一.AI大模型开发-初识机器学习
机器学习基本概念
前言
本文主要介绍了深度学习基础,包括机器学习、深度学习的概念,机器学习的两种典型任务分类任务和回归任务,机器学习中的基础名词解释以及模型训练的基本流程等。
一.认识机器学习
1.人工智能和机器学习
人工智能(Artificial Intelligence,简称AI) 是指由计算机系统所表现出的智能行为。它是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的学科。人工智能的目标是使机器能够执行通常需要人类智能才能完成的任务,如学习、推理、解决问题、理解语言、识别图像等
人工智能的关键技术包括:
- 机器学习(Machine Learning, ML):通过数据训练模型,使计算机能够从经验中学习并改进性能。
- 深度学习(Deep Learning):一种特殊的机器学习方法,使用多层神经网络来处理复杂的数据模式。
- 自然语言处理(Natural Language Processing, NLP):使计算机能够理解和生成人类语言。
- 计算机视觉(Computer Vision*:让计算机能够“看”和解释图像或视频内容。
- 强化学习(Reinforcement Learning):通过奖励和惩罚机制来训练AI系统做出最优决策。
机器学习是一种通过大量数据去迭代逼近未知参数的最优解的方法。 深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。
人工智能已经广泛应用于多个行业,如医疗、金融、交通、娱乐、教育等。常见的应用场景包括自动驾驶汽车、智能客服、个性化推荐、疾病诊断、语音助手等。
2.机器如何学习
机器学习是对人脑学习的模拟,人类通过学习在大脑中形成对事物的认知,也就是知识,当大脑接受到新的问题时能够根据自身的认知和经验给出答案。那么机器也是一样,我们对AI提供大量的数据进行学习和反复训练那么AI也能够形成一套“知识”体系。当输入新的数据给AI那么它就能根据自己的“知识”体系给出较为精准的结果,如下:
3.什么是神经网络
深度学习和机器学习最大的区别是深度学习引入了神经网络,神经网络的构建是通过模拟人类神经元之间的信息传递过程。
人体大脑学习过程是通过感觉器官接收外界刺激信息,如视觉、听觉、触觉等,这些信息转化为神经信号传递到大脑,神经信号在神经元之间通过突触
进行传导。 神经元是主要由树突、轴突、突出组成,树突是从上面接收很多信号,经过轴突处理后传递给突触,突触会进行选择性向下一级的树突传递信号。
通过这种方式,神经元之间形成了复杂的连接网络,使得大脑能够进行信息的传递、整合和处理,以实现各种认知、情感和行为功能。此外,突触在学习、记忆等过程中还可以发生动态的变化和重塑,以适应新的经验和环境需求。
那么神经网络模拟的就是神经元之间的信息传递过程,每个神经网络单元抽象出来一种=数学MP模型
,也叫感知器,它接收多个输入(x1,x2,x3…),产生一个输出 即 y= W1X1+W2X2+W3X3+…+WnXn + b。
这就好比是神经末梢感受各种外部环境的变化(感知外部刺激),产生不同的电信号(也就是输入:x1,x2,x3…xn),这些强度不同(也就是参数w1,w2,w3…wn)的电信号汇聚到一起,会改变这些神经元内的电位,如果神经元的电位超过了一个“阈值”(参数 b),它就会被激活(激活函数),即“兴奋”起来,向其他神经元发送化学物质。
下面是MP模型示例图,它是麦卡洛克一皮茨模型(McCulloch-Pitts model )简称,一种早期的神经元网络模型.
