荣登原力榜:如实记录原力榜的排行真实情况,有图有真相,一同感受荣耀时刻的璀璨光芒。
- 每日荣登领军人物榜:精心且精准地记录领军人物榜的真实情况,图文并茂地展现,让领导风采尽情绽放,令人瞩目。
- 每周荣登作者周榜:精准记录作者周榜的实际状况,有图有真相,领略卓越风采的绽放。
展望未来,我誓做前沿技术的先锋,于人工智能、大数据领域披荆斩棘。持续深耕,输出独家深度专题,为你搭建通往科技前沿的天梯,助你领航时代,傲立潮头。
即将开启技术挑战与代码分享盛宴,以创新形式激活社区,点燃技术热情。让思维碰撞,迸发智慧光芒,照亮探索技术巅峰的征途。
珍视你的每一条反馈,视其为前行的灯塔。精心雕琢博客内容,精细优化功能体验,为你打造沉浸式知识殿堂。拓展多元合作,携手行业巨擘,汇聚海量优质资源,伴你飞速成长。
期待与你在网络空间并肩同行,共铸辉煌。你的点赞,是我前行的动力;关注,是对我的信任;评论,是思想的交融;打赏,是认可的温暖;订阅,是未来的期许。这些皆是我不断奋进的力量源泉。
衷心感谢每一位支持者,你们的互动,推动我勇攀高峰。诚邀访问 【我的博客主页】 或 【青云交技术圈福利社群】 或 【架构师社区】 ,如您对涨粉、技术交友、技术交流、内部学习资料获取、副业发展、项目外包和商务合作等方面感兴趣,欢迎在文章末尾添加我的微信名片 【QingYunJiao】 (点击直达) ,添加时请备注【CSDN 技术交流】。更多精彩内容,等您解锁。
让我们携手踏上知识之旅,汇聚智慧,打造知识宝库,吸引更多伙伴。未来,与志同道合者同行,在知识领域绽放无限光彩,铸就不朽传奇!
Java 大视界 -- 总结与展望:Java 大数据领域的新征程与无限可能(96)
- 引言
- 正文
- 一、Java 大数据的发展现状
- 1.1 技术体系的成熟与拓展
- 1.2 广泛且深入的行业渗透
- 二、Java 大数据面临的挑战与解决方案
- 2.1 数据安全与隐私保护
- 2.2 数据处理效率与性能优化
- 2.3 技术融合与复合型人才培养
- 三、Java 大数据的未来展望
- 3.1 技术创新引领发展
- 3.2 应用拓展与行业变革
- 3.3 生态完善与社区繁荣
- 结束语
- 🗳️参与投票和与我联系:
引言
亲爱的 Java 和 大数据爱好者们,大家好!在数字化转型的浪潮中,Java 大数据早已成为推动行业变革的核心驱动力,而我们在探索它的道路上也留下了许多深刻的印记。
回首过往,在《技术逐梦十二载:CSDN 相伴,400 篇文章见证成长,展望新篇》里,作者通过 400 篇文章,分享了在 CSDN 平台上技术成长的点点滴滴,从初涉技术领域的懵懂,到在多领域技术中深入钻研,还讲述了运营社区的心得,让我们看到了技术探索者在平台的陪伴下不断成长,也为我们的技术之旅带来了鼓舞和启发 。
在 Java 大数据的发展脉络梳理上,《Java 大视界 – 国际竞争与合作:Java 大数据在全球市场的机遇与挑战(94)》发挥了关键作用。它从开源社区的技术演进、生态构建以及全球竞争格局等多个维度,深度剖析了 Java 大数据在国际舞台上的发展态势,为行业从业者提供了极具实操性的应对策略和丰富案例,帮助大家在全球市场中精准把握机遇,提升自身竞争力。
紧接着,《Java 大视界 – Java 大数据未来十年的技术蓝图与发展愿景(95)》则以长远的眼光,全面展望了 Java 大数据未来十年的发展。无论是技术创新方面,如与区块链、量子计算等新兴技术的融合,还是在智能交通、环保等多领域的应用拓展,以及生态建设的深入规划,都让我们对 Java 大数据的未来充满了无限遐想和期待。
而之前的《Java 大视界 – 企业数字化转型中的 Java 大数据战略与实践(93)》聚焦企业场景,通过丰富的行业案例,阐述了 Java 大数据如何助力企业制定数字化战略并落地实施,为企业在数字化转型道路上提供了宝贵的借鉴。《Java 大视界 – 人才需求与培养:Java 大数据领域的职业发展路径(92)》从人才角度出发,剖析了该领域的人才需求特征与职业发展路径,为从业者规划职业方向提供了清晰指引。
基于这些前期探索,本文将全面总结 Java 大数据的发展现状,深入剖析其面临的挑战,并展望未来的广阔前景。
正文
一、Java 大数据的发展现状
1.1 技术体系的成熟与拓展
Java 凭借其卓越的跨平台性、稳健的生态系统以及强大的安全性,在大数据领域构建了一套完整且成熟的技术栈。以 Hadoop 生态系统为例,Hadoop Distributed File System(HDFS)基于 Java 实现,通过将数据分布式存储在集群节点上,保障了海量数据的高容错性与高可用性。其数据存储架构如下:
在这个架构中,NameNode 负责管理文件系统的命名空间和元数据,而 DataNode 则负责存储实际的数据块。MapReduce 作为 Hadoop 的核心计算框架,利用 Java 的分布式计算能力,将大规模数据集的处理任务分解为 Map 和 Reduce 两个阶段,实现了并行计算,极大提升了数据处理效率。
Apache Spark 作为基于 Java 开发的新一代大数据处理引擎,进一步拓展了 Java 大数据的技术边界。它提供了丰富的编程模型,如 RDD(弹性分布式数据集)、DataFrame 和 Dataset,方便开发者进行数据的转换、聚合和分析。下面通过代码示例展示 Spark 使用 Java 进行复杂数据分析的过程:
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import scala.Tuple2;import java.util.Arrays;
import java.util.List;public class SparkComplexAnalysisExample {public static void main(String[] args) {SparkConf conf = new SparkConf().setAppName("SparkComplexAnalysisExample").setMaster("local[*]");JavaSparkContext sc = new JavaSparkContext(conf);SparkSession spark = SparkSession.builder().sparkContext(sc.sc()).getOrCreate();// 模拟用户行为数据List<String> userBehaviorData = Arrays.asList("user1,view,productA,2024-01-01 10:00:00","user2,click,productB,2024-01-01 10:10:00","user1,purchase,productA,2024-01-01 11:00:00");JavaRDD<String> dataRDD = sc.parallelize(userBehaviorData);// 将RDD转换为DataFrameDataset<Row> dataDF = spark.read().textFile("data.txt").map((Function<String, Row>) line -> {String[] parts = line.split(",");return RowFactory.create(parts[0], parts[1], parts[2], parts[3]);}, Encoders.bean(Row.class));// 注册为临时表,方便SQL查询dataDF.createOrReplaceTempView("user_behavior");// 使用SQL进行数据分析,统计每个用户的购买次数Dataset<Row> result = spark.sql("SELECT user_id, COUNT(*) as purchase_count FROM user_behavior WHERE action = 'purchase' GROUP BY user_id");result.show();sc.stop();spark.stop();}
}
1.2 广泛且深入的行业渗透
Java 大数据在金融、医疗、电商等多个行业已实现深度应用,并取得显著成效。在金融行业,风险评估与欺诈检测是核心应用场景。某国际知名银行利用 Java 大数据平台,整合客户的交易流水、信用记录、资产负债等多源数据,通过机器学习算法构建风险评估模型。模型训练过程中,使用梯度下降算法优化逻辑回归模型的参数,以提高风险预测的准确性。在欺诈检测方面,采用实时流处理技术(如 Apache Flink),对交易数据进行实时分析,一旦发现异常交易模式,如短时间内的大额资金频繁转移,立即触发预警机制,有效保障了金融交易的安全。
在医疗行业,Java 大数据助力医疗机构实现精准医疗。以某大型医院的临床决策支持系统为例,该系统基于 Java 大数据技术,整合患者的病历信息、医学影像数据、基因检测结果等。通过自然语言处理技术对病历文本进行信息抽取,利用深度学习算法对医学影像进行分析,辅助医生进行疾病诊断和治疗方案制定。例如,在肺癌诊断中,通过对大量肺部 CT 影像数据的学习,深度学习模型能够准确识别肺部结节的性质,为医生提供诊断参考。
电商行业中,Java 大数据在精准营销和个性化推荐方面发挥着关键作用。以亚马逊为例,通过收集用户的浏览历史、搜索记录、购买行为等数据,利用协同过滤算法和深度学习模型,为用户推荐符合其兴趣和需求的商品。同时,通过分析用户的行为数据,优化网站的商品展示策略,提高用户的购买转化率和满意度。
二、Java 大数据面临的挑战与解决方案
2.1 数据安全与隐私保护
随着数据量的指数级增长,数据安全和隐私保护成为 Java 大数据发展中的关键挑战。在数据传输过程中,采用 SSL/TLS 加密协议,确保数据在网络传输中的保密性和完整性。在数据存储层面,利用 AES 等加密算法对敏感数据进行加密存储,同时结合基于角色的访问控制(RBAC)技术,严格限制不同用户对数据的访问权限。在数据分析阶段,引入差分隐私技术,在保证数据分析准确性的前提下,对原始数据进行扰动处理,保护用户隐私。例如,在医疗数据分析中,对患者的年龄、性别等敏感信息进行差分隐私处理,既能满足医学研究的数据分析需求,又能保护患者的个人隐私。
