Ubuntu 24.04.1 LTS 本地部署 DeepSeek 私有化知识库
文章目录
- 前言
- 工具介绍与作用
- 工具的关联与协同工作
- 必要性分析
- 1、DeepSeek 简介
- 1.1、DeepSeek-R1 硬件要求
- 2、Linux 环境说明
- 2.1、最小部署(Ollama + DeepSeek)
- 2.1.1、扩展(非必须) - Ollama 后台运行、开机自启:
- 2.2、Page Assist - 浏览器插件
- 2.3、知识库
- 2.3.1、Embedding 向量化模型 - bge-m3
- 2.3.2、AnythingLLM
前言
工具介绍与作用
-
Ollama - 官方网站
- 定义与作用:
- Ollama 是一个开源的本地化大语言模型(LLM)部署工具,旨在简化大型语言模型的安装、运行和管理。它封装了底层的模型运行逻辑,提供了一个用户友好的命令行界面(CLI)和 API 接口,使得用户可以在本地设备上轻松运行各种开源模型(如 LLaMA、DeepSeek 等)。Ollama 支持 GPU 加速,能够自动利用设备的 GPU 资源来提高模型的推理效率。
- 在 DeepSeek 部署中的作用:
- Ollama 作为 DeepSeek 模型的本地运行环境,负责加载和运行 DeepSeek 模型文件。它提供了模型管理功能,用户可以通过 Ollama 的命令行工具下载、加载和切换不同的模型版本。
- 定义与作用:
-
Embedding - 官方网站
- 定义与作用:
- Embedding(嵌入)是指将高维数据(如文本)转换为低维向量的过程。这些向量能够捕捉数据的语义信息,便于进行高效的检索和比较。在自然语言处理中,嵌入模型(如 nomic-embed-text )将文本片段转换为向量,这些向量可以存储在向量数据库中。
- 在 DeepSeek 部署中的作用:
- 在部署 DeepSeek 时,Embedding 模型用于将文档内容转换为向量形式,并将这些向量存储在向量数据库中。当用户向 AI 助手提问时,系统会通过嵌入模型将问题文本转换为向量,然后在向量数据库中搜索与问题最相关的文档片段,从而提供更精准的回答。
- 定义与作用:
-
AnythingLLM - 官方网站
- 定义与作用:
- AnythingLLM 是一个全栈应用程序,用于构建私有化的 AI 知识库。它支持多种文档格式(如 PDF、TXT、DOCX 等),可以将文档内容嵌入到向量数据库中,并通过智能问答功能与用户进行交互。AnythingLLM 提供了前端管理界面,用户可以通过界面上传文档、管理知识库,并与 AI 助手进行对话。
- 在 DeepSeek 部署中的作用:
- AnythingLLM 作为前端管理工具,与 Ollama 结合使用,提供了一个完整的知识库管理解决方案。它通过调用 Ollama 提供的模型推理能力,结合嵌入模型和向量数据库,实现了对用户上传文档的智能检索和问答功能。AnythingLLM 支持多种 LLM 和嵌入模型,用户可以选择适合的模型组合来优化知识库的性能。
- 定义与作用:
-
Page Assist - 官方网站
- 定义与作用:
- Page Assist 是一个开源的浏览器扩展插件,用于与本地运行的 AI 模型进行交互。它提供了一个直观的 WebUI 界面,用户可以通过侧边栏或网页 UI 与 AI 模型进行对话。Page Assist 支持多种功能,包括与网页内容、PDF 文件和文档进行聊天交流。
- 在 DeepSeek 部署中的作用:
- Page Assist 为用户提供了一个便捷的交互界面,使得用户可以通过浏览器与本地运行的 DeepSeek 模型进行对话。它与 Ollama 配合使用,通过配置 Ollama 的地址和嵌入模型,用户可以在浏览器中直接与 DeepSeek 模型进行交互。
- 定义与作用:
工具的关联与协同工作
- Ollama 是底层的模型运行环境,负责加载和运行 DeepSeek 模型。
- Embedding 模型将文档内容转换为向量,存储在向量数据库中,为智能问答提供支持。
- AnythingLLM 作为前端管理工具,结合 Ollama 和嵌入模型,实现了知识库的管理和智能问答功能。
- Page Assist 提供了一个用户友好的交互界面,使得用户可以通过浏览器与本地运行的 DeepSeek 模型进行对话。
必要性分析
必须使用的工具:
- Ollama:
- 作用:Ollama 是部署 DeepSeek 的核心工具,负责下载、管理和运行 DeepSeek 模型。它是本地化部署 DeepSeek 的基础,必须使用。
- 最小需求:安装 Ollama 客户端,并通过命令行运行 DeepSeek 模型(如 ollama run deepseek-r1:7b )。