MP模型由美国神经生理学家麦卡洛克(McCulloch, W.)和数学家皮茨 <Pitts,W.)于1943年共同提出。设有n个神经元相互连结,每个神经元的状态Si (i=1,2,…,n)取值0或1,分别表示该神经元的抑制和兴奋,每个神经元的状态都受其他神经元的制约,B是第i个神经元的阂值,W是神经元i与神经元j之间的连结强度。
MP模型过程:
- 每个神经元都是一个多输入端如x1,x2,x3
- 每个输入都会乘以权重w1,w2,w3,再加一个阈值 b
- 最后我们会得到 y = w1x1 + w2x2 + w3x3 + b,最终我们得到一个值 y
- 得到这个值后是否会向下游输出则取决于激活函数f(x)
- 向下游输出的结果Oj的值要么是0,要么是1。
激活函数
激活函数:就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。
如果不用激活函数:每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。 如果使用激活函数:激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。
单个的感知器(也叫单感知机)就构成了一个简单的模型(MP模型),但在现实世界中,实际的决策模型则要复杂得多,往往是由多个感知器组成的多层网络,如下图所示,这也是经典的神经网络模型(也叫多感知机),由输入层、隐含层、输出层构成。
4.机器学习的两种任务
机器学习的典型任务可以分为:分类任务 和 回归任务,分类任务:找到分类边界,将不同类型的数据划分开。回归任务:通过模型拟合数据点分布,预测新数据的值。分类任务输出离散值,回归任务输出连续值。
分类任务: 是根据每个样本的值特征预测该样本属于类型A、类型B还是类型C,例如情感分类、内容审核,相当于学习了一个分类边界(决策边界),用分类边界把不同类别的数据区分开来。
回归任务:是对连续值进行预测,根据每个样本的值特征预测该样本的具体数值,例如房价预测,股票预测等,相当于学习到了这一组数据背后的分布,能够根据数据的输入预测该数据的取值。
分类模型只能输出对与错,通常用来将预测结果是将样本划分到某个特定类别,而回归模型输出的数据的预测值,例如,判断一个水果是苹果还是橙子用分类模型,而预测明天的气温是多少度则用回归模型。
5.有监督学习和无监督学习
为什么要分有监督和无监督:当训练员训练小狗的时候,如果小狗做出了一个正确的动作,都会奖励一个实物给小狗来标记一个正确的信号,模型训练也是如此:我们需要通过真实数据去标注模型的预测值是否正确,或者误差值是多少,这个就是有监督学习,有监督和无监督区别如下:
有监督学习:监督学习利用大量的标注数据来训练模型,对模型的预测值和数据的真实标签计算损失,然后将误差进行反向传播(计算梯度、更新参数),通过不断的学习,最终可以获得识别新样本的能力。
每条数据都有正确答案,通过模型预结果与正确答案的误差不断优化模型参数
无监督学习:无监督学习不依赖任何标签值,通过对数据内在特征的挖掘,找到样本间的关系,比如聚类相关的任务。有监督和无监督最主要的区别在于模型在训练时是否需要人工标注的标签信息。
只有数据没有答案,常见的是聚类算法,通过衡量样本之间的距离来划分类別
6.什么是模型
模型可以通过对海量数据的学习,吸收数据里面的“知识”。然后,再对知识进行运用,例如回答问题、创造内容等,所谓模型,就是一个包含了大量未知参数的函数,给函数输入数据生成输出,所谓训练,就是通过大量的数据去迭代逼近这些未知参数的最优解。
为什么要训练模型?如果我们对模型提供不同领域的数据进行训练那么他们能够预测的数据范围也就不一样。比如:我们使用法律相关的数据进行训练,那么当你在询问它法律的问题时他就能给出较为精准的答案,当你问他医疗的问题它肯定就无法给出你想要的答案了。
就好比一只小狗你训练它跳火圈,那么它就只会跳火圈,你训练它学猫叫他它就会学猫叫,AI也是一样,这样就形成了一个一个的“模型”,有些模型的能力是绘图,有些模型的能力是对话,就看你怎么训练它。
如果你们公司希望大模型能够针对于你们自己的业务和数据做出精准的预测值,那么就需要通过你们公司自己的大量数据去训练,这也就是为什么企业都需要自己去部署和训练模型,因为市面上的模型不一定适用于你们公司的业务。
而大模型(Large Model) 是指参数量非常庞大、规模远超传统模型的人工智能模型。这类模型通常具有数以亿计甚至数以万亿计的参数,能够在多种任务上表现出卓越的性能和通用性。大模型通过大量的数据训练,能够捕捉到复杂的数据模式和语义信息,从而在自然语言处理、计算机视觉、语音识别等领域展现出强大的能力。
我们现在口头上常说的大模型,实际上特指大模型的其中一类,也是用得最多的一类——语言大模型(Large Language Model,也叫大语言模型,简称LLM)。
除了语言大模型之外,还有视觉大模型、多模态大模型等。现在,包括所有类别在内的大模型合集,被称为广义的大模型。而语言大模型,被称为狭义的大模型
7.大模型训练流程
如果想要大模型如同人脑一样给出精准结果,那么需要提供大量数据进行“投喂”(学习),并且需要“标记”模型给出的答案是否“正确”,我们把学习的过程,我们称之为训练,运用的过程,则称之为推理。比如:我给大模型投喂的数据是"1+1=?" , 然后给出正确值为 2,那么大模型就学习到1+1=2,那么当你对他提出问题“1+1=?”,那么它可能就会给出推理的值2,下面是大模型学习和训练的过程:
相关文章:
一.AI大模型开发-初识机器学习
机器学习基本概念 前言 本文主要介绍了深度学习基础,包括机器学习、深度学习的概念,机器学习的两种典型任务分类任务和回归任务,机器学习中的基础名词解释以及模型训练的基本流程等。 一.认识机器学习 1.人工智能和机器学习 人工智能&am…...