2.2 数据处理效率与性能优化
面对海量数据的处理需求,提升数据处理效率是 Java 大数据发展的重要任务。在算法层面,不断优化数据处理算法,如采用更高效的排序算法(如 Timsort)、查找算法(如跳表查找)等。在硬件层面,利用高性能的服务器和存储设备,如 NVMe SSD 硬盘、高速内存等,提升数据读写速度。在分布式计算框架方面,合理调整 Spark、Flink 等框架的参数配置,如优化 Spark 的分区数量和内存管理,提高数据处理的并行度和效率。此外,引入缓存机制,如 Spark 的 BlockManager,减少数据的重复读取,进一步提升性能。
2.3 技术融合与复合型人才培养
Java 大数据与人工智能、机器学习、区块链等新兴技术的融合,是实现更强大数据分析和应用创新的关键。然而,目前行业内缺乏既精通 Java 大数据技术,又熟悉其他相关技术的复合型人才。为解决这一问题,高校和企业应加强合作,共同制定针对性的人才培养方案。高校在课程设置上,增加大数据与人工智能、区块链等技术融合的课程,注重实践教学环节,通过实验、项目等方式,培养学生的实际操作能力。企业则为学生提供实习机会和实际项目案例,让学生在实践中积累经验。同时,企业内部也应加强员工培训,通过在线学习、技术研讨会等方式,提升员工的技术水平和创新能力。
三、Java 大数据的未来展望
3.1 技术创新引领发展
未来,Java 大数据将不断融合新兴技术,实现技术创新的突破。区块链技术的去中心化、不可篡改特性,将为数据的安全存储和可信共享提供更可靠的解决方案。例如,在供应链金融领域,利用区块链技术构建分布式账本,记录供应链上的交易数据,确保数据的真实性和可追溯性,降低金融风险。量子计算技术的发展,有望突破现有计算能力的限制,实现更高效的数据处理。量子计算机利用量子比特的叠加和纠缠特性,能够在极短时间内完成复杂的计算任务,为大数据分析带来新的突破。例如,在药物研发中,利用量子计算加速分子结构的模拟计算,缩短药物研发周期。
3.2 应用拓展与行业变革
Java 大数据将在更多领域实现应用拓展,推动行业变革。在智能交通领域,通过分析交通流量数据、车辆行驶轨迹数据等,实现智能交通调度和优化。例如,利用实时交通数据,动态调整信号灯的时长,缓解交通拥堵。在智慧城市建设中,Java 大数据技术将优化城市规划、提升公共服务水平。例如,通过分析城市的人口分布、交通流量、能源消耗等数据,实现智能路灯、智能垃圾桶的布局优化,提高城市资源利用效率。在环境保护领域,利用大数据分析环境监测数据,实现对环境污染的实时监测和预警,为环境保护决策提供支持。
3.3 生态完善与社区繁荣
Java 大数据的生态系统将不断完善,开源社区将发挥更大的作用。更多的开发者将参与到 Java 大数据的开发和应用中,推动技术的持续创新和发展。开源社区将不断涌现新的技术框架和工具,如数据处理框架(如 Apache Beam)、机器学习库(如 Deeplearning4j)等,为开发者提供更多的选择和便利。同时,开源社区还将加强技术交流与合作,通过技术研讨会、开源项目协作等方式,促进技术的共享和传播,推动 Java 大数据生态的繁荣发展。
结束语
亲爱的 Java 和 大数据爱好者们,Java 大数据领域在过去的发展历程中,凭借不断的技术突破、广泛的行业应用,已然成为推动各行业数字化变革的中流砥柱,取得了令人瞩目的斐然成就。
亲爱的 Java 和 大数据爱好者们,展望未来,Java 大数据更是蕴含着无限的可能性。从持续的技术创新,到不断拓展的应用边界,它将如同一股强劲的引擎,持续引领各行业的数字化转型,为社会的发展与进步注入源源不断的强大动力。
我们满怀期待,见证 Java 大数据在新征程中,以创新为笔,绘就更加辉煌的篇章,创造更多令人惊叹的行业奇迹,引领技术发展的新潮流,在数字化的时代浪潮中扬帆远航,驶向更加璀璨的未来。
接下来,《大数据新视界》和《 Java 大视界》专栏联合推出的第二个三阶段的系列文章已圆满落下帷幕,而知识的探索永不止步。两个专栏即将联合推出第三个三阶段的系列的第一篇文章《Java 大视界 —— 深入剖析 Java 大数据实时 ETL 中的数据质量保障策略(97)》,这篇文章将深入 Java 实现的大数据实时 ETL(Extract,Transform,Load)过程,细致阐述如何保障数据质量,内容涵盖数据清洗规则制定、异常数据处理、数据校验方法等,并结合实际项目案例分享宝贵经验,干货满满,不容错过,敬请持续关注!
诚邀各位技术爱好者参与投票,你认为 Java 大数据未来发展最关键的因素是什么?快来投出你的宝贵一票,点此链接投票 。
- Java 大视界 – 深入剖析 Java 大数据实时 ETL 中的数据质量保障策略(97)(下一篇 最新)
- Java 大视界 – 总结与展望:Java 大数据领域的新征程与无限可能(96)(本篇)
- 技术逐梦十二载:CSDN 相伴,400 篇文章见证成长,展望新篇(最新)
- Java 大视界 – Java 大数据未来十年的技术蓝图与发展愿景(95)(最新)
- Java 大视界 – 国际竞争与合作:Java 大数据在全球市场的机遇与挑战(94)(最新)
- Java 大视界 – 企业数字化转型中的 Java 大数据战略与实践(93)(最新)
- Java 大视界 – 人才需求与培养:Java 大数据领域的职业发展路径(92)(最新)
- Java 大视界 – 开源社区对 Java 大数据发展的推动与贡献(91)(最新)
- Java 大视界 – 绿色大数据:Java 技术在节能减排中的应用与实践(90)(最新)
- Java 大视界 – 全球数据治理格局下 Java 大数据的发展路径(89)(最新)
- Java 大视界 – 量子计算时代 Java 大数据的潜在变革与应对策略(88)(最新)
- Java 大视界 – 大数据伦理与法律:Java 技术在合规中的作用与挑战(87)(最新)
- Java 大视界 – 云计算时代 Java 大数据的云原生架构与应用实践(86)(最新)
- Java 大视界 – 边缘计算与 Java 大数据协同发展的前景与挑战(85)(最新)
- Java 大视界 – 区块链赋能 Java 大数据:数据可信与价值流转(84)(最新)
- Java 大视界 – 人工智能驱动下 Java 大数据的技术革新与应用突破(83)(最新)
- Java 大视界 – 5G 与 Java 大数据融合的行业应用与发展趋势(82)(最新)
- Java 大视界 – 后疫情时代 Java 大数据在各行业的变革与机遇(81)(最新)
- Java 大视界 – Java 大数据在智能体育中的应用与赛事分析(80)(最新)
- Java 大视界 – Java 大数据在智能家居中的应用与场景构建(79)(最新)
- 解锁 DeepSeek 模型高效部署密码:蓝耘平台深度剖析与实战应用(最新)
- Java 大视界 – Java 大数据在智能政务中的应用与服务创新(78)(最新)
- Java 大视界 – Java 大数据在智能金融监管中的应用与实践(77)(最新)
- Java 大视界 – Java 大数据在智能供应链中的应用与优化(76)(最新)
- 解锁 DeepSeek 模型高效部署密码:蓝耘平台全解析(最新)
- Java 大视界 – Java 大数据在智能教育中的应用与个性化学习(75)(最新)
- Java 大视界 – Java 大数据在智慧文旅中的应用与体验优化(74)(最新)
- Java 大视界 – Java 大数据在智能安防中的应用与创新(73)(最新)
- Java 大视界 – Java 大数据在智能医疗影像诊断中的应用(72)(最新)
- Java 大视界 – Java 大数据在智能电网中的应用与发展趋势(71)(最新)
- Java 大视界 – Java 大数据在智慧农业中的应用与实践(70)(最新)
- Java 大视界 – Java 大数据在量子通信安全中的应用探索(69)(最新)
- Java 大视界 – Java 大数据在自动驾驶中的数据处理与决策支持(68)(最新)
- Java 大视界 – Java 大数据在生物信息学中的应用与挑战(67)(最新)
- Java 大视界 – Java 大数据与碳中和:能源数据管理与碳排放分析(66)(最新)
- Java 大视界 – Java 大数据在元宇宙中的关键技术与应用场景(65)(最新)
- Java 大视界 – Java 大数据中的隐私增强技术全景解析(64)(最新)
- Java 大视界 – Java 大数据中的自然语言生成技术与实践(63)(最新)
- Java 大视界 – Java 大数据中的知识图谱构建与应用(62)(最新)
- Java 大视界 – Java 大数据中的异常检测技术与应用(61)(最新)
- Java 大视界 – Java 大数据中的数据脱敏技术与合规实践(60)(最新)
- Java 大视界 – Java 大数据中的时间序列预测高级技术(59)(最新)
- Java 大视界 – Java 与大数据分布式机器学习平台搭建(58)(最新)
- Java 大视界 – Java 大数据中的强化学习算法实践与优化 (57)(最新)
- Java 大视界 – Java 大数据中的深度学习框架对比与选型(56)(最新)
- Java 大视界 – Java 大数据实时数仓的构建与运维实践(55)(最新)
- Java 大视界 – Java 与大数据联邦数据库:原理、架构与实现(54)(最新)
- Java 大视界 – Java 大数据中的图神经网络应用与实践(53)(最新)
- Java 大视界 – 深度洞察 Java 大数据安全多方计算的前沿趋势与应用革新(52)(最新)
- Java 大视界 – Java 与大数据流式机器学习:理论与实战(51)(最新)
- Java 大视界 – 基于 Java 的大数据分布式索引技术探秘(50)(最新)
- Java 大视界 – 深入剖析 Java 在大数据内存管理中的优化策略(49)(最新)