- DeepSeek 模型:
- 作用:DeepSeek 是一个强大的语言模型,用于提供智能问答和生成内容。
- 最小需求:下载并运行 DeepSeek 模型(如 deepseek-r1:7b ),这是实现功能的基础。
可选的工具:
- AnythingLLM:
- 作用:提供一个用户友好的界面,用于管理文档、知识库和与 DeepSeek 模型进行交互。它支持文档上传、向量化和智能检索功能。
- 是否必须:可选,但强烈推荐。如果没有 AnythingLLM,用户只能通过命令行与 DeepSeek 交互,无法实现知识库管理和智能检索功能。
- Embedding:
- 作用:将文档内容转换为向量形式,以便存储在向量数据库中,支持智能检索功能。
- 是否必须:可选,但如果你需要实现基于文档的知识库功能(如智能检索和问答),则需要使用 Embedding。
- Page Assist:
- 作用:提供一个浏览器扩展界面,用于与本地运行的 DeepSeek 模型进行交互,增强用户体验。
- 是否必须:可选,主要用于提升用户体验,使用户可以通过浏览器界面与模型进行对话。
1、DeepSeek 简介
官方网站
1.1、DeepSeek-R1 硬件要求
参考文档
参考文档:R1蒸馏版-1.5B 无需GPU,任意四核 CPU,内存 8GB,硬盘空间 12GB 即可运行
2、Linux 环境说明
操作系统:Ubuntu 24.04.1 LTS
安装包:ubuntu-24.04.1-desktop-amd64.iso
硬件环境:i5-10400
虚拟化软件:ESXi-8.0
虚拟机:CPU 8核 内存 16G 硬盘 80G
2.1、最小部署(Ollama + DeepSeek)
目标:快速启动并运行 DeepSeek 模型,进行基本的智能问答
最小需求:
- Ollama:用于下载和运行 DeepSeek 模型
- DeepSeek 模型:选择合适的模型版本(如 deepseek-r1:7b )并运行
参考文档:Ollama GitHub 部署文档
# 安装 curl 工具 - 系统默认没有
apt install curl# 安装 Ollama
# 不推荐!好慢: curl -fsSL https://ollama.com/install.sh | sh
# 推荐 - 通过工具下载,地址:https://ollama.com/download/ollama-linux-amd64.tgz
# 解压
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
# 启动 Ollama 服务 - 前台运行
ollama serve
# 查看 Ollama 是否正常启动 - 通过浏览器访问 http://localhost:11434# 验证是否安装成功
# 打开另外一个中端
ollama -v
ollama --version# 下载并运行 DeepSeek 模型
# 说明:有点慢 1.1 GB
ollama run deepseek-r1:1.5b
# 成功后,即可愉快的玩耍啦 ~
2.1.1、扩展(非必须) - Ollama 后台运行、开机自启:
编辑配置文件
nano /etc/systemd/system/ollama.service
# 重载 systemd 配置
sudo systemctl daemon-reload
# 开机自启
sudo systemctl enable ollama
# 启动服务
sudo systemctl start ollama
# 查看状态
sudo systemctl status ollama
配置文件示例
[Unit]
Description=Ollama Service
After=network.target[Service]
ExecStart=/usr/bin/ollama serve
Restart=always
User=root
Group=root
RestartSec=3
# 如果需要远程访问,设置为 0.0.0.0
Environment="OLLAMA_HOST=0.0.0.0"
# 如果需要更改端口,可以在这里设置
Environment="OLLAMA_PORT=11434"
Environment="OLLAMA_ORIGINS=*"
# 模型文件存储目录,当前为默认。推荐变更为 /data/ollama/models
Environment="OLLAMA_MODELS=/root/.ollama/models"[Install]
WantedBy=multi-user.target
2.2、Page Assist - 浏览器插件