【DeepSeek服务器部署全攻略】Linux服务器部署DeepSeek R1模型、实现API调用、搭建Web页面以及专属知识库
DeepSeek R1模型的Linux服务器搭建、API访问及Web页面搭建 1,引言2,安装Ollama工具3,下载DeepSeek R1 模型4,DeepSeek命令行对话5,DeepSeek API接口远程调用6,DeepSeek结合Web-ui实现图形化界面远程访问6.1…...
利用多线程加速ESMC-6B模型API调用以及403Forbidden问题的解决
前言 只对之前这篇文章进行了补充 403 Forbidden问题的解决 这几天用了一下ESMC-6B的API,发现被403 forbidden了 排查问题查来查去,发现需要翻墙才可以访问(怎么又被针对了) 于是就需要在服务器上面接入VPN,想了想…...
zyNo.25
SSRF漏洞 在了解ssrf漏洞前先了解curl命令的使用 1.curl命令的使用 基本格式:curl<参数值>请求地址 get请求:curl http://127.0.0.1 post请求:curl -X POST -d "a1&b2" http://127.0.0.1/(其中,使用-X参…...
golang中数组和slice的区别及使用
来自于《go语言中文文档》的学习及自我分析 数组和切片的区别 golang中有两个很相似的数据结构:数组(Array)和slice。数组和slice实际有各自的优缺点和区别,这里列出最主要的区别 功能点数组slice概念是同一种数据类型的固定长…...
撕碎QT面具(7):container控件被spacer挤扁,无法进行控件添加的处理方案。
调节容器控件最小大小,然后把内部设计好后,对容器使用水平布局或垂直布局。这样容器的控件就不会被挤扁。...
2月19号
寒假每天敲代码的过程中,从先前的什么都不懂,在一步步看题解,学习新知识,运用学到的知识,解决问题,很多时候对数据结构和算法的选择有问题,不能准确选择,这个时候还是得多敲代码,就我自己而言,代码敲多了会让自己更熟练掌握这个知识点,也能更好的去运用,遇到相似的问题还可以举…...
EX_25/2/19
1. 封装一个 File 类,用有私有成员 File* fp 实现以下功能 File f "文件名" 要求打开该文件 f.write(string str) 要求将str数据写入文件中 string str f.read(int size) 从文件中读取最多size个字节,并将读取到的数据返回 析构函数 …...
纯新手教程:用llama.cpp本地部署DeepSeek蒸馏模型
0. 前言 llama.cpp是一个基于纯C/C实现的高性能大语言模型推理引擎,专为优化本地及云端部署而设计。其核心目标在于通过底层硬件加速和量化技术,实现在多样化硬件平台上的高效推理,同时保持低资源占用与易用性。 最近DeepSeek太火了&#x…...
ubuntu源码方式安装TensorRT-LLM推理框架
简要记录安装过程和遇到的问题 写在前面: 一切的二手安装教程都不如官方手册,建议先根据手册进行安装,遇到问题再自行谷歌: TensorRT官方文档 先安装docker TensorRT-LLM 官方推荐使用 Docker 进行构建和运行 ubuntu安装docker…...
集合 数据结构 泛型
文章目录 1.Collection集合1.1数组和集合的区别【理解】1.2集合类体系结构【理解】1.3Collection 集合概述和使用【应用】内部类匿名内部类Lambda表达式 1.4Collection集合的遍历【应用】1.5增强for循环【应用】 2.List集合2.1List集合的概述和特点【记忆】2.2List集合的特有方…...
python脚本文件设置进程优先级(在.py文件中实现)
在 Python 代码中可以直接通过 psutil 模块或 系统调用 来设置进程优先级,无需依赖终端命令。以下是具体方法和示例: 1. 使用 psutil 模块(跨平台推荐) psutil 是一个跨平台库,支持 Windows、Linux 和 macOS。通过其 …...