- Java 大数据未来展望:新兴技术与行业变革驱动(48)(最新)
- Java 大数据自动化数据管道构建:工具与最佳实践(47)(最新)
- Java 大数据实时数据同步:基于 CDC 技术的实现(46)(最新)
- Java 大数据与区块链的融合:数据可信共享与溯源(45)(最新)
- Java 大数据数据增强技术:提升数据质量与模型效果(44)(最新)
- Java 大数据模型部署与运维:生产环境的挑战与应对(43)(最新)
- Java 大数据无监督学习:聚类与降维算法应用(42)(最新)
- Java 大数据数据虚拟化:整合异构数据源的策略(41)(最新)
- Java 大数据可解释人工智能(XAI):模型解释工具与技术(40)(最新)
- Java 大数据高性能计算:利用多线程与并行计算框架(39)(最新)
- Java 大数据时空数据处理:地理信息系统与时间序列分析(38)(最新)
- Java 大数据图计算:基于 GraphX 与其他图数据库(37)(最新)
- Java 大数据自动化机器学习(AutoML):框架与应用案例(36)(最新)
- Java 与大数据隐私计算:联邦学习与安全多方计算应用(35)(最新)
- Java 驱动的大数据边缘计算:架构与实践(34)(最新)
- Java 与量子计算在大数据中的潜在融合:原理与展望(33)(最新)
- Java 大视界 – Java 大数据星辰大海中的团队协作之光:照亮高效开发之路(十六)(最新)
- Java 大视界 – Java 大数据性能监控与调优:全链路性能分析与优化(十五)(最新)
- Java 大视界 – Java 大数据数据治理:策略与工具实现(十四)(最新)
- Java 大视界 – Java 大数据云原生应用开发:容器化与无服务器计算(十三)(最新)
- Java 大视界 – Java 大数据数据湖架构:构建与管理基于 Java 的数据湖(十二)(最新)
- Java 大视界 – Java 大数据分布式事务处理:保障数据一致性(十一)(最新)
- Java 大视界 – Java 大数据文本分析与自然语言处理:从文本挖掘到智能对话(十)(最新)
- Java 大视界 – Java 大数据图像与视频处理:基于深度学习与大数据框架(九)(最新)
- Java 大视界 – Java 大数据物联网应用:数据处理与设备管理(八)(最新)
- Java 大视界 – Java 与大数据金融科技应用:风险评估与交易分析(七)(最新)
- 蓝耘元生代智算云:解锁百亿级产业变革的算力密码(最新)
- Java 大视界 – Java 大数据日志分析系统:基于 ELK 与 Java 技术栈(六)(最新)
- Java 大视界 – Java 大数据分布式缓存:提升数据访问性能(五)(最新)
- Java 大视界 – Java 与大数据智能推荐系统:算法实现与个性化推荐(四)(最新)
- Java 大视界 – Java 大数据机器学习应用:从数据预处理到模型训练与部署(三)(最新)
- Java 大视界 – Java 与大数据实时分析系统:构建低延迟的数据管道(二)(最新)
- Java 大视界 – Java 微服务架构在大数据应用中的实践:服务拆分与数据交互(一)(最新)
- Java 大视界 – Java 大数据项目架构演进:从传统到现代化的转变(十六)(最新)
- Java 大视界 – Java 与大数据云计算集成:AWS 与 Azure 实践(十五)(最新)
- Java 大视界 – Java 大数据平台迁移与升级策略:平滑过渡的方法(十四)(最新)
- Java 大视界 – Java 大数据分析算法库:常用算法实现与优化(十三)(最新)
- Java 大视界 – Java 大数据测试框架与实践:确保数据处理质量(十二)(最新)
- Java 大视界 – Java 分布式协调服务:Zookeeper 在大数据中的应用(十一)(最新)
- Java 大视界 – Java 与大数据存储优化:HBase 与 Cassandra 应用(十)(最新)
- Java 大视界 – Java 大数据可视化:从数据处理到图表绘制(九)(最新)
- Java 大视界 – Java 大数据安全框架:保障数据隐私与访问控制(八)(最新)
- Java 大视界 – Java 与 Hive:数据仓库操作与 UDF 开发(七)(最新)
- Java 大视界 – Java 驱动大数据流处理:Storm 与 Flink 入门(六)(最新)
- Java 大视界 – Java 与 Spark SQL:结构化数据处理与查询优化(五)(最新)
- Java 大视界 – Java 开发 Spark 应用:RDD 操作与数据转换(四)(最新)
- Java 大视界 – Java 实现 MapReduce 编程模型:基础原理与代码实践(三)(最新)
- Java 大视界 – 解锁 Java 与 Hadoop HDFS 交互的高效编程之道(二)(最新)
- Java 大视界 – Java 构建大数据开发环境:从 JDK 配置到大数据框架集成(一)(最新)
- 大数据新视界 – Hive 多租户资源分配与隔离(2 - 16 - 16)(最新)
- 大数据新视界 – Hive 多租户环境的搭建与管理(2 - 16 - 15)(最新)
- 技术征途的璀璨华章:青云交的砥砺奋进与感恩之心(最新)
- 大数据新视界 – Hive 集群性能监控与故障排查(2 - 16 - 14)(最新)
- 大数据新视界 – Hive 集群搭建与配置的最佳实践(2 - 16 - 13)(最新)
- 大数据新视界 – Hive 数据生命周期自动化管理(2 - 16 - 12)(最新)
- 大数据新视界 – Hive 数据生命周期管理:数据归档与删除策略(2 - 16 - 11)(最新)
- 大数据新视界 – Hive 流式数据处理框架与实践(2 - 16 - 10)(最新)
- 大数据新视界 – Hive 流式数据处理:实时数据的接入与处理(2 - 16 - 9)(最新)
- 大数据新视界 – Hive 事务管理的应用与限制(2 - 16 - 8)(最新)
- 大数据新视界 – Hive 事务与 ACID 特性的实现(2 - 16 - 7)(最新)
- 大数据新视界 – Hive 数据倾斜实战案例分析(2 - 16 - 6)(最新)
- 大数据新视界 – Hive 数据倾斜问题剖析与解决方案(2 - 16 - 5)(最新)
- 大数据新视界 – Hive 数据仓库设计的优化原则(2 - 16 - 4)(最新)
- 大数据新视界 – Hive 数据仓库设计模式:星型与雪花型架构(2 - 16 - 3)(最新)
- 大数据新视界 – Hive 数据抽样实战与结果评估(2 - 16 - 2)(最新)
- 大数据新视界 – Hive 数据抽样:高效数据探索的方法(2 - 16 - 1)(最新)
- 智创 AI 新视界 – 全球合作下的 AI 发展新机遇(16 - 16)(最新)
- 智创 AI 新视界 – 产学研合作推动 AI 技术创新的路径(16 - 15)(最新)
- 智创 AI 新视界 – 确保 AI 公平性的策略与挑战(16 - 14)(最新)
- 智创 AI 新视界 – AI 发展中的伦理困境与解决方案(16 - 13)(最新)
- 智创 AI 新视界 – 改进 AI 循环神经网络(RNN)的实践探索(16 - 12)(最新)
- 智创 AI 新视界 – 基于 Transformer 架构的 AI 模型优化(16 - 11)(最新)
- 智创 AI 新视界 – AI 助力金融风险管理的新策略(16 - 10)(最新)
- 智创 AI 新视界 – AI 在交通运输领域的智能优化应用(16 - 9)(最新)
- 智创 AI 新视界 – AIGC 对游戏产业的革命性影响(16 - 8)(最新)
- 智创 AI 新视界 – AIGC 重塑广告行业的创新力量(16 - 7)(最新)
- 智创 AI 新视界 – AI 引领下的未来社会变革预测(16 - 6)(最新)
- 智创 AI 新视界 – AI 与量子计算的未来融合前景(16 - 5)(最新)
- 智创 AI 新视界 – 防范 AI 模型被攻击的安全策略(16 - 4)(最新)
- 智创 AI 新视界 – AI 时代的数据隐私保护挑战与应对(16 - 3)(最新)
- 智创 AI 新视界 – 提升 AI 推理速度的高级方法(16 - 2)(最新)
- 智创 AI 新视界 – 优化 AI 模型训练效率的策略与技巧(16 - 1)(最新)
- 大数据新视界 – 大数据大厂之 Hive 临时表与视图的应用场景(下)(30 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 临时表与视图:灵活数据处理的技巧(上)(29 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 元数据管理工具与实践(下)(28 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 元数据管理:核心元数据的深度解析(上)(27 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据湖集成与数据治理(下)(26 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据湖架构中的角色与应用(上)(25 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive MapReduce 性能调优实战(下)(24 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 基于 MapReduce 的执行原理(上)(23 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 窗口函数应用场景与实战(下)(22 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 窗口函数:强大的数据分析利器(上)(21 