以上方法,只能通过命令行进行交互。
如何通过浏览器进行交互呢?浏览器上面安装个插件 Page Assist
FireFox 安装示例(Chrome 也有)
点击插件之后显示的页面
配置页面 - 配置成中文
配置页面 - 选择模型
插件页面 - 开始聊天啦 ~
2.3、知识库
2.3.1、Embedding 向量化模型 - bge-m3
# 拉取模型
ollama pull bge-m3
# 验证是否拉取成功
ollama list
2.3.2、AnythingLLM
参考文档:AnythingLLM 官方部署文档
说明:通过官方命令下载有点慢,可以通过工具下载。
AnythingLLMDesktop.AppImage 安装文件下载地址
说明:使用 .AppImage 文件,依赖 FUSE
FUSE 官方网站
# 安装 FUSE
sudo add-apt-repository universe
sudo apt install libfuse2t64
# 安装好后,鼠标双击 AnythingLLMDesktop.AppImage 文件即可出现可视化界面啦 ~
初始界面
skip 注册的流程 - 创建工作区 - 设置 LLM 首选项
设置 Embedding 向量化模型
上传自定义的知识,并向量化保存。
下拉,点击 Save
部署完成啦 ~ 可以使用啦 ~
相关文章:
Ubuntu 24.04.1 LTS 本地部署 DeepSeek 私有化知识库
文章目录 前言工具介绍与作用工具的关联与协同工作必要性分析 1、DeepSeek 简介1.1、DeepSeek-R1 硬件要求 2、Linux 环境说明2.1、最小部署(Ollama DeepSeek)2.1.1、扩展(非必须) - Ollama 后台运行、开机自启: 2.2、…...
沃德校园助手系统php+uniapp
一款基于FastAdminThinkPHPUniapp开发的为校园团队提供全套的技术系统及运营的方案(目前仅适配微信小程序),可以更好的帮助你打造自己的线上助手平台。成本低,见效快。各种场景都可以自主选择服务。 更新日志 V1.2.1小程序需要更…...
Visual Studio Code使用ai大模型编成
1、在Visual Studio Code搜索安装roo code 2、去https://openrouter.ai/settings/keys官网申请个免费的配置使用...
工业软件测试方案
一、方案概述 本测试方案致力于全面、系统地评估工业仿真软件的综合性能,涵盖性能表现、功能完整性以及用户体验层面的易用性。同时,将其与行业内广泛应用的MATLAB进行深入的对比分析,旨在为用户提供极具价值的参考依据,助力其在…...
红队视角出发的k8s敏感信息收集——Kubernetes API 扩展与未授权访问
针对 Kubernetes API 扩展与未授权访问 的详细攻击视角分析,聚焦 Custom Resource Definitions (CRD) 和 Aggregated API Servers 的潜在攻击面及利用方法: 攻击链示例 1. 攻击者通过 ServiceAccount Token 访问集群 → 2. 枚举 CRD 发现数据库配…...
一种 SQL Server 数据库恢复方案:解密、恢复并导出 MDF/NDF/BAK文件
方案特色 本方案可以轻松恢复和导出SQL数据库:MDF、NDF 和 BAK 文件。 恢复和导出SQL数据库:主(MDF),辅助(NDF)和备份(BAK)文件分析 SQL Server LOG 数据库事务日志将 …...
Pygame中自定义事件处理的方法2-1
1 Pygame事件处理流程 Pygame中的事件处理流程如图1所示。 图1 Pygame中事件处理流程 系统事件包括鼠标事件和键盘事件等,当用户点击了鼠标或者键盘时,这些事件会自动被放入系统的事件队列中。用户自定义事件需要通过代码才能被放入事件队列中。Pygame…...
langchain学习笔记之消息存储在内存中的实现方法
langchain学习笔记之消息存储在内存中的实现方法 引言背景消息存储在内存的实现方法消息完整存储:完整代码 引言 本节将介绍 langchain \text{langchain} langchain将历史消息存储在内存中的实现方法。 背景 在与大模型交互过程中,经常出现消息管理方…...
HarmonyOS组件之Tabs
Tabs 1.1概念 Tabs 视图切换容器,通过相适应的页签进行视图页面的切换的容器组件每一个页签对应一个内容视图Tabs拥有一种唯一的子集元素TabContent 1.2子组件 不支持自定义组件为子组件,仅可包含子组件TabContent,以及渲染控制类型 if/e…...