Docker 安装 Apache
Docker 安装 Apache 引言 Apache HTTP Server(简称Apache)是一个开源的HTTP服务器软件,广泛应用于各种操作系统和平台。Docker作为一种容器化技术,可以简化Apache的部署过程,使得其能够在任何环境中快速部署。本文将详细介绍如何在Docker容器中安装Apache。 准备工作 …...
实在智能与宇树科技、云深科技一同获评浙江省“人工智能服务商”、 “数智优品”等荣誉
近日,浙江省经信厅正式公布《2024 年浙江省人工智能应用场景、应用标杆企业、人工智能服务商及 “数智优品” 名单》。 实在智能获评浙江省“人工智能服务商”,核心产品 “实在 Agent 智能体” 入选 “数智优品”。一同获此殊荣的还有宇树科技、云深处科…...
C语言指针学习笔记
1. 指针的定义 指针(Pointer)是存储变量地址的变量。在C语言中,指针是一种非常重要的数据类型,通过指针可以直接访问和操作内存。 2. 指针的声明与初始化 2.1 指针声明 指针变量的声明格式为:数据类型 *指针变量名…...
管道的学习
进程间通信:是指在操作系统中,两个或多个独立的进程之间进行数据交换和信息共享的一种机制 进程间通信的本质:先让不同的进程先看到同一份资源,才有通信的条件 进程间通信的目的: 1.将一个进程的数据发送给另一个进程…...
迪威模型网:免费畅享 3D 打印盛宴,科技魅力与趣味创意并存
还在为寻找优质3D打印模型而发愁?快来迪威模型网(https://www.3dwhere.com/),一个集前沿科技与无限趣味于一体的免费3D打印宝藏平台! 踏入迪威模型网,仿佛开启一场未来科技之旅。其“3D打印”专区ÿ…...
Java运算符
- 算术运算符 - 正号 - - 负号 - 加号 - - 减号 - * 乘号 - / 除 - % 取余 - 自增(前) 先运算后取值 i; 自增(后) 先取值后运算 i; public cla…...
Kimi K1.5 与 DeepSeek R1:AI 模型的深度对比
文章目录 一、背景介绍二、核心功能对比三、K1.5 使用方法:四、总结 随着人工智能技术的飞速发展,大型语言模型在各个领域都展现出了巨大的潜力。Kimi K1.5 和 DeepSeek R1 作为当前备受关注的两款先进 AI 模型,各自拥有独特的功能和优势。本…...
mysql索引为什么用B+树不用,B树或者红黑树
MySQL 选择 B 树作为索引结构,而不是 B 树或红黑树,主要原因如下: 1. 磁盘 I/O 优化 B 树:节点存储更多键值,树的高度较低,减少了磁盘 I/O 次数,适合处理大规模数据。 B 树:虽然也…...
Redis 全方位解析:从入门到实战
引言 在当今互联网快速发展的时代,高并发、低延迟的应用场景越来越普遍。Redis,作为一款高性能的开源数据库,以其卓越的性能和灵活的功能,成为了许多开发者的首选工具。无论是在缓存、消息队列,还是在实时数据分析等领…...
无第三方依赖 go 语言工具库
- 开源地址 GitHub - zdhsoft/xmutilsgo: utils for go - 使用办法 go get github.com/zdhsoft/xmutilsgo 主要内容 int.go 定义泛型的整数类型和字符串转整数的函数和随机范围的函数isin.go 判断指定元素是否再数组中的函数page.go mysql用于分页的类ret.go 通用返回值的类…...
代码随想录算法【Day49】
Day49 42. 接雨水 思路 这道题利用单调栈进行横向求解。对于每一个元素,找到它右边第一个比它大的元素和左边第一个比它大(或者与它相等的元素,当然这种情况可以忽略),最后计算雨水的存储量:(…...
R-CNN
这是一个20004096的一个特征矩阵 05:44在这个特征矩阵当中呢 05:45每一行就是我们一个候选框 05:48通过CNN网络得到了一个特征向量 05:51然后它有2000候选框 05:53所以它一共有2000行 05:54然后中间这个就是我们所说的SVM权值矩阵 05:58它的每一列呢 05:59就对应着我们…...