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据压缩算法对比与选择(下)(20 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据压缩:优化存储与传输的关键(上)(19/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据质量监控:实时监测异常数据(下)(18/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据质量保障:数据清洗与验证的策略(上)(17/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据安全:加密技术保障数据隐私(下)(16 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据安全:权限管理体系的深度解读(上)(15 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 与其他大数据工具的集成:协同作战的优势(下)(14/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 与其他大数据工具的集成:协同作战的优势(上)(13/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 函数应用:复杂数据转换的实战案例(下)(12/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 函数库:丰富函数助力数据处理(上)(11/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据桶:优化聚合查询的有效手段(下)(10/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据桶原理:均匀分布数据的智慧(上)(9/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据分区:提升查询效率的关键步骤(下)(8/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据分区:精细化管理的艺术与实践(上)(7/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 查询性能优化:索引技术的巧妙运用(下)(6/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 查询性能优化:基于成本模型的奥秘(上)(5/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据导入:优化数据摄取的高级技巧(下)(4/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据导入:多源数据集成的策略与实战(上)(3/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据仓库:构建高效数据存储的基石(下)(2/ 30)(最新)
- 大数据新视界 – 大数据大厂之 Hive 数据仓库:架构深度剖析与核心组件详解(上)(1 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:量子计算启发下的数据加密与性能平衡(下)(30 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:融合人工智能预测的资源预分配秘籍(上)(29 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:分布式环境中的优化新视野(下)(28 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:跨数据中心环境下的挑战与对策(上)(27 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能突破:处理特殊数据的高级技巧(下)(26 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能突破:复杂数据类型处理的优化路径(上)(25 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:资源分配与负载均衡的协同(下)(24 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:集群资源动态分配的智慧(上)(23 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能飞跃:分区修剪优化的应用案例(下)(22 / 30)(最新)
- 智创 AI 新视界 – AI 助力医疗影像诊断的新突破(最新)
- 智创 AI 新视界 – AI 在智能家居中的智能升级之路(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能飞跃:动态分区调整的策略与方法(上)(21 / 30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 存储格式转换:从原理到实践,开启大数据性能优化星际之旅(下)(20/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:基于数据特征的存储格式选择(上)(19/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能提升:高级执行计划优化实战案例(下)(18/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能提升:解析执行计划优化的神秘面纱(上)(17/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:优化数据加载的实战技巧(下)(16/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:数据加载策略如何决定分析速度(上)(15/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:为企业决策加速的核心力量(下)(14/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 在大数据架构中的性能优化全景洞察(上)(13/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:新技术融合的无限可能(下)(12/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-2))(11/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-1))(11/30)(最新)
- 大数据新视界 – 大数据大厂之经典案例解析:广告公司 Impala 优化的成功之道(下)(10/30)(最新)
- 大数据新视界 – 大数据大厂之经典案例解析:电商企业如何靠 Impala性能优化逆袭(上)(9/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:从数据压缩到分析加速(下)(8/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:应对海量复杂数据的挑战(上)(7/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 资源管理:并发控制的策略与技巧(下)(6/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 与内存管理:如何避免资源瓶颈(上)(5/30)(最新)
- 大数据新视界 – 大数据大厂之提升 Impala 查询效率:重写查询语句的黄金法则(下)(4/30)(最新)
- 大数据新视界 – 大数据大厂之提升 Impala 查询效率:索引优化的秘籍大揭秘(上)(3/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:数据存储分区的艺术与实践(下)(2/30)(最新)
- 大数据新视界 – 大数据大厂之 Impala 性能优化:解锁大数据分析的速度密码(上)(1/30)(最新)
- 大数据新视界 – 大数据大厂都在用的数据目录管理秘籍大揭秘,附海量代码和案例(最新)
- 大数据新视界 – 大数据大厂之数据质量管理全景洞察:从荆棘挑战到辉煌策略与前沿曙光(最新)
- 大数据新视界 – 大数据大厂之大数据环境下的网络安全态势感知(最新)
- 大数据新视界 – 大数据大厂之多因素认证在大数据安全中的关键作用(最新)
- 大数据新视界 – 大数据大厂之优化大数据计算框架 Tez 的实践指南(最新)
- 技术星河中的璀璨灯塔 —— 青云交的非凡成长之路(最新)
- 大数据新视界 – 大数据大厂之大数据重塑影视娱乐产业的未来(4 - 4)(最新)
- 大数据新视界 – 大数据大厂之大数据重塑影视娱乐产业的未来(4 - 3)(最新)
- 大数据新视界 – 大数据大厂之大数据重塑影视娱乐产业的未来(4 - 2)(最新)
- 大数据新视界 – 大数据大厂之大数据重塑影视娱乐产业的未来(4 - 1)(最新)
- 大数据新视界 – 大数据大厂之Cassandra 性能优化策略:大数据存储的高效之路(最新)
- 大数据新视界 – 大数据大厂之大数据在能源行业的智能优化变革与展望(最新)
- 智创 AI 新视界 – 探秘 AIGC 中的生成对抗网络(GAN)应用(最新)
- 大数据新视界 – 大数据大厂之大数据与虚拟现实的深度融合之旅(最新)