【C++】基础入门(详解)
🌟 Hello,我是egoist2023! 🌍 种一棵树最好是十年前,其次是现在! 目录 输入&输出 缺省参数(默认参数) 函数重载 引用 概念及定义 特性及使用 const引用 与指针的关系 内联inline和nullptr in…...
bps是什么意思
本文来自DeepSeek "bps" 是 "bits per second" 的缩写,表示每秒传输的比特数,用于衡量数据传输速率。1 bps 即每秒传输 1 比特。 常见单位 bps:比特每秒 Kbps:千比特每秒(1 Kbps 1,000 bps&am…...
OceanBase使用ob-loader-dumper导出表报ORA-00600
执行下面的语句导出表报错,同样的语句之前都没有报错。 ob-loader-dumper-4.2.8-RELEASE/bin/obdumper -h xxx.xxx.xxx.xxx -P 2883 -p 密码 --column-splitter| --no-sys-t gzuat_ss#ob8(集群) -D 数据库名 --cut --table teacher --no-ne…...
JUC并发总结一
大纲 1.Java集合包源码 2.Thread源码分析 3.volatile关键字的原理 4.Java内存模型JMM 5.JMM如何处理并发中的原子性可见性有序性 6.volatile如何保证可见性 7.volatile的原理(Lock前缀指令 + 内存屏障) 8.双重检查单例模式的volatile优化 9.synchronized关键字的原理 …...
hive:分区>>静态分区,动态分区,混合分区
分区表 使用场景:数据量庞大且经常用来做查询的表 特点:将数据分别存储到不同的目录里 优点:避免全盘扫描,提高查询效率 分区的类型 它们的默认值分别是: false, strict, 要求至少有一个静态分区列,而 nonstr…...
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论…...
linux--关于GCC、动态库静态库
gcc和g的异同 他们是不同的编译器, 在linux中,生成可执行文件不像和windows一样。 linux中是以**.out作为可执行文件**的 无论是什么系统,生成可执行文件分为4步: 预处理–>编译–>汇编–>链接。 从.c/.cpp–>.i文件…...
matlab汽车动力学半车垂向振动模型
1、内容简介 matlab141-半车垂向振动模型 可以交流、咨询、答疑 2、内容说明 略 3、仿真分析 略 4、参考论文 略...
Pygame中自定义事件处理的方法2-2
在《Pygame中自定义事件处理的方法2-1》中提到了处理自定义事件的方法。通过处理自定义事件,可以实现动画等效果。 1 弹跳小球程序 通过处理自定义事件,可以实现弹跳小球程序,如图1所示。 图1 弹跳小球程序 2 弹跳小球程序原理 实现弹跳小…...
B. Longest Divisors Interval
time limit per test 2 seconds memory limit per test 256 megabytes Given a positive integer nn, find the maximum size of an interval [l,r][l,r] of positive integers such that, for every ii in the interval (i.e., l≤i≤rl≤i≤r), nn is a multiple of ii. …...
什么是服务的雪崩、熔断、降级的解释以及Hystrix和Sentinel服务熔断器的解释、比较
1.什么是服务雪崩? 定义:在微服务中,假如一个或者多个服务出现故障,如果这时候,依赖的服务还在不断发起请求,或者重试,那么这些请求的压力会不断在下游堆积,导致下游服务的负载急剧…...
从驾驶员到智能驾驶:汽车智能化进程中的控制与仿真技术
在汽车技术持续演进的历程中,人类驾驶员始终是一个极具研究价值的智能控制系统“原型”。驾驶员通过视觉感知、行为决策与操作执行的闭环控制,将复杂的驾驶任务转化为车辆的实际动作,同时动态适应道路环境的变化。这一过程不仅体现了高度的自…...
mysql和minio
在现代应用架构中,Word 文档、PPT 等文件通常存储在对象存储服务(如 MinIO)中,而不是直接存储在关系型数据库(如 MySQL)中。以下是具体的分工和原因: 为什么选择对象存储(如 MinIO&a…...
java练习(24)
PS:练习来自力扣 合并两个有序数组 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。 请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。 注意&am…...
Android的Activity生命周期知识点总结,详情
一. Activity生命周期 1.1 返回栈知识点 二. Activity状态 2.1 启动状态 2.2 运行状态 2.3 暂停状态 2.4 停止状态 2.5 销毁状态 三. Activity生存期 3.1 回调方法 3.2 生存期 四. 体验Activity的生命周期 五. Activity被回收办法 引言: 掌握Acti…...