Linux探秘坊-------5.git
1.git介绍 1.版本控制器 为了能够更⽅便我们管理这些不同版本的⽂件,便有了版本控制器。所谓的版本控制器,就是能让你了解到⼀个⽂件的历史,以及它的发展过程的系统。通俗的讲就是⼀个可以记录⼯程的每⼀次改动和版本迭代的⼀个管理系统&am…...
项目中分库分表的分布式ID如何生成
分库分表与分布式ID生成在Java项目中的应用 在大规模的分布式系统中,数据库表和数据量的增大可能会导致单个数据库或单个表的性能瓶颈。为了解决这个问题,我们通常使用分库分表来进行数据的水平切分和垂直切分。同时,在分布式环境中…...
SOME/IP--协议英文原文讲解8
前言 SOME/IP协议越来越多的用于汽车电子行业中,关于协议详细完全的中文资料却没有,所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块: 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 4.2 Speci…...
JUC并发—7.AQS源码分析三
大纲 1.等待多线程完成的CountDownLatch介绍 2.CountDownLatch.await()方法源码 3.CountDownLatch.coutDown()方法源码 4.CountDownLatch总结 5.控制并发线程数的Semaphore介绍 6.Semaphore的令牌获取过程 7.Semaphore的令牌释放过程 8.同步屏障CyclicBarrier介绍 9.C…...
避坑:过早的文件结束符(EOF):解决“git clone龙蜥OS源码失败”的失败过程
避坑:过早的文件结束符(EOF):解决“git clone龙蜥OS源码失败”的失败过程 安装Anolis OS 8.9 下载AnolisOS-8.9-x86_64-dvd.iso并安装。 使用uname -a查看内核版本为5.10.134-18.an8.x86_64。 [rootlocalhost cloud-kernel]# c…...
基于知识图谱的问答系统:后端Python+Flask,数据库Neo4j,前端Vue3(提供源码)
基于知识图谱的问答系统:后端PythonFlask,数据库Neo4j,前端Vue3 引言 随着人工智能技术的不断发展,知识图谱作为一种结构化的知识表示方式,逐渐成为问答系统的重要组成部分。本文将介绍如何构建一个基于知识图谱的问答…...
日做力扣题2--215. 数组中的第K个最大元素
这道题我在做北京的一家教育公司的笔试时出现过,且题目里直接要求使用快排做,所以我也使用快排做的。 题目: 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最…...
centos8 使用yum安装程序出现报错
在执行yum指令出现源更新不了Could not resolve host: mirrorlist.centos.org; Unknown error问题 yum -y update结果 Errors during downloading metadata for repository appstream: - Curl error (6): Couldnt resolve host name for http://mirrorlist.centos…...
linux系统搭建DNS服务器、详细知识讲解
DNS服务器系统为rocky9.5, 1、安装DNS dnf -y install bind bind-utilsbind软件包 BIND 是一个开源的 DNS 服务器软件,广泛用于域名解析服务。 配置管理: 权威 DNS 服务器(Authoritative DNS):为特定域名…...
【部署优化篇四】《DeepSeek移动端优化:CoreML/TFLite实战对比》
手机里的AI助手能秒速回答你的问题,游戏人物能实时追踪你的表情变化,这些酷炫功能的背后都离不开移动端机器学习框架的支撑。今天我们就来撕开两个当红炸子鸡框架CoreML和TFLite的神秘面纱,看看它们在模型优化这件事上到底藏着哪些独门绝技。 一、移动端优化的生存法则 在…...
DeepSeek联网搜索
deepseek 0、前言1、未联网2、联网2.1 SerpAPI2.2 SerpAPIDeepseek 0、前言 为获取最新消息,需给deepseek联网 1、未联网 from dotenv import load_dotenv from langchain_deepseek import ChatDeepSeekload_dotenv()# 1、模型 model ChatDeepSeek(model"d…...
pt100 2线和3线的区别?
3线比2线更稳定一些; 在电路中,b和c是不连接在一起的; 测试的时候,b和c是接在一起的,也就是说pt100中b和c是连接在一起的 3线比2线多一个反馈; 平时测试的时候,测试一下ab或者ac 都是一样的…...
ollama-chat-ui-vue,一个可以用vue对接ollama的开源项目,可接入deepSeek
ollama-chat-ui-vue 使用vue3 vite elementUi 搭建的前端chat,通过ollama可与模型对话,目前支持独立思考,切换模型(联网查询后续支持) github地址:ollama-chat-ui-vue 制作不易github点点star,谢谢 前置工作 安装ollama,ollama官网地址 安装完olla…...
hot100-3、438、560、239、240、160、234(2简3中1难)
滑窗问题↓ 3. 无重复字符的最长子串(中等) 方法一、滑动窗口 数组结合哈希表ascii码,滑动出口。其实可以优化为left Math.max(left,map.get(s.charAt(i)) 1),数组的话就是全部初始化为-1,用来计算最新下标而不是…...