- 大数据新视界 – 大数据大厂之大数据与神经形态计算的融合:开启智能新纪元(最新)
- 智创 AI 新视界 – AIGC 背后的深度学习魔法:从原理到实践(最新)
- 大数据新视界 – 大数据大厂之大数据和增强现实(AR)结合:创造沉浸式数据体验(最新)
- 大数据新视界 – 大数据大厂之如何降低大数据存储成本:高效存储架构与技术选型(最新)
- 大数据新视界 --大数据大厂之大数据与区块链双链驱动:构建可信数据生态(最新)
- 大数据新视界 – 大数据大厂之 AI 驱动的大数据分析:智能决策的新引擎(最新)
- 大数据新视界 --大数据大厂之区块链技术:为大数据安全保驾护航(最新)
- 大数据新视界 --大数据大厂之 Snowflake 在大数据云存储和处理中的应用探索(最新)
- 大数据新视界 --大数据大厂之数据脱敏技术在大数据中的应用与挑战(最新)
- 大数据新视界 --大数据大厂之 Ray:分布式机器学习框架的崛起(最新)
- 大数据新视界 --大数据大厂之大数据在智慧城市建设中的应用:打造智能生活的基石(最新)
- 大数据新视界 --大数据大厂之 Dask:分布式大数据计算的黑马(最新)
- 大数据新视界 --大数据大厂之 Apache Beam:统一批流处理的大数据新贵(最新)
- 大数据新视界 --大数据大厂之图数据库与大数据:挖掘复杂关系的新视角(最新)
- 大数据新视界 --大数据大厂之 Serverless 架构下的大数据处理:简化与高效的新路径(最新)
- 大数据新视界 --大数据大厂之大数据与边缘计算的协同:实时分析的新前沿(最新)
- 大数据新视界 --大数据大厂之 Hadoop MapReduce 优化指南:释放数据潜能,引领科技浪潮(最新)
- 诺贝尔物理学奖新视野:机器学习与神经网络的璀璨华章(最新)
- 大数据新视界 --大数据大厂之 Volcano:大数据计算任务调度的新突破(最新)
- 大数据新视界 --大数据大厂之 Kubeflow 在大数据与机器学习融合中的应用探索(最新)
- 大数据新视界 --大数据大厂之大数据环境下的零信任安全架构:构建可靠防护体系(最新)
- 大数据新视界 --大数据大厂之差分隐私技术在大数据隐私保护中的实践(最新)
- 大数据新视界 --大数据大厂之 Dremio:改变大数据查询方式的创新引擎(最新)
- 大数据新视界 --大数据大厂之 ClickHouse:大数据分析领域的璀璨明星(最新)
- 大数据新视界 --大数据大厂之大数据驱动下的物流供应链优化:实时追踪与智能调配(最新)
- 大数据新视界 --大数据大厂之大数据如何重塑金融风险管理:精准预测与防控(最新)
- 大数据新视界 --大数据大厂之 GraphQL 在大数据查询中的创新应用:优化数据获取效率(最新)
- 大数据新视界 --大数据大厂之大数据与量子机器学习融合:突破智能分析极限(最新)
- 大数据新视界 --大数据大厂之 Hudi 数据湖框架性能提升:高效处理大数据变更(最新)
- 大数据新视界 --大数据大厂之 Presto 性能优化秘籍:加速大数据交互式查询(最新)
- 大数据新视界 --大数据大厂之大数据驱动智能客服 – 提升客户体验的核心动力(最新)
- 大数据新视界 --大数据大厂之大数据于基因测序分析的核心应用 - 洞悉生命信息的密钥(最新)
- 大数据新视界 --大数据大厂之 Ibis:独特架构赋能大数据分析高级抽象层(最新)
- 大数据新视界 --大数据大厂之 DataFusion:超越传统的大数据集成与处理创新工具(最新)
- 大数据新视界 --大数据大厂之 从 Druid 和 Kafka 到 Polars:大数据处理工具的传承与创新(最新)
- 大数据新视界 --大数据大厂之 Druid 查询性能提升:加速大数据实时分析的深度探索(最新)
- 大数据新视界 --大数据大厂之 Kafka 性能优化的进阶之道:应对海量数据的高效传输(最新)
- 大数据新视界 --大数据大厂之深度优化 Alluxio 分层架构:提升大数据缓存效率的全方位解析(最新)
- 大数据新视界 --大数据大厂之 Alluxio:解析数据缓存系统的分层架构(最新)
- 大数据新视界 --大数据大厂之 Alluxio 数据缓存系统在大数据中的应用与配置(最新)
- 大数据新视界 --大数据大厂之TeZ 大数据计算框架实战:高效处理大规模数据(最新)
- 大数据新视界 --大数据大厂之数据质量评估指标与方法:提升数据可信度(最新)
- 大数据新视界 --大数据大厂之 Sqoop 在大数据导入导出中的应用与技巧(最新)
- 大数据新视界 --大数据大厂之数据血缘追踪与治理:确保数据可追溯性(最新)
- 大数据新视界 --大数据大厂之Cassandra 分布式数据库在大数据中的应用与调优(最新)
- 大数据新视界 --大数据大厂之基于 MapReduce 的大数据并行计算实践(最新)
- 大数据新视界 --大数据大厂之数据压缩算法比较与应用:节省存储空间(最新)
- 大数据新视界 --大数据大厂之 Druid 实时数据分析平台在大数据中的应用(最新)
- 大数据新视界 --大数据大厂之数据清洗工具 OpenRefine 实战:清理与转换数据(最新)
- 大数据新视界 --大数据大厂之 Spark Streaming 实时数据处理框架:案例与实践(最新)
- 大数据新视界 --大数据大厂之 Kylin 多维分析引擎实战:构建数据立方体(最新)
- 大数据新视界 --大数据大厂之HBase 在大数据存储中的应用与表结构设计(最新)
- 大数据新视界 --大数据大厂之大数据实战指南:Apache Flume 数据采集的配置与优化秘籍(最新)
- 大数据新视界 --大数据大厂之大数据存储技术大比拼:选择最适合你的方案(最新)
- 大数据新视界 --大数据大厂之 Reactjs 在大数据应用开发中的优势与实践(最新)
- 大数据新视界 --大数据大厂之 Vue.js 与大数据可视化:打造惊艳的数据界面(最新)
- 大数据新视界 --大数据大厂之 Node.js 与大数据交互:实现高效数据处理(最新)
- 大数据新视界 --大数据大厂之JavaScript在大数据前端展示中的精彩应用(最新)
- 大数据新视界 --大数据大厂之AI 与大数据的融合:开创智能未来的新篇章(最新)
- 大数据新视界 --大数据大厂之算法在大数据中的核心作用:提升效率与智能决策(最新)
- 大数据新视界 --大数据大厂之DevOps与大数据:加速数据驱动的业务发展(最新)
- 大数据新视界 --大数据大厂之SaaS模式下的大数据应用:创新与变革(最新)
- 大数据新视界 --大数据大厂之Kubernetes与大数据:容器化部署的最佳实践(最新)
- 大数据新视界 --大数据大厂之探索ES:大数据时代的高效搜索引擎实战攻略(最新)
- 大数据新视界 --大数据大厂之Redis在缓存与分布式系统中的神奇应用(最新)
- 大数据新视界 --大数据大厂之数据驱动决策:如何利用大数据提升企业竞争力(最新)
- 大数据新视界 --大数据大厂之MongoDB与大数据:灵活文档数据库的应用场景(最新)
- 大数据新视界 --大数据大厂之数据科学项目实战:从问题定义到结果呈现的完整流程(最新)
- 大数据新视界 --大数据大厂之 Cassandra 分布式数据库:高可用数据存储的新选择(最新)
- 大数据新视界 --大数据大厂之数据安全策略:保护大数据资产的最佳实践(最新)
- 大数据新视界 --大数据大厂之Kafka消息队列实战:实现高吞吐量数据传输(最新)
- 大数据新视界 --大数据大厂之数据挖掘入门:用 R 语言开启数据宝藏的探索之旅(最新)
- 大数据新视界 --大数据大厂之HBase深度探寻:大规模数据存储与查询的卓越方案(最新)
- IBM 中国研发部裁员风暴,IT 行业何去何从?(最新)
- 大数据新视界 --大数据大厂之数据治理之道:构建高效大数据治理体系的关键步骤(最新)
- 大数据新视界 --大数据大厂之Flink强势崛起:大数据新视界的璀璨明珠(最新)
- 大数据新视界 --大数据大厂之数据可视化之美:用 Python 打造炫酷大数据可视化报表(最新)
- 大数据新视界 --大数据大厂之 Spark 性能优化秘籍:从配置到代码实践(最新)
- 大数据新视界 --大数据大厂之揭秘大数据时代 Excel 魔法:大厂数据分析师进阶秘籍(最新)
- 大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南(最新)
- 大数据新视界–大数据大厂之Java 与大数据携手:打造高效实时日志分析系统的奥秘(最新)
- 大数据新视界–面向数据分析师的大数据大厂之MySQL基础秘籍:轻松创建数据库与表,踏入大数据殿堂(最新)
- 全栈性能优化秘籍–Linux 系统性能调优全攻略:多维度优化技巧大揭秘(最新)
- 大数据新视界–大数据大厂之MySQL数据库课程设计:揭秘 MySQL 集群架构负载均衡核心算法:从理论到 Java 代码实战,让你的数据库性能飙升!(最新)
- 大数据新视界–大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案(最新)
- 解锁编程高效密码:四大工具助你一飞冲天!(最新)
- 大数据新视界–大数据大厂之MySQL数据库课程设计:MySQL数据库高可用性架构探索(2-1)(最新)
- 大数据新视界–大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡方法选择全攻略(2-2)(最新)
- 大数据新视界–大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)(最新)
- 大数据新视界–大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)(最新)
- 大数据新视界–大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望(最新)
- 大数据新视界–大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅(最新)