STM32——HAL库开发笔记19(串口中断接收实验)(参考来源:b站铁头山羊)
本实验,我们以中断的方式使得串口发送数据控制LED的闪烁速度,发送1,慢闪;发送2,速度正常;发送3,快闪。 一、电路连接图 二、实现思路&CubeMx配置 1、实现控制LED的闪烁速度 uint32_t bli…...
基于腾讯云TI-ONE 训练平台快速部署和体验 DeepSeek 系列模型
引言 在前两篇文章中,我们通过腾讯云的HAI部署了DeepSeek-R1,并基于此进行了一系列实践。 腾讯云HAI DeepSeek 腾讯云AI代码助手 :零门槛打造AI代码审计环境 基于腾讯云HAI DeepSeek 快速开发中医辅助问诊系统 这些尝试不仅帮助我们理解…...
python的类装饰器
装饰器不仅可以用于函数,还能作用于类。将装饰器应用于类时,其核心原理与作用于函数类似,都是通过接收一个类作为输入,然后返回一个新的类或者修改后的原类,以此来为类添加额外的功能 简单的类装饰器 def add_method…...
C++17中的LegacyContiguousIterator(连续迭代器)
文章目录 特点内存连续性与指针的兼容性更高的性能 适用场景与C接口交互高性能计算 支持连续迭代器的容器示例代码性能优势缓存局部性指针算术优化 注意事项总结 在C17标准里,LegacyContiguousIterator(连续迭代器)是一类特殊的迭代器。它不仅…...
Linux-文件IO
1.open函数 【1】基本概念和使用 #include <fcntl.h> int open(const char *pathname,int flags); int open(const char *pathname,int flags,mode_t mode); 功能: 打开或创建文件 参数: pathname //打开的文件名 f…...
DeepSeek-R1 + Cherry Studio 本地部署打造个人 AI 知识库
ChatGPT 爆火的时候,我心里就燃起了一个想法:打造一个专属于自己的AI知识库,它就像我的第二大脑一样,能记住我生活里的点点滴滴。 我随口一问“去年5月我做了什么”,它不仅能精准找到记录,还能帮我回忆起那…...
《红色警戒:兵临城下》 游戏软件安装步骤与百度网盘链接
软件简介: 《红色警戒:兵临城下》(Command & Conquer: Red Alert)是一款经典的即时战略游戏,由Westwood Studios开发,于1996年首次发行。它是《命令与征服》系列的衍生作品,以其独特的世界…...
25/2/16 <算法笔记> DirectPose
DirectPose 是一种直接从图像中预测物体的 6DoF(位姿:6 Degrees of Freedom)姿态 的方法,包括平移和平面旋转。它在目标检测、机器人视觉、增强现实(AR)和自动驾驶等领域中具有广泛应用。相比于传统的位姿估…...
第32周:文献阅读
目录 摘要 Abstract 文献阅读 问题引入 研究问题 研究意义 研究方法 集成方法 随机森林(RF) 支持向量机(SVM) 简单循环神经网络(SimpleRNN) 长短期记忆网络(LSTM) 创…...
Ollama 开发指南
文章来源:开发指南 - Ollama中文文档|Ollama官方文档 安装先决条件: GOC/C 编译器,例如 macOS 上的 Clang、TDM-GCC (Windows amd64) 或 llvm-mingw (Windows arm64)、Linux 上的 GCC/Clang。…...
【deepseek与chatGPT辩论】辩论题: “人工智能是否应当具备自主决策能力?”
探讨辩论题 这个提案涉及创建一个精确的辩论题目,旨在测试deepseek的应答能力。 创建辩论题目 提议设计一个辩论题目以测试deepseek的应答能力。希望这个题目具有挑战性并能够测量其回应质量。 好的,来一道适合深度学习的辩论题: 辩论题&…...
神经网络常见激活函数 9-CELU函数
文章目录 CELU函数导函数函数和导函数图像优缺点pytorch中的CELU函数tensorflow 中的CELU函数 CELU 连续可微指数线性单元:CELU(Continuously Differentiable Exponential Linear Unit),是一种连续可导的激活函数,结合了 ELU 和 …...
JavaScript系列(74)--反射API详解
JavaScript反射API详解 🔍 JavaScript的反射API提供了强大的运行时检查和操作对象的能力。本文将深入探讨Reflect API的原理、应用场景和最佳实践。 反射基础 🌟 💡 小知识:反射是指程序在运行时能够检查、修改自身结构和行为的…...