深入理解 Java 反射机制:获取类信息与动态操作
在 Java 编程中,反射(Reflection)是一种强大的机制,允许程序在运行时动态地获取类的信息并操作类的属性、方法和构造器。反射是 Java 动态语言特性的核心,广泛应用于框架开发、插件系统、序列化和反序列化等领域。本文…...
Redis 主从复制
概念 在分布式系统中为了解决单点问题,通常会把数据复制多个副本部署到其他服务器,满⾜故障恢复和负载均衡等需求。Redis 也是如此,它提供了复制的功能,实现了相同数据的多个 Redis 副本,通过一个主节点(ma…...
Unity中NavMesh的使用 及其 导出给java服务端进行寻路
1.先添加 AI Navigation组件 2.Windows-->AI-->Navigation(Obsolete) 这样子就可以看到烘焙按钮 3.将物体标记为行走和不可行走 4.添加一个Plane和一些球体,并把需要形成NavMesh的物体选择为静态 // 因为只能烘焙静态的 之后可以看出烘焙后,看着被…...
【含文档+PPT+源码】基于微信小程序的猎兔汽车保养维修美容服务平台的设计与实现
项目介绍 本课程演示的是一款基于微信小程序的猎兔汽车保养维修美容服务平台的设计与实现,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的 Java 学习者。 1.包含:项目源码、项目文档、数据库脚本、软件工具等所有资料 2.带你从零开始部…...
iOS App的启动与优化
App的启动流程 App启动分为冷启动和热启动 冷启动:从0开始启动App热启动:App已经在内存中,但是后台还挂着,再次点击图标启动App。 一般对App启动的优化都是针对冷启动。 App冷启动可分为三个阶段: dyld:…...
一周学会Flask3 Python Web开发-request请求钩子(Hook)
锋哥原创的Flask3 Python Web开发 Flask3视频教程: 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili 有时候我们业务需求对请求做一些鉴权,日志,统计分析等功能,这时候可以对请求进行预处理( …...
git clone
方法一(替换URL) git clone https://gitclone.com/github.com/tendermint/tendermint.git 方法二(设置git参数) git config --global url."https://gitclone.com/".insteadOf https:// git clone https://github.co…...
nginx ngx_http_module(8) 指令详解
nginx ngx_http_module(8) 指令详解 nginx 模块目录 nginx 全指令目录 一、目录 1.1 模块简介 ngx_http_ssi_module:服务器端包含(SSI)模块,允许在HTML页面中插入其他内容或动态生成的内容。通过特殊的SSI指令(如 …...
Apache Struts RCE (CVE-2024-53677)
前言 对目前的Apache Struts RCE (CVE-2024-53677)的poc进行总结,由于只能单个ip验证,所以自己更改一下代码,实现:多线程读取url验证并保存,更改为中文解释 免责声明 请勿利用文章内的相关技术从事非法测试…...
windows系统本地部署DeepSeek-R1全流程指南:Ollama+Docker+OpenWebUI
本文将手把手教您使用OllamaDockerOpenWebUI三件套在本地部署DeepSeek-R1大语言模型,实现私有化AI服务搭建。 一、环境准备 1.1 硬件要求 CPU:推荐Intel i7及以上(需支持AVX2指令集) 内存:最低16GB,推荐…...
前端:最简单封装nmp插件(组件)过程。
一、nmp使用 1、注册nmp账号:npm | Home 2、创建插件名称文件夹,如: vue3-components 3、初始化一个package.json文件:nmp init npm init package.json配置用处介绍,如下: {// 包名,必须…...
百度搜索融合 DeepSeek 满血版,开启智能搜索新篇
百度搜索融合 DeepSeek 满血版,开启智能搜索新篇 🚀 🔹 一、百度搜索全量接入 DeepSeek 🔹 百度搜索迎来重要升级,DeepSeek 满血版全面上线!🎉 用户在百度 APP 搜索后,点击「AI」即…...