- 大数据新视界–大数据大厂之大数据时代的璀璨导航星:Eureka 原理与实践深度探秘(最新)
- Java性能优化传奇之旅–Java万亿级性能优化之Java 性能优化逆袭:常见错误不再是阻碍(最新)
- Java性能优化传奇之旅–Java万亿级性能优化之Java 性能优化传奇:热门技术点亮高效之路(最新)
- Java性能优化传奇之旅–Java万亿级性能优化之电商平台高峰时段性能优化:多维度策略打造卓越体验(最新)
- Java性能优化传奇之旅–Java万亿级性能优化之电商平台高峰时段性能大作战:策略与趋势洞察(最新)
- JVM万亿性能密码–JVM性能优化之JVM 内存魔法:开启万亿级应用性能新纪元(最新)
- 十万流量耀前路,成长感悟谱新章(最新)
- AI 模型:全能与专精之辩 —— 一场科技界的 “超级大比拼”(最新)
- 国产游戏技术:挑战与机遇(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(10)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(9)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(8)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(7)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(6)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(5)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(4)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(3)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(2)(最新)
- Java面试题–JVM大厂篇之JVM大厂面试题及答案解析(1)(最新)
- Java 面试题 ——JVM 大厂篇之 Java 工程师必备:顶尖工具助你全面监控和分析 CMS GC 性能(2)(最新)
- Java面试题–JVM大厂篇之Java工程师必备:顶尖工具助你全面监控和分析CMS GC性能(1)(最新)
- Java面试题–JVM大厂篇之未来已来:为什么ZGC是大规模Java应用的终极武器?(最新)
- AI 音乐风暴:创造与颠覆的交响(最新)
- 编程风暴:勇破挫折,铸就传奇(最新)
- Java面试题–JVM大厂篇之低停顿、高性能:深入解析ZGC的优势(最新)
- Java面试题–JVM大厂篇之解密ZGC:让你的Java应用高效飞驰(最新)
- Java面试题–JVM大厂篇之掌控Java未来:深入剖析ZGC的低停顿垃圾回收机制(最新)
- GPT-5 惊涛来袭:铸就智能新传奇(最新)
- AI 时代风暴:程序员的核心竞争力大揭秘(最新)
- Java面试题–JVM大厂篇之Java新神器ZGC:颠覆你的垃圾回收认知!(最新)
- Java面试题–JVM大厂篇之揭秘:如何通过优化 CMS GC 提升各行业服务器响应速度(最新)
- “低代码” 风暴:重塑软件开发新未来(最新)
- 程序员如何平衡日常编码工作与提升式学习?–编程之路:平衡与成长的艺术(最新)
- 编程学习笔记秘籍:开启高效学习之旅(最新)
- Java面试题–JVM大厂篇之高并发Java应用的秘密武器:深入剖析GC优化实战案例(最新)
- Java面试题–JVM大厂篇之实战解析:如何通过CMS GC优化大规模Java应用的响应时间(最新)
- Java面试题–JVM大厂篇(1-10)
- Java面试题–JVM大厂篇之Java虚拟机(JVM)面试题:涨知识,拿大厂Offer(11-20)
- Java面试题–JVM大厂篇之JVM面试指南:掌握这10个问题,大厂Offer轻松拿
- Java面试题–JVM大厂篇之Java程序员必学:JVM架构完全解读
- Java面试题–JVM大厂篇之以JVM新特性看Java的进化之路:从Loom到Amber的技术篇章
- Java面试题–JVM大厂篇之深入探索JVM:大厂面试官心中的那些秘密题库
- Java面试题–JVM大厂篇之高级Java开发者的自我修养:深入剖析JVM垃圾回收机制及面试要点
- Java面试题–JVM大厂篇之从新手到专家:深入探索JVM垃圾回收–开端篇
- Java面试题–JVM大厂篇之Java性能优化:垃圾回收算法的神秘面纱揭开!
- Java面试题–JVM大厂篇之揭秘Java世界的清洁工——JVM垃圾回收机制
- Java面试题–JVM大厂篇之掌握JVM性能优化:选择合适的垃圾回收器
- Java面试题–JVM大厂篇之深入了解Java虚拟机(JVM):工作机制与优化策略
- Java面试题–JVM大厂篇之深入解析JVM运行时数据区:Java开发者必读
- Java面试题–JVM大厂篇之从零开始掌握JVM:解锁Java程序的强大潜力
- Java面试题–JVM大厂篇之深入了解G1 GC:大型Java应用的性能优化利器
- Java面试题–JVM大厂篇之深入了解G1 GC:高并发、响应时间敏感应用的最佳选择
- Java面试题–JVM大厂篇之G1 GC的分区管理方式如何减少应用线程的影响
- Java面试题–JVM大厂篇之深入解析G1 GC——革新Java垃圾回收机制
- Java面试题–JVM大厂篇之深入探讨Serial GC的应用场景
- Java面试题–JVM大厂篇之Serial GC在JVM中有哪些优点和局限性
- Java面试题–JVM大厂篇之深入解析JVM中的Serial GC:工作原理与代际区别
- Java面试题–JVM大厂篇之通过参数配置来优化Serial GC的性能
- Java面试题–JVM大厂篇之深入分析Parallel GC:从原理到优化
- Java面试题–JVM大厂篇之破解Java性能瓶颈!深入理解Parallel GC并优化你的应用
- Java面试题–JVM大厂篇之全面掌握Parallel GC参数配置:实战指南
- Java面试题–JVM大厂篇之Parallel GC与其他垃圾回收器的对比与选择
- Java面试题–JVM大厂篇之Java中Parallel GC的调优技巧与最佳实践
- Java面试题–JVM大厂篇之JVM监控与GC日志分析:优化Parallel GC性能的重要工具
- Java面试题–JVM大厂篇之针对频繁的Minor GC问题,有哪些优化对象创建与使用的技巧可以分享?
- Java面试题–JVM大厂篇之JVM 内存管理深度探秘:原理与实战
- Java面试题–JVM大厂篇之破解 JVM 性能瓶颈:实战优化策略大全
- Java面试题–JVM大厂篇之JVM 垃圾回收器大比拼:谁是最佳选择
- Java面试题–JVM大厂篇之从原理到实践:JVM 字节码优化秘籍
- Java面试题–JVM大厂篇之揭开CMS GC的神秘面纱:从原理到应用,一文带你全面掌握
- Java面试题–JVM大厂篇之JVM 调优实战:让你的应用飞起来
- Java面试题–JVM大厂篇之CMS GC调优宝典:从默认配置到高级技巧,Java性能提升的终极指南
- Java面试题–JVM大厂篇之CMS GC的前世今生:为什么它曾是Java的王者,又为何将被G1取代
- Java就业-学习路线–突破性能瓶颈: Java 22 的性能提升之旅
- Java就业-学习路线–透视Java发展:从 Java 19 至 Java 22 的飞跃
- Java就业-学习路线–Java技术:2024年开发者必须了解的10个要点
- Java就业-学习路线–Java技术栈前瞻:未来技术趋势与创新
- Java就业-学习路线–Java技术栈模块化的七大优势,你了解多少?
- Spring框架-Java学习路线课程第一课:Spring核心
- Spring框架-Java学习路线课程:Spring的扩展配置
- Springboot框架-Java学习路线课程:Springboot框架的搭建之maven的配置
- Java进阶-Java学习路线课程第一课:Java集合框架-ArrayList和LinkedList的使用
- Java进阶-Java学习路线课程第二课:Java集合框架-HashSet的使用及去重原理
- JavaWEB-Java学习路线课程:使用MyEclipse工具新建第一个JavaWeb项目(一)
- JavaWEB-Java学习路线课程:使用MyEclipse工具新建项目时配置Tomcat服务器的方式(二)
- Java学习:在给学生演示用Myeclipse10.7.1工具生成War时,意外报错:SECURITY: INTEGRITY CHECK ERROR
- 使用Jquery发送Ajax请求的几种异步刷新方式
- Idea Springboot启动时内嵌tomcat报错- An incompatible version [1.1.33] of the APR based Apache Tomcat Native
- Java入门-Java学习路线课程第一课:初识JAVA
- Java入门-Java学习路线课程第二课:变量与数据类型
- Java入门-Java学习路线课程第三课:选择结构
- Java入门-Java学习路线课程第四课:循环结构
- Java入门-Java学习路线课程第五课:一维数组
- Java入门-Java学习路线课程第六课:二维数组
- Java入门-Java学习路线课程第七课:类和对象
- Java入门-Java学习路线课程第八课:方法和方法重载
- Java入门-Java学习路线扩展课程:equals的使用
- Java入门-Java学习路线课程面试篇:取商 / 和取余(模) % 符号的使用
🗳️参与投票和与我联系:
相关文章:
Java 大视界 -- 总结与展望:Java 大数据领域的新征程与无限可能(96)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...