轻量级分组加密算法RECTANGLE
轻量级分组加密算法RECTANGLE RECTANGLE轻量级分组密码算法是Wentao Zhang,Zhenzhen Bao,Dongdai Lin等学者于2014年提出的,该算法是SPN结构的,采用了线性移位的置换层以及44bit的S盒。RECTANGLE是一个迭代分组密码,分组长度为64…...
智能设备监控:AI 与 Python 助力设备管理的未来
智能设备监控:AI 与 Python 助力设备管理的未来 引言 随着物联网(IoT)和智能设备的广泛应用,我们的日常生活逐渐离不开这些高科技产品。从智能家居到工业控制,智能设备已经渗透到各个领域。然而,随着设备种类和数量的增加,如何高效地监控这些设备,确保它们的稳定性和…...
python语言进阶之函数
目录 前言 函数的创建和调用 函数创建 调用函数 参数传递 形式参数和实际参数 位置参数 数量必须与定义时一致 位置必须与定义时一致 关键字参数 为参数设置默认值 可变参数 **parameter 返回值 变量的作用域 局部变量 全局变量 匿名函数 前言 提到函数&…...
Golang Model 字段自动化校验设计
背景 在我们日常开发中,不可避免的总要去进行各种参数校验,但是如果在某个场景中,要校验的字段非常多,并且在其中还有耦合关系,那么我们手写校验逻辑就变得非常的低效且难以维护。本篇文档就基于 DDD 领域模型设计的思…...
Hot100 堆
215. 数组中的第K个最大元素 - 力扣(LeetCode) 堆排序 我们可以借助一个小顶堆来维护当前堆内元素的最小值,同时保证堆的大小为 k: 遍历数组将元素入堆; 如果当前堆内元素超过 k 了,我们就把堆顶元素去除…...
AIGC图生视频保姆级教程
一、AI文生图高阶技巧 推荐工具 ▸ MidJourney(艺术感最强) ▸ DALLE 3(与ChatGPT深度联动) ▸ Leonardo.ai(精细化参数控制) 核心策略 提示词架构: [主体描述][环境氛围][镜头语言][风格参数…...
Qt QDateTimeEdit总结
1. 概述 QDateTimeEdit 是 Qt 提供的用于编辑日期和时间的控件,支持直接输入或通过弹出日历/时间选择器调整值。继承自 QAbstractSpinBox,是 QDateEdit 和 QTimeEdit 的父类,可同时处理日期和时间。默认显示格式为系统本地化的日期时间格式&…...
【吾爱出品】 视频批量分段工具
视频批量分段工具 链接:https://pan.xunlei.com/s/VOJDvtHQE7GOiJ84WNea5Ay1A1?pwd5nta# 选择视频文件 启动程序后,点击 "文件" 菜单下的 "选择视频文件" 按钮,或者直接将视频文件拖放到程序窗口中的视频列表区域。支…...
SHEIN的迁移与无奈
日前,因杭州宇树科技、DeepSeek的“六小龙”企业崛起,不少地方开始反思,为什么本地没有留住创始人,或者发展出类似的企业。例如DeepSeek创始人梁文锋和Kimi创始人杨植麟都是广东人,但都在其他地区创业成功。而还有媒体…...
TCP/UDP 简介,三次握手与四次挥手
一、TCP 三次握手 目的:为了解决在不可靠的信道上建立可靠的网络连接 三次握手是连接请求的过程: A 发送连接请求的数据给 B(发送 SYN 包) B 同意连接,返回数据给 A(返回 SYNACK 包) A 收到后回…...
Windows Defender Control--禁用Windows安全中心
Windows Defender Control--禁用Windows安全中心 链接:https://pan.xunlei.com/s/VOJDuy2ZEqswU4sEgf12JthZA1?pwdtre6#...
数据仓库与数据湖的协同工作:智慧数据管理的双引擎
数据仓库与数据湖的协同工作:智慧数据管理的双引擎 引言 在数据驱动的今天,企业和组织收集和存储的数据量正以惊人的速度增长。如何高效管理和利用这些数据,成为了决策者和技术专家的共同难题。为了解决这一问题,数据仓库(Data Warehouse)和数据湖(Data Lake)这两种技…...
50. c++多维数组
在‘19 数组’中描述了原生数组的本质和其索引的原理,一维数组是连续的一个内存块,本质就是指针,指向这个内存块的起始位置,索引的原理就是对该指针的操作。通常对数组的操作一种策略就是使用指针,二维数组可以说是数组…...