从零开始:VirtualBox安装Ubuntu 24.04.1 LTS
博客系列:Ubuntu虚拟机搭建与Python开发环境配置全攻略 第一篇:从零开始:VirtualBox安装Ubuntu 24.04.1 LTS(当前)第二篇:解决VirtualBox卡顿问题:配置优化和常见错误排查第三篇:轻…...
使用大语言模型(Deepseek)构建一个基于 SQL 数据的问答系统
GitHub代码仓库 架构 从高层次来看,这些系统的步骤如下: 将问题转换为SQL查询:模型将用户输入转换为SQL查询。 执行SQL查询:执行查询。 回答问题:模型根据查询结果响应用户输入。 样本数据 下载样本数据…...
记录此刻:历时两月,初步实现基于FPGA的NVMe SSD固态硬盘存储控制器设计!
背景 为满足实验室横向项目需求,在2024年12月中下旬导师提出基于FPGA的NVMe SSD控制器研发项目。项目核心目标为:通过PCIe 3.0 x4接口实现单盘3000MB/s的持续读取速率。 实现过程 调研 花了半个月的时间查阅了一些使用FPGA实现NVME SSD控制器的论文、…...
【mysql】核心参数,SHOW VARIABLES
核心参数分类解析 SET GLOBAL slow_query_log = ON; 修改参数设置 一、核心参数分类解析 1. 连接和线程配置 max_connections (200):允许的最大并发连接数,超过会拒绝新连接。 wait_timeout (28800秒):非交互式连接的空闲超时时间(默认8小时)。 interactive_timeout (…...
centOS 7.9 安装JDK MYSQL
jdk: Java Archive Downloads - Java SE 17.0.12 and earlier CentOS安装JDK17教程(完整版) - 秦胜飞 - 博客园 sudo yum update wget https://download.oracle.com/java/17/archive/jdk-17.0.3.1_linux-x64_bin.rpm yum install ./jdk-17.0.3.1_linux…...
【OS安装与使用】part5-ubuntu22.04基于conda安装pytorch+tensorflow
文章目录 一、待解决问题1.1 问题描述1.2 解决方法 二、方法详述2.1 必要说明2.2 应用步骤2.2.1 明确pytorch安装依赖2.2.2 conda创建虚拟环境2.2.3 安装pytorch2.2.4 验证pytorch安装2.2.5 安装Tensorflow2.2.6 验证Tensorflow安装 三、疑问四、总结 一、待解决问题 1.1 问题…...
SVM 支持向量机
Owner: 潘达斯奈基 #数据科学/机器学习/SVM 一 支持向量机简介 支持向量机(Support Vector Machine, SVM)是一个二元分类算法,是对感知器算法模型的一种拓展,现在的SVM算法支持线性分类和非线性分类应用,…...
第1章大型互联网公司的基础架构——1.9 LSM Tree
**LSM Tree(Log-Structured Merge Tree)是一种对高并发写数据非常友好的键值存储模型,同时兼顾了查询效率。**LSMTree是我们下面将要介绍的NoSQL数据库所依赖的核心数据结构,例如BigTable.、HBase、 Cassandra、TiDB 等。 1.9.1 …...
053 性能压测 单机锁 setnx
文章目录 性能压测-压力测试索引thymeleafnginx减少数据库查询(代码有bug)缓存 安全单机锁(防止缓存击穿)setnx pom.xml 性能压测-压力测试 1 响应时间(Response Time: RT):响应时间指用户从客…...
眼见不一定为实之MySQL中的不可见字符
目录 前言 一、问题的由来 1、需求背景 2、数据表结构 二、定位问题 1、初步的问题 2、编码是否有问题 3、依然回到字符本身 三、深入字符本身 1、回归本质 2、数据库解决之道 3、代码层解决 四、总结 前言 在开始今天的博客内容之前,正在看博客的您先…...
【Java 面试 八股文】JVM 虚拟机篇
JVM 虚拟机篇 1. JVM组成1.1 JVM由那些部分组成,运行流程是什么?1.2 什么是程序计数器?1.3 你能给我详细的介绍Java堆吗?1.4 Java 虚拟机栈1.4.1 Java Virtual machine Stacks (java 虚拟机栈)1.4.2 栈和堆的区别1.4.3 垃圾回收是否涉及栈内…...
达梦数据库学习笔记@1
目录 达梦数据库学习笔记一、表空间管理(一)默认表空间(二)相关数据字典(三)表空间操作(四)临时表空间管理 二、重做日志管理(一)系统视图(二&…...
条款23:宁以non-member、non-friend替换member函数
1.使用场景举例 网络浏览器类 当然这一功能也可以由一个non-menber函数(更好的封装,本条款的核心立意)提供: 面向对象守则要求数据应该尽可能的被封装,然而与直观相反地,member函数clearEverything带来的封…...
代码审计初探
学会了基础的代码审计后,就该提高一下了,学一下一些框架的php代码审计 先从一些小众的、已知存在漏洞的cms入手 phpems php的一款开源考试系统 源码下载 https://down.chinaz.com/soft/34597.htm 环境部署 windows审计,把相关文件放到phps…...
2025前端框架最新组件解析与实战技巧:Vue与React的革新之路
作者:飞天大河豚 引言 2025年的前端开发领域,Vue与React依然是开发者最青睐的框架。随着Vue 3的全面普及和React 18的持续优化,两大框架在组件化开发、性能优化、工程化支持等方面均有显著突破。本文将从最新组件特性、使用场景和编码技巧三…...
Eclipse自动排版快捷键“按了没有用”的解决办法
快捷键按了没有用,通常是因为该快捷键方式被其他软件占用了,即别的软件也设置了这个快捷键,导致你按了之后电脑不知道该响应哪个软件。 解决办法:1.将当前软件的这个快捷键改了;2.找到占用的那个软件,把那…...
小型字符级语言模型的改进方向和策略
小型字符级语言模型的改进方向和策略 一、回顾小型字符级语言模型的处理流程 前文我们已经从零开始构建了一个小型字符级语言模型,那么如何改进和完善我们的模型呢?有哪些改进的方向?我们先回顾一下模型的流程: 图1 小型字符级语言模型的处理流程 (1)核心模块交互过程:…...
请简述一下Prefab(预制体)的本质是什么?
在 Unity 中,Prefab(预制体)是一种非常重要的资产类型。 Prefab 本质上是一个可重复使用(开发者可以在场景中多次实例化同一个预制体)的游戏对象模板(预制体就像一个模板,对预制体本身的修改会…...
【开源项目】分布式文本多语言翻译存储平台
分布式文本多语言翻译存储平台 地址: Gitee:https://gitee.com/dreamPointer/zza-translation/blob/master/README.md 一、提供服务 分布式文本翻译服务,长文本翻译支持流式回调(todo)分布式文本多语言翻译结果存储服…...
使用GPU训练模型
1.说明 本地训练模型可以用CPU和GPU,但是GPU的性能比CPU要好得多,所以如果有独立显卡的,尽量还是用GPU来训练模型。 使用GPU需要安装Cuda和Cudnn 2.安装Cuda 安装cuda之前,首先看一下显卡支持的cuda版本,在命…...
DPVS-3: 双臂负载均衡测试
测试拓扑 双臂模式, 使用两个网卡,一个对外,一个对内。 Client host是物理机, RS host都是虚拟机。 LB host是物理机,两个CX5网卡分别在两个子网。 配置文件 用dpvs.conf.sample作为双臂配置文件,其中…...
Spring Security+JWT+Redis实现项目级前后端分离认证授权
1. 整体概述 权限管理包括用户身份认证和授权两部分,简称认证授权。对于需要访问控制到资源,用户首先经过身份认证,认证通过后用户具有该资源的访问权限方可访问。 1.1 认证概述 认证是确认用户身份的过程,确保用户是谁。 1.1.1 …...
马斯克宣布Grok语音模式正式上线:早期测试版本 可能有一些问题
快科技2月23日消息,据报道,马斯克旗下xAI团队近期动作频频,继2月18日直播发布Grok最新版本Grok3后,马斯克又在社交平台X上宣布,Grok语音模式早期测试版现已在Grok应用程序上线,并对其表现给予了高度评价。 …...
P9631 [ICPC 2020 Nanjing R] Just Another Game of Stones Solution
Description 给定序列 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1,a2,⋯,an),有 m m m 个操作分两种: chmax ( l , r , k ) \operatorname{chmax}(l,r,k) chmax(l,r,k):对每个 i ∈ [ l , r ] i \in [l,r] i∈[l,…...
请求go构建缓存,go clean -cache
go clean -cache go 构建时会产生很多缓存, 一般是目录:/Users/xxx/Library/Caches/go-build 此目录README: This directory holds cached build artifacts from the Go build system. Run "go clean -cache" if the directory …...
安全面试4
文章目录 给的源码是ThinkPHP框架的话,审计起来和没有使用框架的有什么不同,从流程上或者从关注的点上有什么不同框架代码审计的流程无框架代码审计的流程 反序列的时候,unserialize()反序列一个字符串的时候,对象会有一些魔术方法…...
HTML之JavaScript DOM操作元素(1)
HTML之JavaScript DOM操作元素(1) 3.对元素进行操作1.操作元素的属性 元素名.属性名 ""2.操作元素的样式 元素.style.样式名 "" 样式名 "-" 要进行驼峰转换3.操作元素的文本 元素名.innerText 只识别文本元素名…...
SpringBoot+Vue+微信小程序的猫咖小程序平台(程序+论文+讲解+安装+调试+售后)
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,我会一一回复,希望帮助更多的人。 系统介绍 在当下这个高速发展的时代,网络科技正以令人惊叹的速度不断迭代更新。从 5G …...
【十一】Golang 指针
💢欢迎来到张胤尘的开源技术站 💥开源如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌💥 文章目录 指针指针定义指针初始化& 操作符new 函数初始…...
“conda”不是内部或外部命令,也不是可运行的程序或批处理文件
有的时候,我们发现在cmd黑框中输入conda时,cmd会显示“conda”不是内部或外部命令,也不是可运行的程序或批处理文件,那这时候该怎么解决呢? Step01:我们找到Anconda的安装目录。然后找到里面的bin文件夹&am…...
通过LM Studio本地私有化部署DeepSeek-R1模型,无网络也能用
打开LM Studio官网https://lmstudio.ai/ 选择适合自己的操作系统,下载LM Studio安装包 本地电脑安装成功后运行LM Studio,顶部文本框输入deepseek,点击搜索模型 在搜索结果中选择7B参数模型, 如上图右侧提示“No result found”说…...
GPU和FPGA的区别
GPU(Graphics Processing Unit,图形处理器)和 FPGA(Field-Programmable Gate Array,现场可编程门阵列)不是同一种硬件。 我的理解是,虽然都可以用于并行计算,但是GPU是纯计算的硬件…...
CMake管理依赖实战:多仓库的无缝集成
随着软件复杂度的增加,单个项目可能需要依赖多个外部库或模块。这些依赖项可能是来自不同的代码仓库,如ATest和BTest。为了实现高效的依赖管理,CMake提供了多种方式来处理这种多仓库的情况。下面我们将详细介绍几种常见的方法,并通…...
Windows系统第一次运行C语言程序,环境配置,软件安装等遇到的坑及解决方法
明确需要编辑器和编译器,并选择自己要用什么(我选的编辑器是VSCode:Visual Studio Code;编译器是gcc)下载VSCode并配置环境变量(这里没啥问题),安装C/C的拓展安装Cygwin,…...
2025最新版!Fiddler抓包实战:深度解析短视频评论采集技术
2025最新版!Fiddler抓包实战:深度解析短视频评论采集技术(脱敏) 声明: 本文仅供学习交流使用,请勿用于非法用途。 导语: 短视频数据采集又有新突破!你是否好奇如何安全、高效地获…...
Linux信号
目录 1. 信号的概念搞定(输出结论,支撑我们的理解) 补充知识 2.信号的产生 补充知识 3.信号的保存 4.阻塞信号 1. 信号其他相关常见概念 2. 在内核中的表示 3. sigset_t 4. 信号集操作函数 sigprocmask sigpending 5. 信号的…...
git,bash - 从一个远端git库只下载一个文件的方法
文章目录 git,bash - 从一个远端git库只下载一个文件的方法概述笔记写一个bash脚本来自动下载get_github_raw_file_from_url.shreanme_file.shfind_key_value.sh执行命令 END git,bash - 从一个远端git库只下载一个文件的方法 概述 github上有很多大佬上传了电子书库…...
深度学习(5)-卷积神经网络
我们将深入理解卷积神经网络的原理,以及它为什么在计算机视觉任务上如此成功。我们先来看一个简单的卷积神经网络示例,它用干对 MNIST数字进行分类。这个任务在第2章用密集连接网络做过,当时的测试精度约为 97.8%。虽然这个卷积神经网络很简单…...
flex布局自定义一行几栏,靠左对齐===grid布局
模板 <div class"content"><div class"item">1222</div><div class"item">1222</div><div class"item">1222</div><div class"item">1222</div><div class"…...
(五)趣学设计模式 之 建造者模式!
目录 一、 啥是建造者模式?二、 为什么要用建造者模式?三、 建造者模式怎么实现?四、 建造者模式的应用场景五、 建造者模式的优点和缺点六、 总结 🌟我的其他文章也讲解的比较有趣😁,如果喜欢博主的讲解方…...
【CentOS7】安装MinIO
下载rpm包 wget https://dl.min.io/server/minio/release/linux-amd64/archive/minio-20230809233022.0.0.x86_64.rpm 安装 rpm -ivh minio-20230809233022.0.0.x86_64.rpm 运行 server 后面跟着的使minio 的数据目录;console-address 后面跟着的是minio 的管理…...
vLLM学习1
调用方式 一、vLLM 提供的两种调用方式 1. Offline Batched Inference(离线批处理) 调用特点:一次性传入一批(batch)的请求,等待所有请求都处理完毕后,一次性返回推理结果。对用户而言&#x…...
ABC 385
目录 C. Illuminate Buildings D. Santa Claus E. Snowflake Tree C. Illuminate Buildings dp[ i ][ j ]:选择的 i 个建筑,间隔为 j。这样只需要两层循环就可以了,o(n^2) 其实本质只是个一维 dp,但我还需…...
綫性與非綫性泛函分析與應用_1.例題(下)-半母本
第1章 實分析與函數論:快速回顧(下) 五、基數;有限集和無限集相關例題 例題1:集合基數的判斷 判斷集合和集合B=\{a,b,c,d,e\}的基數關係。 解析: 可以構造一個雙射,例如,,,,。 所以,兩個集合具有相同的基數。 例題2:可數集的證明 證明整數集是可數集。 解析: …...
49 set与map的模拟实现
目录 一、源码及框架分析 二、模拟实现map和set (一)复用红黑树的框架,并支持insert (二)支持迭代器的实现 (三)map支持 [ ] (四)整体代码实现 一、源码及框架分析…...
鸿蒙NEXT应用App测试-通用测试
注意:大家记得学完通用测试记得再学鸿蒙专项测试 https://blog.csdn.net/weixin_51166786/article/details/145768653 注意:博主有个鸿蒙专栏,里面从上到下有关于鸿蒙next的教学文档,大家感兴趣可以学习下 如果大家觉得博主文章…...
LangChain 技术入门指南:探索语言模型的无限可能
在当今的技术领域,LangChain 正逐渐崭露头角,成为开发语言模型应用的强大工具。如果你渴望深入了解并掌握这一技术,那么就跟随本文一起开启 LangChain 的入门之旅吧! (后续将持续输出关于LangChain的技术文章,有兴趣的同学可以关注…...
UE5销毁Actor,移动Actor,简单的空气墙的制作
1.销毁Actor 1.Actor中存在Destory()函数和Destoryed()函数 Destory()函数是成员函数,它会立即标记 Actor 为销毁状态,并且会从场景中移除该 Actor。它会触发生命周期中的销毁过程,调用 Destroy() 后,Actor 立即进入销毁过程。具体…...
STM32基础篇(二)------GPIO
GPIO简介 GPIO(General Purpose Input Output)通用输入输出口 可配置为8种输入输出模式 引脚电平:0V~3.3V,部分引脚可容忍5V 输出模式下可控制端口输出高低电平,用以驱动LED、控制蜂鸣器、模拟通信协议输出时序等 输入…...